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Abstract: Background: Monocytes are critical components, not only for innate immunity, but also
for the activation of the adaptive immune system. Many studies in animals and humans have
demonstrated that monocytes may be closely associated with chronic inflammatory diseases and
be proved to be pivotal in the association between high-intensity exercise and anti-inflammation
response. However, the underlying molecular mechanisms driving this are barely understood. The
present study aimed to screen for potential hub genes and candidate signaling pathways associated
with the effects of high-intensity exercise on human monocytes through bioinformatics analysis.
Materials and Methods: The GSE51835 gene expression dataset was downloaded from the Gene
Expression Omnibus database. The dataset consists of 12 monocyte samples from two groups of
pre-exercise and post-exercise individuals. Identifying differentially expressed genes (DEGs) with
R software, and functional annotation and pathway analyses were then performed with related
web databases. Subsequently, a protein–protein interaction (PPI) network which discovers key
functional protein and a transcription factors-DEGs network which predicts upstream regulators
were constructed. Results: A total of 146 differentially expressed genes were identified, including 95
upregulated and 51 downregulated genes. Gene Ontology analysis indicated that in the biological
process functional group, these DEGs were mainly involved in cellular response to hydrogen peroxide,
response to unfolded protein, negative regulation of cell proliferation, cellular response to laminar
fluid shear stress, and positive regulation of protein metabolic process. The top five enrichment
pathways in a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were the
FoxO signaling pathway, protein processing in the endoplasmic reticulum, influenza A, the ErbB
signaling pathway, and the MAPK signaling pathway. TNF, DUSP1, ATF3, CXCR4, NR4A1, BHLHE40,
CDKN1B, SOCS3, TNFAIP3, and MCL1 were the top 10 potential hub genes. The most important
modules obtained in the PPI network were performed KEGG pathway analysis, which showed that
these genes were mainly involved in the MAPK signaling pathway, the IL-17 signaling pathway, the
TNF signaling pathway, osteoclast differentiation, and apoptosis. A transcription factor (TF) target
network illustrated that FOXJ2 was a critical regulatory factor. Conclusions: This study identified the
essential genes and pathways associated with exercise and monocytes. Among these, four essential
genes (TNF, DUSP1, CXCR4, and NR4A1) and the FoxO signaling pathway play vital roles in the
immune function of monocytes. High-intensity exercise may improve the resistance of chronic
inflammatory diseases by regulating the expression of these genes.

Keywords: high-intensity exercise; monocytes; differentially expressed genes; biological pathways;
chronic inflammation

1. Introduction

Monocytes are circulating blood leukocytes that are involved in the innate immune
response to inflammation [1]. Monocytes, which originate from progenitors in the bone
marrow, are part of the first line of immune defense along with neutrophils and circulate in
the vasculature, bone marrow, and spleen. In the normal course of development, mono-
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cytes migrate into peripheral tissues and differentiate into dendritic cells or macrophages
depending on the local cytokine environment [2]. During pathogen challenge, monocytes
are mobilized from the bone marrow and recruited to sites of inflammation, where they
carry out their respective functions in promoting inflammation or anti-inflammatory re-
sponses depending on stimulus style [1]. As part of the mononuclear phagocyte system,
monocytes link the innate and adaptive immune responses and mediate antimicrobial host
defense and the removal of apoptotic cell debris [3]. Furthermore, monocytes play crucial
roles in tissue repair and remodeling [4].

Physical exercise provokes an adaptive response and beneficial effects on health
through modulation of the immune system [5]. Many studies in animals and humans
have demonstrated that exercise profoundly affects the immune system [6]. Exercise acts
as a stressor that can elicit different immune responses. The duration and intensity of
exercise are widely considered to be critical elements that may positively or negatively
influence physical health and immune responses. There is general agreement that repeated
moderate-intensity physical activity is beneficial for immune function, reinforcing the
anti-oxidative capacity, reducing oxidative stress, and increasing the efficiency of energy
generation, and therefore reducing the incidence of inflammatory diseases. In contrast,
long-term intensive exercise training can suppress immune function and increase the risk of
upper respiratory infection [7]. However, recent evidence suggests that acute bouts of phys-
ical exercise can also regulate the immune response. High-intensity exercise can induce
the mass production of the anti-inflammation cytokines interleukin-6 and interleukin-10,
resulting in a heightened state of immunocompetence [8,9]. This contributes to prophy-
lactic and therapeutic treatment of diseases associated with chronic inflammation [10].
Additionally, high-intensity exercise also causes the number of circulating monocytes to
increase dramatically [11]. Thus, monocytes may be closely associated with chronic in-
flammatory disease and vascular function [12] and have an essential role in the association
between physical activity and anti-inflammation responses. Recent studies have shown
that exercise results in altered related gene expression in monocytes [13]. However, the pos-
sible molecular mechanism for how high-intensity exercise affects monocytic cells remain
unclear. Therefore, additional studies are needed to deeply understand the underlying
mechanisms and to gather insight into the beneficial effects of exercise on physical function
affecting monocytes.

During the research, the GSE51835 gene expression profile was obtained from the
Gene Expression Omnibus (GEO) database [12]. Then a gene profile analysis was used
to compare before and after exercise samples to recognize differentially expressed genes
(DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were additionally performed. Subsequently, we instituted
transcription factor (TF) target network and protein–protein interaction (PPI) network to
find crucial genes and signaling pathways and then used these to deduce an underlying
molecular mechanism models of exercise revealing the effects of high-intensity exercise
on monocytes.

2. Materials and Methods
2.1. Microarray Data

In this study, the GSE51835 gene expression profile was obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 17 Augest 2020.). GSE51835
was uploaded by Radom-Aizik S et al. [12]. The platform of dataset was the GPL570
(HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array. This dataset includes
twelve healthy men (mean age 26 ± 0.6 years and body mass index 26 ± 0.8 kg/m2,
characteristics of the subjects are shown in Table S1 [12]). The participants who actively
joined in the elite or competitive level of sports, or were suffering from any chronic illness or
medication, were excluded from the study. Each subject performed ramp-type progressive
cycle-ergometer exercise to measure maximum oxygen uptake (VO2max) with an expired
gas analyzer. At least 48 h but no more than 10 days later, each subject performed ten 2 min

https://www.ncbi.nlm.nih.gov/geo/
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bouts of constant work rate cycle-ergometry exercise, with a 1 min rest at interval. Gas
exchange was measured breath-by-breath and oxygen uptake was calculated. The work
rate was individualized for each subject and was equivalent to 82% of the participants’
VO2max on average. This protocol was designed to simulate naturally occurring patterns
of brief high-intensity exercise. The blood samples were collected before and immediately
after exercise. Monocytes were isolated from blood, including classical (CD14++/CD16−),
nonclassical (CD16++/CD14+) and intermediate (CD16+/CD14++) monocytes. Subjects
were asked to refrain from intense physical activity for 48 h before the exercise challenge.
The clinical information of the samples in this dataset is shown in Table S2.

2.2. Microarray Data Pre-Processing

The raw gene expression and platform data as Series Matrix files were downloaded
for all analyses. The raw data were pre-processed by using R, a free software for statistics
and graphics. Data were normalized with the limma package, including format conversion,
complementing missing values, assessing the background correction, and log2 transformed
using the limma package in R. Subsequently, annotation packs are used to convert probe
identifiers to genetic symbols in that platform.

2.3. Screening Differentially Expressed Genes and Hierarchical Clustering Analysis

The classic Bayesian method in the limma R package (version 3.11, https://bioconductor.
org/packages/release/bioc/html/limma.html, accessed on 25 Augest 2020.) [14] was applied
to screen for DEGs from each dataset. Genes with an adjusted p < 0.05 and a |log fold
change (FC)| > 0.5 were considered as significant DEGs [15]. To construct a clustering
hierarchy of DEGs, hierarchical clustering analysis was used. The heat-map package was
used for hierarchical cluster analysis. DEGs were clustered using Euclidean distance and then
dendrograms were generated. Statistical analyses were performed for each dataset, and the
intersecting portions were identified.

2.4. Enrichment Analyses of Differentially Expressed Genes

The Database for Annotation Visualization and Integrated Discovery (DAVID) [16]
(http://david.abcc.ncifcrf.gov/, accessed on 21 September 2020.) was applied to complete
GO (http://geneontology.org/, accessed on 21 September 2020.) [17] terms annotation
analyses to identify the biological function of DEGs. Based on KEGG [18] (http://www.
kegg.jp/, accessed on 22 September 2020.), pathway enrichment analysis of DEGs was
performed using KOBAS [19] (http://kobas.cbi.pku.edu.cn/, accessed on 22 September
2020.). A count ≥ 2 and a p < 0.05 were defined as the threshold.

2.5. PPI Network and Module Analysis

To predict the interaction between proteins encoded by DEGs with the search tool for
the retrieval of interacting genes/proteins [20] (STRING, http://string-db.org/, accessed
on 26 September 2020.) database (version 11.0), PPI network was created by Cytoscape
software [21] (version 3.8.0) and confidence degree of 0.15 was selected. The resulting
network is shown as nodes and edges. Cytoscape software’s plug-in Cytohubba was
applied to screen the first 10 nodes by degree filter for visualization [22]. High-degree
differential genes were considered as hub genes, which have a decisive role in exercise-
mediated regulation.

Proteins in the same module usually perform the same biological function. In this
study, the modules were analyzed using the Cytoscape software’s plug-in MCODE [23]
with the default parameters “Include Loops: false”, “Degree Cutoff: 2”, “Node Score Cutoff:
0.2”, “Haircut: true”, “Fluff: false”, “K-Core: 2” and “Max. Depth from Seed: 100” in the
PPI network. We next mined modules with a score > 15. Thereafter, STRING was used to
perform annotation analyses of these genes in these modules, and KEGG pathways were
identified by KOBAS.

https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
http://david.abcc.ncifcrf.gov/
http://geneontology.org/
http://www.kegg.jp/
http://www.kegg.jp/
http://kobas.cbi.pku.edu.cn/
http://string-db.org/
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2.6. TF Target Regulation Prediction

The iRegulon [24] function in Cytoscape software can predict critical regulators and
construct transcription factor regulatory networks. The plug-in iRegulon in Cytoscape
software was used to predicted the TFs of hub genes. The minimum identity between
orthologous genes was set to 0.05; the maximum false discovery rate on motif similarity
was set to 0.001, and the normalized enrichment score > 4.0 was retained.

3. Results
3.1. Normalization and DEGs Screening

The Bayesian method of the limma R package was used for the normalization of the
GSE51835 gene expression dataset, and the results are shown in Figure 1. The DEGs were
analyzed with the limma package, and 146 DEGs (95 upregulated and 51 downregulated
DEGs) were identified. Numerous differentially expressed genes from the pre-exercise and
after-exercise groups of these datasets is shown in Figure 2. Figure 3 shows the hierarchical
clustering heat map of the top 50 DEGs.
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3.2. Enrichment Analyses of DEGs

The DAVID database was used to perform GO functional annotation analyses of the
previously identified DEGs. The top 5 GO terms in each group are shown in Table 1.
Results of GO functional annotation analysis included three groups: biological process
(BP), cellular composition (CC), and molecular function (MF). In the BP group, DEGs
were mainly enriched in cellular response to hydrogen peroxide, response to unfolded
protein, negative regulation of cell proliferation, cellular response to laminar fluid shear
stress, and positive regulation of protein metabolic process. For cellular composition, DEGs
were mostly enriched in nucleus, membrane-bounded organelle, intracellular membrane-
bounded organelle, cytoplasm, and nucleoplasm. MF analysis showed that DEGs were
primarily enriched in chaperone binding, protein binding, transcription factor activity
sequence-specific DNA binding, Hsp70 protein binding, and ubiquitin binding.

The result of KEGG pathway analysis indicated that DEGs were mainly involved in
the FoxO signaling pathway, protein processing in endoplasmic reticulum, influenza A,
the ErbB signaling pathway, and the MAPK signaling pathway, as shown in Table 2. The
results of the KEGG network were visualized using Cytoscape software and are presented
in Figure 4.

3.3. PPI Network and Module Analysis

The STRING database was applied to structure a PPI network with 146 DEGs (95
upregulated and 51 downregulated DEGs). The result was downloaded and analyzed
using Cytoscape software. A PPI network was created after removing uncombined nodes.
As shown in Figure 5, the network contains 115 nodes and 741 edges. TNF, DUSP1, ATF3,
CXCR4, NR4A1, BHLHE40, CDKN1B, SOCS3, TNFAIP3, and MCL1 were identified as the
top 10 hub genes based on their degree values (see Figure 6 and Table 3).
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Table 1. Top 5 GO enrichment significance items in different functional groups.

GO-ID Term Gene Counts p-Value

GO-BP terms
GO:0070301 cellular response to hydrogen peroxide 6 2.81 × 10−5

GO:0006986 response to unfolded protein 5 1.35 × 10−4

GO:0008285 negative regulation of cell proliferation 10 8.43 × 10−4

GO:0071499 cellular response to laminar fluid shear stress 3 0.001058
GO:0051247 positive regulation of protein metabolic process 3 0.001058

GO-CC terms
GO:0005634 Nucleus 52 6.68 × 10−5

GO:0043227 membrane-bounded organelle 67 0.00014
GO:0043231 intracellular membrane-bounded organelle 62 0.0009
GO:0005737 Cytoplasm 45 0.003735
GO:0005654 Nucleoplasm 26 0.017733

GO-MF terms
GO:0051087 chaperone binding 6 1.70 × 10−4

GO:0005515 protein binding 75 3.58 × 10−4

GO:0003700 transcription factor activity sequence-specific DNA binding 16 0.001167
GO:0030544 Hsp70 protein binding 4 0.001208
GO:0043130 ubiquitin binding 5 0.001571

Notes: BP, biological process; CC, cellular component; MF, molecular function.

Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs.

Pathway ID Gene Counts p-Value Genes

FoxO signaling pathway hsa04068 5 1.69 × 10−5 PLK2, CDKN1B, TNFSF10,
GABARAPL1, KLF2

Protein processing in endoplasmic
reticulum hsa04141 5 4.75 × 10−5 DNAJB1, PLAA, DNAJA1,

HERPUD1, HSPH1

Influenza A hsa05164 5 5.02 × 10−5 DNAJB1, TNFSF10, NXT1, SOCS3,
TNF

ErbB signaling pathway hsa04012 4 5.46 × 10−5 CDKN1B, EREG, HBEGF, AREG

MAPK signaling pathway hsa04010 6 7.17 × 10−5 AREG, NR4A1, TNF, MAPK7,
DUSP2, EREG

MicroRNAs in cancer hsa05206 6 7.71 × 10−5 DDIT4, CDKN1B, MAPK7, CYP1B1,
mir-223, MCL1

Parathyroid hormone synthesis,
secretion and action hsa04928 4 0.000124 NR4A2, HBEGF, PDE4B, GNA13

PI3K-Akt signaling pathway hsa04151 6 0.00019 AREG, DDIT4, CDKN1B, NR4A1,
MCL1, EREG

Pathways in cancer hsa05200 7 0.000249 PIM2, CDKN1B, CXCR4, RASSF5,
CKS1B, GNA13, CKS2

Adipocytokine signaling pathway hsa04920 3 0.000619 TNF, SOCS3, CD36
Epstein–Barr virus infection hsa05169 4 0.001303 CDKN1B, TNF, TNFAIP3, RUNX3

IL-17 signaling pathway hsa04657 3 0.001425 TNF, MAPK7, TNFAIP3
Small-cell lung cancer hsa05222 3 0.001425 CDKN1B, CKS1B, CKS2

Viral protein interaction with
cytokine and cytokine receptor hsa04061 3 0.001744 TNFSF10, TNF, CXCR4

Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis hsa00563 2 0.001751 PIGM, PIGW
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Table 3. Top 10 hub genes with higher degree of connectivity.

Gene Symbol Gene Description Degree

TNF Tumor necrosis factor 56
DUSP1 Dual-specificity protein phosphatase 1 47
ATF3 Cyclic AMP-dependent transcription factor ATF-3 47

CXCR4 C-X-C chemokine receptor type 4 40
NR4A1 Nuclear receptor subfamily 4 group A member 1 37

BHLHE40 Class E basic helix-loop-helix protein 40 35
CDKN1B Cyclin-dependent kinase inhibitor 1B 34

SOCS3 Suppressor of cytokine signaling 3 34
TNFAIP3 Tumor necrosis factor alpha-induced protein 3 31

MCL1 Induced myeloid leukemia cell differentiation
protein Mcl-1 31

Furthermore, apply MCODE (version 1.6.1) in PPI network to search cluster modules.
We observed that this module contains 21 nodes and 157 interaction pairs, as shown in
Figure 7. Then, STRING database and KOBAS were used for GO functional annotation
analysis and KEGG pathway analysis on all genes in this module respectively. The result
of GO functional annotation analysis indicated that genes were significantly enriched
in negative regulation of cellular process (ontology: BP), RNA polymerase II regulatory
region sequence-specific DNA binding (ontology: MF) and nucleus (ontology: CC). These
results are shown in Table 4. Moreover, the genes were mainly enriched in the IL-17
signaling pathway, the MAPK signaling pathway, the TNF signaling pathway, Osteoclast
differentiation, and apoptosis, as is shown in Table 5.
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Table 4. Top 5 GO enrichment significance items in Module.

GO-ID Term Gene Counts p-Value

GO-BP terms

GO:0048523 negative regulation of cellular
process 20 3.59 × 10−9

GO:0031324 negative regulation of cellular
metabolic process 16 2.26 × 10−8

GO:0010604
positive regulation of

macromolecule metabolic
process

17 2.77 × 10−8

GO:0009968 negative regulation of signal
transduction 12 7.14 × 10−8

GO:0051172 negative regulation of nitrogen
compound metabolic process 15 7.14 × 10−8

GO-CC terms
GO:0005634 Nucleus 16 0.0185
GO:0044428 nuclear part 12 0.0337

GO-MF terms

GO:0000977
RNA polymerase II regulatory
region sequence-specific DNA

binding
9 7.56 × 10−7

GO:0001012 RNA polymerase II regulatory
region DNA binding 9 7.56 × 10−7

GO:0044212 transcription regulatory region
DNA binding 10 7.56 × 10−7

GO:0043565 sequence-specific DNA
binding 10 9.79 × 10−7

GO:0003677 DNA binding 13 2.79 × 10−6
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Table 5. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of Module.

Pathway ID Gene Counts p-Value Genes

MAPK signaling pathway hsa04010 5 7.84 × 10−8 AREG, NR4A1, MAPK7, TNF,
DUSP2

IL-17 signaling pathway hsa04657 3 6.23 × 10−6 TNF, MAPK7, TNFAIP3
TNF signaling pathway hsa04668 3 1.07 × 10−5 TNF, TNFAIP3, SOCS3

Osteoclast differentiation hsa04380 3 1.58 × 10−5 TNF, SOCS3, FOSL2
Apoptosis hsa04210 3 1.89 × 10−5 TNFSF10, MCL1, TNF

Fluid shear stress and
atherosclerosis hsa05418 3 2.01 × 10−5 TNF, KLF2, MAPK7

Necroptosis hsa04217 3 3.15 × 10−5 TNFSF10, TNF, TNFAIP3
Influenza A hsa05164 3 3.45 × 10−5 TNFSF10, TNF, SOCS3

Epstein–Barr virus infection hsa05169 3 5.92 × 10−5 RUNX3, TNF, TNFAIP3
Type 2 diabetes mellitus hsa04930 2 0.000148 TNF, SOCS3

3.4. TF Target Regulation Prediction

We then sought to predict and analyze TF target gene relationship pairs using the
iRegulon plug-in in Cytoscape software. As shown in Figure 8, 4 transcription factors were
identified by a normalized enrichment score > 4: CREM, FOXJ3, HSF1, and CHD1.
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4. Discussion

Monocytes are an essential element of immune systems and play a fundamental role in
diseases associated with chronic inflammation, such as atherosclerosis [25]. Recent studies
suggest that physical exercise can affect the physiological functions of monocytes [26]. To
better understand the effect of exercise on monocytes, we analyzed monocyte samples’
gene expression profile pre- and post-exercise. In this study, 95 upregulated and 51 down-
regulated DEGs associated with exercise and monocytes were identified. The top potential
hub genes (TNF, DUSP1, ATF3, CXCR4, NR4A1, BHLHE40, CDKN1B, SOCS3, TNFAIP3,
and MCL1) were identified and may play an essential role in the effects of exercise on
monocytes. These DEGs were mainly enriched in cellular response to hydrogen peroxide
and unfolded protein, negative regulation of cell proliferation, and positive regulation
of protein metabolic process. In the KEGG analysis, these DEGs enriched in the FoxO
signaling pathway, protein processing in endoplasmic reticulum, influenza A, the ErbB
signaling pathway, and the MAPK signaling pathway. Moreover, the most significant
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module analysis indicated that the MAPK signaling pathway, IL-17 signaling pathway,
TNF signaling pathway, osteoclast differentiation, and apoptosis were mainly involved.
On the basis of our TF-DEGs regulating network, CHD1, TBPL2, BCL6, ATF3, MEF2C, and
FOXJ2 were considered to be key regulators.

In this study, we found that TNF may be a key gene and significantly enriched in
immunomodulatory functions. TNF is a member of the TNF/TNFR cytokine superfamily,
which acquires major importance in the immune system’s maintenance and homeostasis,
inflammatory response, and host defense. However, dysregulation of TNF leads to chronic
inflammation by activating the nuclear factor-kappa B (NF-κB) signaling pathway, and
is associated with several human inflammatory pathologies and diseases, such as can-
cer, atherosclerosis, and type-2 diabetes. Hence, TNF neutralization suppresses chronic
inflammation and attenuates inflammatory pathology. It has been shown that TNF can
induce tumor necrosis factor-induced protein 3 (TNFAIP3) expression. The protein en-
coded by TNFAIP3 gene is critical for limiting inflammation by terminating endotoxin- and
TNF-induced NF-κB activation. Our study revealed that expression of TNF was downregu-
lated, whereas TNFAIP3 upregulated its expression after high-intensity exercise, which
can inhibit the activation of the NF-κB signaling pathway and enhances the physiological
functions of monocytes.

DUSP1 is a member of the dual-specificity phosphatase family [27]. DUSP1 has been
recognized as a regulator of kinases, and exerts its effects by dephosphorylation of mitogen-
activated protein kinase (MAPK), extracellular-signal-regulated kinase (ERK), and c-Jun
N-terminal kinase (JNK) [28]. Research studies have indicated that JNK, MAPK, and ERK
signaling molecules are critical in inflammatory signaling pathways [29]. Thus, DUSP1 can
change the expression of crucial mediators of the innate immune response and regulates
immune homeostasis via regulating the activation of MAPK, ERK, and JNK. In this study,
the expression of human monocyte DUSP1 was upregulated after high-intensity exercise,
which may indicate that exercise inhibits the MAPK signaling pathway by promoting
DUSP1 expression, thereby alleviating the expression of inflammatory mediators and
improving the prognosis of inflammatory diseases [30].

CXCR4 is a chemokine receptor that plays a crucial role in the trafficking and home-
ostasis of immune cells such as T lymphocytes [31]. Furthermore, CXCR4 also promotes the
homing and retention of hematopoietic stem and progenitor cells in stem cell niches of the
bone marrow [32]. Page et al.’s studies have suggested that CXCR4 impacts cardiovascular
development [33]. Based on these findings, we suspected that CXCR4 plays a significant
role in chronic inflammatory disease treatment and prevention, such as atherosclerosis.
However, a further in-depth study is required to gain better knowledge of the potential
role of CXCR4 in exercise.

NR4A1 was observed to be significantly upregulated after exercise. The proteins
encoded by NR4A1 belong to an orphan member of the nuclear steroid/thyroid receptor
superfamily [34]. Its receptor is expressed abundantly in lymphoid organs and tissues,
and regulates B and T lymphocytes [35]. Hanna found that the deletion of NR4A1 in
monocytes will promote activation of toll-like receptor signaling, indicating that NR4A1
is a potential target for regulating the immune function of monocytes [36]. In addition,
Freire indicated that NR4A1 involved in the regulation of pro-inflammatory cytokines was
induced by NF-κB and inhibits NF-κB signal activation [37]. Sabaratnam observed that
exercise induces the release of NR4A1, modulating the immune responses in people with
type-2 diabetes [38]. Similarly, we also found that NR4A1 was significantly upregulated in
individuals after exercise. All together, we speculated that exercise might exert beneficial
effects on human health by eliminating excessive pro-inflammatory cytokines.

In our TF-DEGs regulatory network, FOXJ2 was involved in regulating genes related
to immunity, such as DUSP1, TNF, and SOCS3. The protein encoded by FOXJ2 partici-
pates in several cellular physiological processes, such as cell cycle, cell proliferation, and
apoptosis [39,40]. Additionally, we found that SOCS3 was regulated by FOXJ2 through
exercise. Studies have previously shown that SOCS3 plays a vital role as an intracellular
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negative regulator of inflammation by suppressing STAT3 activation [41]. Furthermore, the
expression of SOCS3 is inducible in inflammatory tissue [42]. This study found that GO
functional annotation analyses related to SOCS3 were enriched mainly in inflammatory
response, protein binding, apoptotic process, and cytoplasm. In studies on arthritis, SOCS3
was involved in defense against inflammation and articular tissue repair [43,44]. Overall,
we found that SOCS3 plays an essential role in exercise via regulating the expression of
inflammation-related genes in immune cells.

In the present study, we found that the most significantly enriched pathway was the
FoxO signaling pathway. The proteins encoded by FoxO genes are a family of transcription
factors [45]. In mammals, there are four members: FOXO1, FOXO3a, FOXO4, and FOXO6.
The FoxO signaling pathway is involved in the regulation of cell cycle, apoptosis and
metabolism [46]. Moreover, FoxO plays an important role in the functions of immune-
relevant cells [47–49]. The relationship between FoxO and inflammation has been described
in inflammatory arthritis [50], systemic lupus erythematosus [51], and atherosclerosis [52].
Our study demonstrated that DEGs mainly participated in the FoxO signaling pathway,
showing that inflammation-related DEGs enriched in the FoxO signaling pathway were
adjusted by exercise. We assume that exercise may play an active role in determining the
balance of inflammation state.

Studies on gender differences in the effects of high-intensity exercise on monocytes
gene expression are strikingly scarce. However, it has been reported that monocyte counts
and proportion of non-classical monocytes are different amongst men and women under
physiological conditions [53]. These differences may be attributed to the effects of estrogen.
An increase in estrogen may be associated with the decreased levels of monocytes [54].
PBMCs co-cultured with estrogen had altered expression of toll-like receptor 3 (TLR3),
toll-like receptor 7 (TLR7), toll-like receptor 8 (TLR8), toll-like receptor 9 (TLR9), but not
toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4) and the lipopolysaccharide (LPS)
receptor [55]. There is evidence that exercise can improve the female’s estrogen level [56].
Furthermore, exercise decreased monocyte counts in overweight women [57]. We therefore
speculate that exercise may modulate monocytes by altering the female’s estrogen level.
However, further detailed studies should be done to verify this hypothesis.

Radom-Aizik et al.’s study showed that high-intensity exercise significantly altered the
expression of genes and microRNAs that were likely to regulate monocytes’ participation
in anti-inflammatory and anti-atherogenic pathway and thus promote vascular health [12].
In this study, we screened for potential hub genes and candidate signaling pathways
associated with the effects of high-intensity exercise on human monocytes. We found
that TNF, CXCR4 and SOCS3 are key genes responsible for the exercise-induced anti-
inflammatory effects in monocytes. Besides, CXCR4 may participate in the exercise-induced
anti-atherogenic effects in monocytes. As for the candidate signaling pathways, we found
that the MAPK pathway is highly enriched in the exercise-induced anti-inflammatory
effects in monocytes. These results are in line with Radom-Aizik et al.’s study. Notably, we
found that the NR4A1, DUSP1, TNFAIP3 and FoxO signaling pathways play vital roles in
the exercise-induced immune function of monocytes. Meanwhile, our study indicated that
FOXJ2 is a key upstream transcription factor of hub genes.

In this study, we identified several essential genes and signaling pathways involved
in anti-inflammation response. Although the gene expression associated with the immune
function of monocytes was altered immediately after exercise, this can be a fitness to a
reparative response due to the tissue damage induced by exercise and metabolic changes.

However, there are some limitations in the present study. Firstly, the sample size for
gene expression profiling analysis was small, which might lead to false positive results.
Secondly, we cannot fulfil a follow-up downstream research, which is urgently needed to
verify our findings.
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5. Conclusions

In this study, we identified 95 upregulated and 51 downregulated genes associated
with exercise and monocytes. Four essential genes, TNF, DUSP1, CXCR4, and NR4A1,
and the FoxO signaling pathway, play vital roles in the immune function of monocytes.
These findings indicate that high-intensity exercise may enhance resistance to diseases
with chronic inflammation by regulating the expression of these genes. However, further
experiment of molecular biology studies is needed to confirm the findings of this study.
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