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Abstract

The motor cortex represents muscle and joint control and projects to spinal cord interneurons and–in many primates,
including humans–motoneurons, via the corticospinal tract (CST). To examine these spinal CST anatomical mechanisms, we
determined if motor cortex sites controlling individual forelimb joints project differentially to distinct cervical spinal cord
territories, defined regionally and by the locations of putative last-order interneurons that were transneuronally labeled by
intramuscular injection of pseudorabies virus. Motor cortex joint-specific sites were identified using intracortical-
microstimulation. CST segmental termination fields from joint-specific sites, determined using anterograde tracers,
comprised a high density core of terminations that was consistent between animals and a surrounding lower density
projection that was more variable. Core terminations from shoulder, elbow, and wrist control sites overlapped in the medial
dorsal horn and intermediate zone at C5/C6 but were separated at C7/C8. Shoulder sites preferentially terminated dorsally,
in the dorsal horn; wrist/digit sites, more ventrally in the intermediate zone; and elbow sites, medially in the dorsal horn and
intermediate zone. Pseudorabies virus injected in shoulder, elbow, or wrist muscles labeled overlapping populations of
predominantly muscle-specific putative premotor interneurons, at a survival time for disynaptic transfer from muscle. At C5/
C6, CST core projections from all joint zones were located medial to regions of densely labeled last-order interneurons,
irrespective of injected muscle. At C7/C8 wrist CST core projections overlapped the densest interneuron territory, which was
located in the lateral intermediate zone. In contrast, elbow CST core projections were located medial to the densest
interneuron territories, and shoulder CST core projections were located dorsally and only partially overlapped the densest
interneuron territory. Our findings show a surprising fractionation of CST terminations in the caudal cervical enlargement
that may be organized to engage different spinal premotor circuits for distal and proximal joint control.
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Introduction

The corticospinal tract (CST) provides a direct path for the

motor cortex to spinal motor circuits. From the earliest studies, we

learned of the predominance of the motor cortex muscle and joint

representation; the familiar homunculus in humans [1]. This has

been reinforced using intracortical microstimulation (ICMS) for

fine-grained mapping of the motor cortex in animals [2].

However, many aspects about the basic organization of motor

cortex control over limb muscles and joints via the CST are not

known. Indeed, many studies point not to a simple representation

of muscles or joints, but to more complex and integrative control

[3,4].

The CST projects to the spinal cord to contact motoneurons in

select species and interneurons, in all species [5]. Possible functions

of corticomotoneuronal cells [6,7] in individuated muscle control

can be inferred by their direct connections. While we have an

understanding of the diverse physiological actions of the CST on

spinal interneuronal systems [8–10], and a growing inventory of

CST-to-interneuron projections [11], we have little insight into the

possible functional organization of these connections.

In this study, we focused on the anatomical organization of

motor cortex joint control at the spinal level. As sites in motor

cortex preferentially represent different forelimb joints, it follows

that during tasks that recruit the CST, the cortical representations

of different forelimb joints [12] may each comprise parallel CST

paths for controlling separate joints. We addressed two questions.

First, is there an anatomical substrate for CST joint control,

whereby cortical sites controlling particular joints have differential

cervical segmental terminations? Alternatively, does CST joint

control emerge from segmentally undifferentiated terminations?

Second, since important motor actions of the CST are expressed

via segmental interneurons, is there a topographic relationship

between CST projections from the different cortical joint

representations and spinal premotor interneurons [13,14] associ-

ated with muscles that act around the corresponding joints?

We focused on the forelimb motor cortex representation and

the cervical enlargement segments that are the substrates for

forelimb control. We studied this in the mouse because we could

identify putative spinal premotor interneurons using retrograde

transneuronal transport of pseudorabies virus (PRV) in mature

mice and because a functional neuroanatomical study in that

species could inform molecular genetic studies of cortical
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projection and spinal interneurons [15,16]. We determined the

motor cortex motor representation using ICMS and mapped

connections from identified forelimb joint-specific sites using

anterograde tracers. We used intramuscular injection of two

PRV strains–at a survival time for disynaptic transfer from

muscle–to identify putative last-order interneurons. This approach

has been used recently to identify last-order interneurons in

neonatal mouse lumbar spinal cord [17]. Our findings show

fractionation of CST connections within the cervical enlargement.

As joints are represented in motor cortex, there appears to be a

complementary spinal representation that provides CST projec-

tions from joint-specific sites access to distinctive spinal territories.

For distal control, our findings point to a CST projection

organized to engage spinal premotor circuits preferentially.

Methods

Ethics Statement
Experiments were conducted on adult male and female C57/

BL6 mice. All procedures were approved by the Institutional

Animal Care and Use Committees of City College of the City

University of New York, New York State Psychiatric Institute, and

Columbia University.

Intracortical Microstimulation
For ICMS motor mapping, anesthesia was induced with a

ketamine/xylazine mixture (100/10 mg/kg; IP) and maintained

using IP ketamine injections to render the animal unresponsive to

paw pinch while maintaining muscle tone. Animals were placed in

a stereotaxic frame. Body temperature was maintained at 39uC by

a heating pad. A craniotomy was made over the forelimb area of

M1. We used tungsten microelectrodes (Microprobe, Inc.;

0.5 MOhm impedance; 0.081 mm shaft diameter, 1–2 mm tip

diameter). Electrode penetrations were made perpendicular to the

pial surface and approximately 0.3 mm apart. In all animals, the

region sampled was the same, from 1 to 1.9 mm lateral to bregma

and up to 2.1 mm rostral to bregma. Motor effects produced by

microstimulation occurred at the lowest stimulus current when the

electrode was at the depth that we recorded multiunit activity with

the largest amplitude spikes (typically 0.8–1.0 mm below the pial

surface); this was presumably laver V.

Stimuli (45 ms duration train, 330 Hz, 0.2 ms biphasic; every

2 sec) were delivered using an isolated pulse stimulator in constant

current stimulation mode (A–M Systems). The threshold was

defined as the lowest current that consistently produced a motor

effect on .50% of trials. For a given site, we started at a low

current and first determined the threshold for evoking a

contralateral response. The thresholds were then examined in

reverse through the loss of the responses with decreasing currents.

We randomized placement of the electrode to prevent biasing our

results by anesthesia level or other state-dependent changes.

Stimulation currents were up to 100 mA. For each penetration, the

type of motor effect produced by a threshold stimulus was

determined on the basis of the evoked phasic kinematic change;

adjacent joints were stabilized. Limb posture was the same for all

experiments; with the shoulder and elbow extended, and the wrist

plantar flexed.

Electromyography
We recorded electromyographic (EMG) responses from fore-

limb muscles using percutaneous Ni-chrome wire electrodes and a

differential AC amplifier with low and high pass filtration (A–M

Systems). EMG recording wires were deinsulated at the tip

(1 mm), a small hook was formed by bending the wire over the

needle tip, and inserted into muscle using a 26-gauge hypodermic

needle. Because of the hook at the end of the EMG lead, when the

needle was withdrawn the wire remained securely embedded

within the muscle. We recorded differentially, with two wire

electrodes within each muscle. EMG signals were acquired using

an analog-to-digital converter (Digidata; Axon Instruments) at

20 kHz per channel and processed using the program AxoGraph

for the Apple Macintosh computer. For analysis and display,

EMGs were first rectified and then averaged.

Iontophoretic Application of Tracers
Immediately after ICMS, in selected experiments we injected

biotinylated dextran amine (BDA, Invitrogen; 10% in 0.1 M

phosphate buffer (PB), Lucifer yellow dextran amine (LY-DA;

Invitrogen; in 0.1 M PB) or dextran alexa fluor (DAF; Invitrogen;

10% in 0.1 M PB) into specific sites of the forelimb area of motor

cortex to anterogradely label joint-specific CST projections.

Injections were made using glass micropipettes (15–20 mm tip

diameter). The current for iontophoresis was set to 7 mA for 5 min

in alternating mode (7 s on, 7 s off; MidgardTM precision current

source; Stoelting Co.). The average injection site diameter was

279611mM (n=3 mice). For each animal, we injected BDA with

either LY-DA or DAF at sites separated by at least 400 mm. After

a minimum and maximum post surgery survival of 14 and 21 d

respectively, mice were given an anesthetic overdose and perfused

through the heart with heparinized (0.1%) saline followed by 4%

paraformaldehyde. The brain and spinal cord were removed, post-

fixed in the same fixative at room temperature for 2 hr, and

transferred to 20% sucrose in 0.1 M PB at 4uC overnight.

Transverse sections of the cervical enlargement (C5 to C8;

identified by counting roots) were cut at 40 mm and processed for

tracer histochemistry. For visualization of BDA, sections were

incubated with ExtrAvidin cyanine 3 (Cy3; 1:1000 to 1:2000;

Sigma) overnight at 4uC. For visualization of LY-DA and DAF,

sections were incubated at 4uC overnight in PBS containing rabbit

anti-LY-DA antibody (1:1000; Invitrogen) or rabbit anti-alexa

fluor antibody (1:400; Molecular Probes) in blocking buffer (3%

donkey serum in 16PBS with 0.2% Tween 20, pH 7.4). After

rinsing, sections were incubated for 2 hr at room temperature

(RT) in blocking buffer containing 0.2% anti-rabbit secondary

antibody conjugated to FITC (1:500; pH 7.4).

Analysis of Topography of CST Terminations
We developed a quantitative method for determining the

topographic distribution of label within the gray matter in the

cervical enlargement. Figure 1 shows the basic method for a single

section. For each transverse section of the spinal cord, we captured

images at 100 X using the MosiacJ plugin application for ImageJ

(NIH) to create a montage. For the purposes of comparing across

animals, the gray matter border and contours for individual

sections were grouped using a graphics program (Adobe Photo-

shop and Adobe Illustrator, Adobe Systems) and the size of the

gray matter, and associated contours, were normalized to standard

dorsoventral and mediolateral lengths (A,B). Next, we simulta-

neously altered the threshold for all regions of interest (regions

containing labeled CST axons) such that only CST axons were

visible and background noise was at a minimum (C). To complete

this task accurately and reliably, the threshold was always adjusted

in full view of the original section, so that false-positives were not

introduced. These images were then transferred back to Image J,

where they were digitized using the skeletonize function (D) to

erode all CST axons to a single pixel width. This results in images

that represent CST axon density not CST axon thickness. The

total number of pixels in a given area thus corresponds to the
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overall density of CST label in a given area of the section.

Although shown in E for a single section, multiple pixelated images

were grouped and further processed in Matlab (Mathworks) to

generate regional density maps (i.e. heat maps) for each group (E).

To ensure accurate registration between a heatmap and gray

matter border within and across animals we used the base of the

dorsal column as a fiduciary mark and constructed an average

gray matter border in Matlab. A contour finding routine was

written in Matlab and applied to the regional distribution map,

where the density of CST axons was equal to or more than either

10% (corresponding to light blue through saturated red) or 60%

(yellow/orange through saturated red). We counted spinal roots to

determine the segmental level for tissue processing. Data were

combined across the C5 and C6 segments and across the C7 and

C8 segments. For each animal, at least 3 sections through each of

the two levels were analyzed, converted and averaged.

For quantitative assessment of CST labeling we measured the

amount of label within 4 regions of interest (ROI) in the

contralateral gray matter: portion of laminae 3–4, located at the

level of the ‘‘notch’’ on the lateral dorsal horn; laminae 4–5, to

capture the region of dense labeling in between adjoining ROIs;

lamina 6, at the base of the dorsal column; and a portion of

laminae 7–9, just ventral to the ventral commissure.

Retrograde and Transganglionic Labeling using Cholera
Toxin b Subunit
Cholera toxin b subunit (CTb) was used to retrogradely label

the motor pools of selected forelimb muscles and to anterogradely

(i.e., transganglionically) label muscle afferents as a means to help

localize CST terminations. CTb preferentially labels myelinated

afferents [18,19]. Studies have shown a correspondence between

CTb-labeled proprioceptive afferents and intra-axonally labeled

group 1 afferents [20] and group 1 field potentials [21]. We

performed multiple injections of CTb (1:1000, List Laboratories)

unilaterally into the deltoid, elbow flexor, and the wrist extensor

compartments (462.5 mL; 33 ga. Hamilton syringe). Our intent

was to label selectively muscles that act at the same joint. For the

wrist, we injected the extensor compartment, targeting predom-

inantly Extensor Carpi Radialis (ECR; both long and short heads).

For the elbow, we injected biceps (long and short heads). For the

shoulder, we injected the Deltoid muscle group (spino- and

acromiodeltoidus). We have optimized the CTb injections to

maximally label the motoneurons of injected muscles, taking

advantage of recent findings that many forelimb motor pools have

an extended rostrocaudal distribution [22].We inserted the

Hamilton syringe into the muscle, advanced it along the long

axis of the muscle, and injected CTb as the needle was withdrawn.

As needed to maximally label the muscle, we often re-advanced

the needle and injected more tracer. We verified that there was no

leakage of CTb. CTb was tinted with the dye Evans blue. After

removal of the needle any residual tracer was blotted with a cotton

swab and washed with saline. After 5 days, mice were deeply

anesthetized and perfused as above. The spinal cord was dissected,

post-fixed for 2 hours and then transferred to 20% sucrose in

buffered saline (pH 7.4). Frozen sections (40 mm) were cut serially

and collected in a 0.1 M PBS solution (pH 7.4). All tissue was cut

in the coronal plane into 40mm sections. All sections were

collected. For visualization of CTb, we incubated the sections in

PBS containing goat anti-CTb (1:2000; List Laboratories) at 4uC
overnight. After rinsing, sections were incubated for 1 hour at RT

in blocking buffer (3% donkey serum in 16PBS with 0.2% Tween

20, pH 7.4). The sections were then incubated with donkey anti-

goat conjugated to Cy3 or FITC (1:800 and 1:500 respectively;

Millipore) for 2 h at RT. All sections were mounted on gelatin-

coated slides, air-dried and coverslipped with Vectashield (Vector

Laboratories). Transganglionic labeling was assessed using the

same steps that were taken to determine CST topography (see

above).

Retrograde Transneuronal Tracing using Pseudorabies
Virus
Like CTb, injections of pseudorabies virus (PRV) were also

made unilaterally into the deltoid, biceps, the wrist extensor

compartment (462.5 mL). We used two types of the Bartha

strains–152, expressing green fluorescent protein (titer of either

2.726108 or 4.026108 pfu/ml) [23] and 614, expressing red

fluorescent protein (titer of 1.866108 pfu/ml) [24]. This permitted

labeling of two muscles in the same animal. Across experiments,

each muscle was labeled with both strains. PRV was generously

provided by Dr. Lynn Enquist (Princeton University, Princeton,

NJ). After the appropriate survival time (see Results), mice were

deeply anesthetized, perfused, and spinal tissue removed as

described above. All tissue was cut in the coronal plane into

40mm sections. All sections were collected.

To visualize PRV-labeled spinal neurons, we double immuno-

stained the sections with antibodies to green and red fluorescence

protein (rabbit anti-GFP antibody, Invitrogen and rabbit anti-RFP

antibody, Abcam). After rinsing sections in 16PBS, sections were

then incubated for 1 hour at RT in blocking buffer (3% donkey

serum in 16PBS with 0.2% Tween 20, pH 7.4). The sections were

Figure 1. Methods used for generating color-coded density heat maps. To illustrate the method, we show a single spinal cord section and,
from left to right, the process of resizing the image to a standardized size (A to B), thresholding and skeletonization of the image with ImageJ (C to D)
and converting to a color-coded heat map with Matlab (E). Color scale represents the number of pixels per square mm.
doi:10.1371/journal.pone.0074454.g001
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next incubated at 4uC overnight in PBS containing primary anti-

GFP antibody (1:1000) After rinsing with 16PBS, sections were

incubated for 2 hr at RT with FITC-conjugated donkey anti-

rabbit antibody (1:500; Jackson Immunoresearch Laboratories).

Sections were then rinsed again in 16PBS and incubated at 4uC
overnight in PBS containing primary anti-RFP antibody (1:1000).

After rinsing with 16PBS, sections were incubated for 2 hr at RT

with donkey anti-goat conjugated to Cy3 (1:800). All sections were

mounted on gelatin-coated slides, air-dried and coverslipped with

Vectashield (Vector Laboratories). For PRV-ChAT double

immunostaining, the same double-staining process as above was

repeated using anti-GFP to label PRV-infected interneurons.

Sections were then immunostained for ChAT using goat anti-

ChAT (1:100; Millipore) followed by donkey anti-goat conjugated

to Cy3 (1:800).

To quantify PRV labeling, we randomly selected and processed

(as above) sections through the cervical enlargement of the spinal

cord. Using Neurolucida (Microbrightfield), we counted all labeled

neurons on at least 4 sections per animal for combined C5/C6

levels and C7/C8 levels. The images of the counted sections were

processed in Matlab to produce regional density maps (see above).

All sections sampled were of similar sizes therefore removing the

need to re-size the images as was the case when determining CST

topography.

Confocal Microscopy
To determine whether CST axons contacted spinal cord

interneurons directly and to image PRV-ChAT double-labeled

interneurons, we used laser-scanning confocal microscopy (LSM

META510 and 710; Carl Zeiss) using two different fluorescent

markers: FITC (488 nm excitation, 520 nm emission) and Cy3/

rhodamine (543 nm excitation, 573 nm emission). To adjust color

balance, contrast, and brightness in the confocal images, ImageJ

(NIH) and Adobe Photoshop (Adobe Systems) were used. When

comparing images, all capture and adjustment parameters were

kept identical.

Statistical Analyses
Standard statistical tests including student’s t-test and analysis of

variance (ANOVA) were conducted using Microsoft Excel

(Microsoft), Prism 4 (Graph Pad), and Statview. We used the

Fisher’s PLSD post hoc test for repeated measures ANOVA.

Results

We investigated the functional organization and spinal connec-

tivity of the forelimb area of the motor cortex in adult mice, which

includes the caudal and rostral forelimb areas [25,26]. We used

ICMS to map the representations of contralateral forelimb joints

(shoulder, elbow, and wrist/digits) in order to target anterograde

axon tracer injections for mapping the CST spinal terminations of

identified joint-specific zones. Using image analysis, we analyzed

the laminar distribution of CST terminations within the segmental

levels of motoneurons supplying muscles for each joint. We

compared the distributions of the joint-specific CST terminations

with the locations of proprioceptive afferents using CTb and

putative last-order interneurons, using retrograde transneuronal

labeling of PRV in adult mice at a survival time that ensured

transport across only one spinal cord synapse.

Motor Cortex Forelimb Representation is Composed of
Joint-specific Subregions
ICMS evoked movement about the shoulder, elbow, wrist, and

digit joints (n = 35 mice), as other studies have shown in the mouse

[25,26]. Typically, ICMS at threshold evoked movement about a

single joint. Movements about multiple forelimb joints were

recruited at stimulus intensities that were markedly higher. On

average, we needed to increase stimulation amplitude by 15 mA
(approximately 1.7 times threshold) before a second joint was

recruited. Single joint motion at threshold corresponded to

activation of muscles acting at that joint, assessed using EMG

recording. A representative pattern of EMG activation evoked at

threshold from an elbow site is shown in Figure 2H. Threshold

stimulation (21 mA) evoked elbow flexion. This was associated with

a biceps, not a wrist, response (Figure 2H; top pair of traces). As

the current was increased to 36 mA movement about the wrist

occurred, which was associated with a wrist extensor EMG

response (Figure 2H; bottom traces). Despite a multijoint response

at higher currents, the response was dominated by the muscle/

joint motion evoked at threshold.

Within the territory explored, we examined a total of 304 sites

across all animals and forelimb responses were evoked at 273 of

these sites (Figure 2B–E). In addition, we obtained 11 hind limb

responses from the caudal region of the mapped area (Figure 2A).

Some of these hind limb responses were evoked with either a

forelimb shoulder response (2/3) or an elbow response (1/3); the

remainder were hind limb only responses. The average threshold

for evoking hind limb responses was 2367 mA. No motor

responses were evoked from the remaining 20 sites.

For the forelimb, responses evoked at the elbow were most

common, followed by the wrist, shoulder, and digit. The maps in

Figure 2B–E represent the locations and frequency (circle diameter

proportional to frequency of occurrence across different animals)

for evoking forelimb responses. Shoulder responses occurred

13.9% within the mapped area and they were located in the

caudal half of the forelimb zone (B). Elbow responses were the

most frequent (57.1%) and were represented throughout the

mapped area (C). Stimulation at all of these coordinates evoked

elbow flexion, although not at all sites in a single animal. Elbow

extension was not observed. Wrist responses were the second most

frequently observed (25.6%). Similar to the elbow, these responses

were evoked from sites throughout the mapped area of motor

cortex, with a bias for the medial and lateral margins of the

mapped motor cortex forelimb area (D). Digit responses (E) were

rare (3.3%), with many occurring with wrist responses at

threshold.

The average threshold for the shoulder sites (1562 mA) was
significantly lower (one way ANOVA, P,0.05; DF= 3, F= 3.983,

P= 0.018) than the elbow, wrist and digit, which were not different

from each other (2262 mA, 2362 mA, 2463 mA respectively). For

a minority of responses (12.8%), which were without any motor

cortex regional localization, it was not possible to distinguish

among the multiple joint movements at threshold and these were

termed multi-joint responses. The most common multi-joint

responses involved the elbow with either of the other joints

(68.6%). Overall, the average threshold of multi-joint responses

was not significantly different from single joint responses

(1962 mA and 2261 mA respectively, unpaired t-test, p.0.05).

We constructed a composite map (F) and a map of the

probability of evoking a particular response from the composite

map (G). The saturation of the color representing that joint is

proportional to the probability for evoking the dominant response.

At each of the 32 sites sampled, one joint was most likely to be

evoked. Several shoulder- and wrist-dominant sites co-represented

an additional joint. The elbow was the only joint that was solely

represented at some coordinates (i.e., solid red). Although our

findings indicate an underlying consistent somatotopy, they stress

that mouse forelimb motor cortex is organized into regions where

Motor Cortex Joint-Specific Projections
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a given joint can be represented at multiple sites, as others have

reported for monkey [27,28], in a probabilistic manner. These

regions likely evoke responses via specific descending CSTs that

interact with spinal motor circuits. We next examined CST

projections from identified joint specific zones.

Corticospinal Segmental Terminations from Joint-specific
Sites Target Different Zones at C7/C8 but not at C5/C6
To identify contralateral spinal termination patterns from motor

cortex sites evoking movements of each of the forelimb joints, we

injected anterograde tracers (BDA, LYDA or DAF) at sites whose

principal joint actions were identified using ICMS (n= 23 sites;

Figure 3A4; shoulder only: n = 4, shoulder.elbow; n = 1; elbow

only: n= 11; wrist only: n = 7)). We examined the distribution of

CST labeling in the C5/C6 segments and the C7/C8 segments.

Retrogradely labeled deltoid, biceps, and wrist extensor motoneu-

rons are present throughout these segments ( [22]; see below).

Joint-specific sites projected consistently to a dense core region on

individual spinal sections (typically a single site; occasionally 1 or 2

additional sites of much lesser density) within a more variable and

broad sparsely labeled region (Fig. 3A1–3). In these representative

examples from the C7/C8 levels, the shoulder, elbow, and wrist

Figure 2. Joint-based organization of the forelimb region of the mouse motor cortex. Frequency distribution plots (A–E) show response
topography. Axes show distances from bregma of the motor cortex area mapped. Medial-lateral (M–L) and anterior-posterior distances mapped were
up to 1.9 and 2.1 mm respectively from bregma, which corresponds to most of the forelimb representation. Circle diameter for responses is directly
proportional to response frequency across animals (10 responses maximum). (F) Representation maps were overlaid to determine any joint-bias
within the cortical representation in the composite map. (G) The frequency plots were converted to an overall probability map based on the relative
frequency of a dominant response at a specific site in relation to all responses at that site. Map shows the locations of dominant hind limb (H, grey),
shoulder (S, green), elbow (E, red) and wrist (W, blue) responses. Shade intensity is directly proportional to the probability of provoking a response for
a particular joint. (H) Representative EMG data from contralateral forelimb muscles in response to: threshold cortical stimulation for evoking an elbow
response (21 mA, top traces); threshold cortical stimulation for evoking a wrist response (36 mA suprathreshold cortical stimulation for evoking both
elbow and shoulder responses (41mA, bottom traces). Vertical and horizontal scales are 0.5 V and 20 ms respectively.
doi:10.1371/journal.pone.0074454.g002
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zones projected preferentially to the dorsal horn, medial dorsal

horn and intermediate zone, and more broadly within interme-

diate zone and ventral horn, respectively. The densely labeled core

regions were highly consistent between sections within animals.

When we examined the distributions of CST terminal labeling

from each motor cortex joint zone across all animals there were

characteristic regional differences within C7/C8 but not in C5/

C6.

For C5/C6 (B1–3), differences in the CST termination fields for

motor cortex shoulder, elbow, and wrist joint zones were not

apparent, as shown on the averaged color coded regional density

plot (or ‘‘heat map’’). The light gray lines enclose the region of

densest labeling in each animal (60%; corresponding to orange in

the color scale). The black line marks the average dense region

based on the average heatmap. In all animals, the core of densest

labeling for each joint was located in the medial dorsal horn-

intermediate zone. These data are summarized in B4 (elbow, red;

shoulder, green; wrist, blue), which shows overlap of both the

dense zones (central filled profiles) and the sparsely labeled regions

(10% density, corresponding approximately to gray-blue; larger,

open profiles).

By contrast, there were clear differences in joint termination

fields at the C7/C8 level (C1–3). CST shoulder site core

terminations for all animals were restricted to laminae 4–5, as

shown on the averaged color coded regional density plot (C1). M1

elbow sites (C2) terminated primarily in the medial portion of the

deep laminae of dorsal horn and intermediate zone, ventromedial

to the shoulder region. We noted for the elbow that more rostral

sites in motor cortex had slightly more axons terminating ventrally

in the spinal intermediate zone. The average antero-posterior

bregma coordinate for this group (n= 4) was 1.560.2 and the

remaining sites (n = 7), 0.8 mm 60.1 mm (p,0.01, one way

ANOVA). Core CST label from motor cortex wrist sites (C3) was

preferentially located within the deeper dorsal horn laminae and

the central intermediate zone (laminae 5–7) lateral to the elbow

and ventrolateral to the shoulder regions. The region of sparser

wrist labeling had the most ventral pattern of all joints. In some

experiments we identified sparse projections from wrist sites into

the region of the dorsolateral motor pools. In a subset of animals

(n = 7), two different tracers labeled different motor cortex joint

zones effectively. In these side-by-side comparisons, there were

differences in the CST termination patterns for the two different

joint zones. Figure S1 shows an example of wrist and shoulder

zone labeling from the same animal. There was overlap at C5 and

distinctive projections at C7. The pattern of overlap is summarized

in C4; each core of joint labeling (filled shapes) occupied a distinct

but partially overlapping territory. By contrast, the sparsely labeled

regions (open shapes) showed more complete overlap.

We conducted a laminar analysis to determine if these

topographic differences in joint-specific projection patterns were

significant across animals. We analyzed CST label density in 4

regions of interest (ROI, Fig. 4B2, inset). Each graph plots the total

amount of labeling within the ROI, from medial to lateral,

averaged across all animals for each joint group. At C5/C6

(Fig. 4A), CST terminations for each cortical joint zone largely

overlapped. Note how peak shoulder, elbow, and wrist labeling

overlapped in the medial portion of laminae 4–5 (A2). At C7/C8

(B), four key differences emerge. First, CST labeling was greater

overall than at C5/C6. Second, shoulder zone projections to

laminae 3–4 (B1, green) were denser than more ventral regions.

Third, in laminae 4–5 (B2), peak elbow labeling (red) was located

medial to wrist zone (blue) labeling. Fourth, in laminae 6 and 7–9

there was more labeling from M1 wrist zones than for the other

joints (B3, B4). For C7/C8, a two way ANOVA revealed that the

main effects of joint (DF= 2, F= 3.18; p = 0.047) and dorsoventral

level (DF= 3, F= 4.88; p = 0.0039) were significant. Importantly,

there was a significant interaction between joint and dorso-ventral

ROI (F = 3.486; p = 0.005). For C5/C6, the main effects of joint

(DF= 2, F= 4.054; p = 0.02) and dorsoventral level (DF= 3,

F= 4.15; p = 0.009) were significant but, in contrast to C7/C8,

there was no significant interaction between joint and dorso-

ventral ROI (F = 0.635; NS). Whereas CST laminar differences

are expected at both levels, given the distribution of CST

terminations in many species, the presence of significant interac-

tions between joint and laminae selectively at C7/C8 is surprising.

The topographic and ROI analyses described above point to

potential important laminar termination differences for the motor

cortex joint zones. To examine this further we plotted average

label density for each joint zone across the 4 dorsoventral ROIs

(Figure 5A1, B1). Most striking was the preferential projection of

shoulder zones at C7/C8 to the dorsal portion of the dorsal horn

and a progressive reduction ventrally (B1). Elbow and wrist at C7/

C8 both projected maximally to intermediate laminae but, as

shown in Fig. 4, the elbow projects medial to the wrist. Further,

wrist zone projections at C7/C8 continued farther ventrally

Figure 3. CST termination patterns from joint-specific motor
cortex sites. Anterograde tracer injections were made into joint-
specific sites in the motor cortex (A4; color code indicated in inset).
Injection sites are shown overlaid on the joint probability map from Fig.
2G. Lightly shaded blue and green circles for wrist and shoulder
respectively indicate injection sites where the dominant response and
termination pattern were of the same group, yet was accompanied by a
second smaller joint response at threshold. A1–3. Micrographs (inverted
fluorescence images) of single sections showing CST labeling produced
from injected (A1) shoulder, (A2) elbow, and (A3) wrist sites. B.
Distribution of CST labeling at C5/C6. Average heatmaps for motor
cortex shoulder elbow, and wrist sites (B1–B3). Black contours indicate
the boundary of the high-density labeled region ($60%) based on the
averaged heatmap. Gray contours show high-density labeled region
from each individual animal. B4 shows overlap of high-density (filled
shapes) and low-density (10%; open shapes). Shading and line color
according to the inset. C. Same as B, but for C7/C8. Color scale
represents number of pixels per mm2. Scale bar = 500 mm.
doi:10.1371/journal.pone.0074454.g003
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compared with shoulder and elbow zones. For C5/C6 (A1), there

were minimal laminar distinctions. At C7/C8, there were

significant differences in shoulder, elbow, and wrist zone labeling

from dorsal to ventral (repeated measures ANOVA; shoulder:

F = 9.35; p= 0.004; elbow: F= 4.38; p = 0.012; wrist: F = 9.208;

p = 0.001). Post-hoc testing revealed that there also were

significant across-laminar differences (shoulder: lam 3/4–4/5; 3/

4–6; 3/4–7–9; elbow: lam 3/4–4/5; 3/4–7–9; wrist: lam 3/4–4/5;

3/4–6; 4/5–7–9; 6–7–9; Fig. 5). By contrast, for C5/C6 there was

a significant difference in only wrist zone labeling from dorsal to

ventral and a trend toward significance for the shoulder (repeated

measures ANOVA; wrist: F = 3.84; p= 0.032; shoulder: F = 3.3;

p = 0.071).

The complementary view to the differential laminar projections

of the motor cortex joint zones is that each spinal laminar region

collects CST inputs preferentially from one or another M1 joint

zone: laminae 3/4 receive mostly shoulder input; laminae 4/5

elbow and wrist, but with wrist lateral to elbow; and laminae 6 and

7–9 receiving mostly wrist input. The stacked bar graphs (Fig. 5,

A2 and B2) plot averaged label (mean of injection sites/animals for

each joint and laminar region) as a percent of the total label within

the laminar ROI. There was a decreasing gradient of labeling

from dorsal to ventral for the shoulder and an increasing gradient

for the wrist. This was most apparent for C7/C8. For example, at

C7/C8 (B2) 60% of the label in laminae 3–4 came from M1

shoulder zones, 22% from elbow zones, and 8% from wrist zones.

For the more ventral laminae, a flipped labeling pattern was

observed with substantially more wrist than shoulder labeling.

Elbow labeling was similar throughout, especially at C5/C6.

Although this proportional pattern of labeling is based on a single

measure of ensemble distributions, for C7/C8 it is a robust and

significant pattern because it is based on significant dorsoventral

within-joint distributions (B2). These data suggest that the different

motor cortex joint sites have differential spinal terminations,

especially to C7/C8, and further point to a more ventral pattern

for distal joint control.

Overlap between the Distributions of CTb
Transganglionic Muscle Afferent Labeling and CST
Labeling
We next determined if the differentiated termination patterns of

CST labeling at C7/C8, and the similar patterns at C5/C6, were

associated with differences in motoneuron location or particular

muscle afferent terminations (Figure 6). We used retrograde and

anterograde transganglionic transport of cholera toxin B subfrag-

ment (CTb), from intramuscular injection, to identify the motor

pool levels and the levels within which afferents from injected

muscles terminate. For each muscle group injected–deltoids,

biceps, and wrist extensors compartments (n = 3–5 sections, from

3 animals per group)–we found that CTb labeled motoneurons

preferentially and extensively within the entire C5–C8 segment

region (Figure 6; ventral horn labeling). This accords with recent

findings in the mouse [22]. Whereas there may be more subtle

quantitative differences between the numbers of motoneurons in

C5/C6 versus C7/C8, the presence of robust motor pools at both

levels does not explain the qualitative differences in CST

termination patterns.

Figure 4. Density of CST anterograde label at 4 dorsoventral
levels. A. C5/C6. B. C7/C8. Each row plots average label for ROI (inset,
A2) from medial to lateral. Inset. Scale bars: 500 mm; 2.5 density units.
doi:10.1371/journal.pone.0074454.g004

Figure 5. Dorsoventral changes in CST labeling. A. C5/C6. B. C7/
C8. Left column plots mean 6SE of average label within each ROI (see
inset), for each motor cortex joint zone. Bars plot values for laminae 3–4,
laminae 4–5, lamina 6, and laminae 7–9. Horizontal lines at the bottom
of each set of bar graphs indicate significant differences on post-hoc
analysis (Scheffe test). Stacked percentage bar graphs in right column
plot CST contributions from each motor cortex joint zone to the
different dorsoventral laminar regions examined.
doi:10.1371/journal.pone.0074454.g005
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Muscle afferents transganglionically-labeled with CTb termi-

nated within two distinctive regions, one within laminae 2–4 of the

dorsal horn and the other within laminae 5–6 (Figure 6A1–A3;

representative C7/C8 sections). Density maps (rows B, C) show

that the dorsal fields were shifted somewhat for each muscle,

suggestive of somatotopy, but that the intermediate zone afferent

fields overlapped extensively. The average core CST terminations

and more extensive sparse regions are superimposed on the CTb

density heat maps (rows 2, 3). For the shoulder, at C5/C6 levels

(B1) the CST overlaps with the intermediate zone-projecting

proprioceptive afferents. At C7/C8 levels (C1), the shoulder CST

projection targets a dorsal horn region that largely straddles the

two proprioceptive afferent termination fields (C1). For elbow

CSTs at all cervical levels (C5–C8), the high-density contour

overlapped with that of the intermediate zone proprioceptive

afferent fields of the biceps (B2–C2). For wrist CST, at C5/C6 the

high-density CST terminations overlapped the proprioceptive

afferents terminating in the intermediate zone (B3); at C7/C8

there was partial overlap between the high-density CST termina-

tions and the intermediate zone afferent termination field (C3). We

conclude that the subtle differences in the muscle afferent

termination patterns from muscles acting at different joints did

not differentiate the CST joint specific projections.

High-density Wrist, but not Elbow or Shoulder, CST
Termination Zones Target Territory of Last-order
Interneurons at C7/C8
To further understand the functional significance of joint-

specific CST segmental projections, we next determined the

spatial relationship between CST spinal termination zones and the

distributions of last-order (i.e., premotor) interneurons. Our

starting hypothesis was that the different motor cortex joint-

specific zones each target the spinal region containing the last-

order interneurons that synapse on motoneurons innervating

muscles acting on the represented joint. To identify last-order

interneurons, we used retrograde transneuronal transport of

pseudorabies virus (PRV) following intramuscular viral injection

[14,17]. Because PRV transport is not restricted to a single

synapse, we first conducted a series of experiments (n = 15 mice) to

determine the survival time required to label this neuronal

population in adult mouse cervical spinal cord.

A post-injection survival period of 36 hrs did not result in viral

labeling of any cervical neurons. Monosynaptic transfer across the

neuromuscular junction, from muscle to the motoneurons, began

to occur by 48 hr after the viral injections. At this survival time,

only motoneurons were labeled. At 56 hr survival we observed

very sparse labeling of interneurons, in addition to motoneuronal

labeling. Sixty-four hours was the first survival time with

substantial interneuronal labeling and, importantly, no label in

motor cortex. This is consistent with the finding that monosynaptic

connections between CST and motoneurons are sparse [29] or

absent [30] in the rodent. At 72 hr, there was diffuse labeling of

spinal interneurons throughout the gray matter and labeling in

layer 5 pyramidal neurons of motor cortex [30]. This indicates

transport beyond last-order interneurons at 72 hours. We

therefore chose to use a survival time of 64 hr as selective for

labeling putative last-order interneurons. It is bracketed by

motoneuronal only transport at 48 hr and trisynaptic (from

muscle) labeling at 72 hr. Thus, PRV can be used to label

putative last-order interneurons in mature cervical spinal cord.

Figure S2 shows the similar location of CTB-labeled biceps

motoneurons and PRV-labeled biceps motoneurons in the ventral

horn of the same animal.

Figure 7A shows representative spinal labeling after intramus-

cular PRV injections (combined deltoids and trapezius muscle

compartments). The insets show the typical morphology of labeled

interneurons (top) and a motoneuron (bottom). The location of the

highest density of PRV-labeled interneurons (see Fig. 8) corre-

sponds to that of several other methods for identifying last-order

spinal interneurons, including dI3 premotor interneurons [31],

and interneurons identified using a method that restricts trans-

neuronal transport to only one CNS synapse in the neonatal

mouse [13]. Further, we also identified a population of PRV-

positive interneurons that immunostain for ChAT in lamina 10

(Fig. 7B,C). The location of these interneurons is similar to that of

Pitx2 cholinergic interneurons in their cervical distributions [32]

that make C-bouton contacts on motoneurons [33]. The bilateral

distribution of these cholinergic interneurons is like that of lamina

10 cholinergic last-order interneurons in mouse pups [13]. These

findings demonstrate that PRV labels similar interneuron popu-

lations as other approaches for identifying last-order spinal

interneurons in rodents. Additionally, we found bouton-like

contacts between labeled CST axon terminations and PRV

labeled interneurons (Fig. 7D).

Figure 6. Cholera toxin b (CTb) labeling in the spinal cord after
intramuscular injections and CST-interneuron topographic
relationship. (A1–3) Examples of labeling with CTb subunit in one
40 mm section at level C7/C8, achieved after injection into either
deltoids, biceps and the wrist extensor compartments. Matlab-
generated heat maps of CTb-labeled spinal gray matter were produced
from all sections for each muscle group at levels C5/C6 (B) and at levels
C7/C8 (C). Heat maps show transganglionic labeling of the propriocep-
tive afferents in the dorsal and intermediate region of spinal cord
(afferent; i.e. laminae 2–6) and retrograde labeling of the motoneurons
in the ventral regions of the spinal cord grey matter (motor pools; i.e.
laminae 9). Spinal overlap of motor cortex CST joint zones and
proprioceptive afferent terminations are also shown in B and C. As in
Figure 3, CST termination contours were set at 60% threshold (black
contour) and 10% threshold (gray contour). The color bar demonstrates
density of labeling as pixels per mm2 for proprioceptive afferents (left
axis) and cells per mm2 for motor pools (right axis). Scale bar is 500 mm.
doi:10.1371/journal.pone.0074454.g006
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To determine shoulder, elbow, and wrist premotor interneu-

rons, we injected PRV into the deltoid (n = 5), biceps (n = 4), and

wrist extensors (n = 4) muscle compartments. Bartha strains 152

and 614 (expressing green and red fluorescent protein respectively)

were injected into muscle pairs (biceps and wrist extensors; biceps

and deltoids or deltoids and wrist extensors). We sampled a total of

57 sections for cervical levels C5/C6 and 46 sections for cervical

levels C7 and C8 (3 sections minimum per animal at both levels).

PRV-labeled interneurons associated with muscles at each joint

were distributed throughout the ipsilateral gray matter and

ventromedial contralateral gray matter (Figure 8, row 1; repre-

sentative examples C7/C8). Color density plots (Fig. 8, rows 2, 3)

pool data across all animals. The topographic distribution of PRV-

positive interneurons was similar for muscles acting at each joint.

There was a large, centrally-located, population of ipsilateral

interneurons and several distinct populations of contralateral

interneurons. Contralateral-labeled cells were consistent for

deltoid and biceps, but not wrist. Interestingly, we also observed

an ipsilaterally-labeled ventral group, which might be Renshaw

cells [34], at C5/C6 (Fig. 8; B1, B2). Across all injections and

animals, the majority of interneurons were labeled by PRV

injection into a single muscle. The number of double-labeled

interneurons (i.e., expressing both green and red fluorescent

protein, indicating infection from muscles acting at two joints) was

2164% for the side ipsilateral to the injections and 1867% to the

side contralateral to the injections.

For C5/C6, the densest CST termination zones (indicated by

contours in Fig. 8) were all located medial/dorsomedial to the

focus of densest last order interneurons (B1–B3). Substantial CST

overlap with last-order interneuron territories occurred within the

low-density CST fields. In the C7/C8 segments, the densest CST

termination fields for both the shoulder and elbow (C1, 2) CST

were primarily located medial/dorsomedial to the densest region

containing the last-order interneurons. By contrast, the core wrist

termination zone (C3) was co-extensive with to the densest region

of last-order interneurons for wrist muscle. These findings show

topographic co-registration between core CST wrist projections to

PRV labeled interneurons at C7/C8. The other core CST

termination patterns at C7/C8 and C5/C6 were shifted

dorsomedially from the peak interneuron population.

Discussion

The presence of the motor homunculus in the human, and

similar cortical body representations across a wide range of

species, shows that the motor cortex represents access to

subcortical joint control circuits. This cortical motor representa-

tion is implemented, in part, by the CST. We propose a

neuroanatomical basis for CST forelimb joint control at the

spinal interneuronal level. We found that the motor cortex joint

representations have differential spinal cord termination fields

within C7/C8. Given the small dendritic fields of many spinal

interneurons [11,35], convergence between the high-density

projections of different joint-specific cortical sites should be

minimal. In contrast, substantial overlap between joint zones

occurred in the regions of sparse terminations. These sparse

overlap zones are where postsynaptic convergence between

different CST joint-specific projections could occur. However,

Figure 7. Spinal labeling of last-order (premotor) interneurons with PRV, co-labeling with ChAT, and contacts with CSTs. (A) Example
of labeling in one 40 mm section achieved at 64 hours after intramuscular PRV injection. Large panel shows labeling on ipsilateral side (Calibration:
500 mm). There was minimal contralateral labeling. Top inset shows an example of labeled interneurons (located in lamina 4 on the section shown),
and lower panel, a motoneuron, at higher magnification (Calibration: 25 mm). (B1–B2) Overlaid section images for two representative animals
processed in Neurolucida showing positions of individual last-order interneurons from PRV injected into the deltoids, biceps and wrist extensors at
levels C5/C6 (B1) and C7/C8 (B2) that also label positively for ChAT. (C1–C2) Confocal images of two representative PRV-ChAT double-labeled
interneurons at levels C7/C8 (C1) and C5/C6 (C2). ChAT= red; PRV=green. (D1–3) (D) Confocal images of PRV-labeled interneurons receiving contacts
from BDA-labeled CST axons terminals. PRV was injected into the biceps and wrist extensor compartments. Each panel shows a projection image
(center, large image) and representative 1 mm optical slices (insets). Arrows show sites of contact,. Scale bars for A, large panel = 500 mm, smaller
panels = 50 mm; B, same as A; C and D=20 mm.
doi:10.1371/journal.pone.0074454.g007
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since the density of terminations is much lower in these zones,

CST axons are likely to be much less effective in activating

interneurons in these regions than CST axons projecting to the

dense regions.

Our findings demonstrate a fractionated CST projection at C7/

C8 compared to C5/C6. What function might the differentiated

projection to C7/C8 confer? We found evidence that CST joint-

specific projections are distinguished by terminations within the

territories of putative last-order interneurons. We propose that

cortical wrist sites, which projected preferentially to the focus of

putative last-order wrist interneurons, comprise a more direct path

to motoneurons than for shoulder sites, which project both within

and outside the field of premotor interneurons. Surprisingly, elbow

sites seemed to skirt the biceps premotor field. The differential

CST terminatons at C7/C8 suggest access to different spinal

interneuron circits for the various joints. By contrast, at C5/C6

focally dense CST projections from the different motor cortex

joint sites overlapped highly. CST projections to C7/C8 are better

suited for fractionated joint control; whereas projections to C5/

C6, for a more integrated and co-active control. Surprisingly, at

C5/C6 (and more caudal for the elbow sites) the dense joint-

specific projections spared the territories of putative premotor

interneurons. Importantly, this rostrocaudal difference is not

explained by gross differences in the location of motor pools. As we

show, and as recently reported [22], the forelimb motor pools we

studied extend from the upper cervical cord to the caudal

enlargement. Nevertheless, we cannot rule out that subtle

differences in motor pool organization are important in shaping

CST termination patterns.

High-density and Sparse CST Spinal Termination Fields
Our findings suggest two populations of CST termination, one

dense (‘‘core’’), which differentially targeted particular segmental

territories at C7/C8, and a second that is sparse and diffuse.

Whereas we show that CST axons can contact premotor

interneurons, our interpretation stresses that it is the population

of densest CST terminations that provides the most effective

disynaptic access to motoneurons. While a single CST axon

branch may make only a few contacts with a premotor

interneuron, when this branch is located within the densest CST

termination field it could affect the spinal neuron’s excitability

together with the large cohort of other CST axons projecting to

the same territory. It is unlikely that the sparse CST projections to

premotor interneuron fields will be as effective as those within the

dense focus because they function in relative isolation. The

function of CST connections in the sparse fields may depend on

convergent signaling from multiple cortical sites, other descending

pathways, or somatic afferent inputs; they may serve a more

modulatory function. The core/dense projection is better suited

for feed-forward drive.

Co-registration of the cortical motor map and injection sites

reveals the basic motor cortex representations of joint and, as we

now show, segmental termination patterns that could provide

differential access to segmental interneuron populations. However,

the cortical joint map is not somatotopically fixed across animals.

The probability of evoking a particular joint movement at a given

location was high, but not 100%. Furthermore, at most sites,

another joint could be recruited at a higher current. Multijoint and

more integrative effects may depend on stronger drive to the

Figure 8. Segmental locations of last-order interneurons after PRV injections into individual muscle groups and CST-interneuron
topographic relationship. (A1–A3) Overlaid C7–C8 section images processed in Neurolucida showing positions of individual last-order
interneurons from PRV injected into the deltoids, biceps and the wrist extensor compartments in representative animals. B1–B3. Density heat map
produced from all labeled sections at cervical levels C5–C6. C1–C3. Density heat map produced from all labeled sections at cervical levels C7–C8.
Overlaid onto heat maps are shoulder, elbow and wrist high-density (black) and low-density (gray) CST termination contours. Color scale represents
cells per mm2. Size bar = 500 mm.
doi:10.1371/journal.pone.0074454.g008
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sparse segmental territories, which might come about with longer

duration stimuli in mapping studies [3] and persistent or more

complex patterns of activity during motor behavior [4].

Differential Spinal Joint Control Mechanisms
The joint-specific CST projections to C7/C8 show a remark-

able amount of specificity that could lead to fractionation of

connections with particular last-order and higher-order spinal

interneurons [36]. Afferent fibers terminate within the dorsal horn,

where they establish a somatotopy that, at least for the hind leg, is

partly organized in relation to limb withdrawal reflexes [37,38].

The dorsal termination from motor cortex shoulder zones suggests

that its cortical control modulates dorsal horn sensory networks.

CST regulation of spinal reflex function is not typically thought of

as mediating feed-forward control of movement. However,

movement directional specificity could be achieved by a CST

projection onto dorsal horn reflex circuits with particular stimulus-

response direction relationships that are established by peripheral

afferents and early experience [38].

Cortical distal limb control may tap preferentially into a

network in the intermediate zone that has direct access to

motoneurons through last-order interneurons. Cortical wrist

zones, but not shoulder or elbow zones, preferentially project to

the territory of spinal dI3 interneurons in the cervical cord [31].

These interneurons are implicated in distal limb control. Plausibly,

wrist/digit CST projections to these interneurons are important

for manipulative skills. Many PRV-labeled interneurons were

ChAT immunoreactive. Cholinergic last-order Pitx2 interneurons

[32,39], through their muscarinic actions [33], may play a role in

the task-specific CST regulation of muscle force [32]. In the

cervical spinal cord, localization of Pitx2 interneurons overlaps

CST distal zone terminations.

Surprisingly, motor cortex elbow sites had their densest

projections targeted to a restricted medial cervical region. This is

a conserved CST termination zone, present also in humans

examined using degeneration techniques [40]. There is a paucity

of putative last-order interneurons in this cervical location. This

region may contain spinocerebellar neurons, as reported for the

rat cervical cord [41], although most are located rostral to C5. For

the hind limb, this medial region has been shown to integrate

monosynaptic CST input with local GABAergic inhibition that

could comprise an internal feedback loop to the cerebellum [42].

Mouse Motor Cortex and Encoding of Simple and
Complex Motor Actions
Although our focus is on spinal mechanisms, our findings help

inform the organization of motor cortex in the context of forelimb

control. The forelimb motor map in mouse motor cortex, like

other species, contains a complete body joint/muscle map [25,26].

We suspect that, compared with cat and monkey, the small size of

the mouse motor cortex places constraints on the number of joint-

specific columns; such that the resultant map is sparse. Our

injection sites averaged 279 mm in diameter. With these injections,

we achieved remarkably consistent spatial specificity in the spinal

cord. Cortical joint-specific sites, with differential C7/C8 projec-

tions, have a width that is similar to clusters of layer 2/3 motor

cortex neurons (,200 mm) that show highly correlated discharge

patterns in behaving mice [43]. The temporal and spatial

distribution of active motor cortex neuron clusters during

grooming and locomotion could reflect control of forelimb joint

motions during these two behaviors.

Motor Cortex Co-represents Joint Control and Access to
Spinal Circuits
Our findings provide two new perspectives on the anatomical

mechanisms underlying CST control of limb muscles and joints.

First, it was not known, nor even suspected, that joint-specific sites

in motor cortex would have CST projections with differential

segmental terminations. This is a new finding that begins to

provide an anatomical explanation for the cortical joint/limb

segment map. Importantly, the finding also provides a plausible

new model for ‘‘upper motor neuron’’ control by conferring access

to particular spinal interneuron circuits for joint control, especially

premotor interneurons for distal joints. Second, differential

segmental CST termination patterns reveal an unsuspected

organization in the spinal cord. The patterns are neither an

imprint of premotor interneurons, nor a simple means for

integrating cortical control signals with muscle-specific proprio-

ceptive afferents. Rather, it likely reflects the complex logic of the

underlying circuits in those particular regions of the cervical cord.

Whereas this logic that has yet to be elucidated, two circuits come

to mind. One mediates ‘‘motor primitives,’’ limb movements with

end-point control elicited by focal activation of lumbar spinal

circuits [44,45], while a other, a directionally-tuned limb

withdrawal network [38], alluded to above. We propose that the

CST joint-specific projections are accessing parts of these

segmental effector circuits, through topographically distinctive

terminations.

There is a growing inventory of genetically-identified spinal

interneuron subtypes in the mouse [16], some of which have

identified movement control functions [31,32]. As in spinal cord, a

genetic diversity is emerging for cortical output neuron subtypes

[15,46–48]. A critical question is if there is a molecular

fractionation of CST neuron subtypes to complement the

differential spinal connection patterns of joint control zones, or if

the joint-specific projections are shaped by early motor experience.

Supporting Information

Figure S1 Spinal terminations of wrist and shoulder
zones of the same animal. BDA was injected into a wrist zone

(A) and Lucifer yellow dextran amine, into a shoulder zone (B) in

motor cortex. The locations of the injection sites are shown in the

inset (wrist, blue circle; shoulder, green circle). Scale, 500 mm.

(TIF)

Figure S2 Biceps motor pool at C7/C8 labeled by
retrograde transport of CTb and PRV in the same
animal. A. CTb was injected into biceps to mark the locations of

biceps motoneurons (n = 8 sections). The motor pool is located

ventrolaterally in lamina 10. B. PRV was injected into biceps

several days later. Note that biceps motoneurons are also located

within ventrolateral lamina 10.

(TIF)
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