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Central nervous system (CNS) infections remain a major burden of pediatric disease

associated with significant long-term morbidity due to injury to the developing brain.

Children are susceptible to various etiologies of CNS infection partly because of

vulnerabilities in their peripheral immune system. Young children are known to have

reduced numbers and functionality of innate and adaptive immune cells, poorer

production of immune mediators, impaired responses to inflammatory stimuli and

depressed antibody activity in comparison to adults. This has implications not only

for their response to pathogen invasion, but also for the development of appropriate

vaccines and vaccination strategies. Further, pediatric immune characteristics evolve

across the span of childhood into adolescence as their broader physiological and

hormonal landscape develop. In addition to intrinsic vulnerabilities, children are subject to

external factors that impact their susceptibility to infections, including maternal immunity

and exposure, and nutrition. In this review we summarize the current evidence for

immune characteristics across childhood that render children at risk for CNS infection

and introduce the link with the CNS through the modulatory role that the brain has on

the immune response. This manuscript lays the foundation from which we explore the

specifics of infection and inflammation within the CNS and the consequences to the

maturing brain in part two of this review series.

Keywords: central nervous system (CNS) infections, vulnerabilities, developing brain, immune response, children,

peripheral immune system

INTRODUCTION

Central nervous system (CNS) infections in children continue to be an important cause of
significant morbidity and mortality, with a predominance in low- and middle-income countries
(1–3). To unravel the complexity of these infections in children it is important to consider the
peripheral (immune system outside of the CNS) and central (immune system within the CNS)
immune systems, as well as neuro-physiological and neuro-anatomical factors that may add to
pediatric vulnerability or resilience.

The development of the human immune system is a continuous process and undergoes various
changes during infancy and childhood, potentially gaining peak function during adolescence
which carries over into adulthood. There are various defense barriers that form part of host
immunity. The skin and mucosal membranes comprise the physical defense barrier. They undergo
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developmental, functional and structural changes with age, which
are influenced by appropriate microbial exposure postnatally
[extensively reviewed by (4)]. On a cellular level, the pediatric
immune system comprises mostly naïve cell populations which
similarly undergo age-specific maturation that is influenced
by environmental stimuli. Consequently, young children are
at greater risk of developing infections compared to older
children and adults, and are more vulnerable to disseminated
infections, including infections of the CNS. For instance, rates
of meningitis secondary to Hemophilus influenzae, Streptococcus
pneumonia and Mycobacterium tuberculosis are highest among
children <5 years of age, or in adults with compromised
immune systems secondary to human immunodeficiency virus
(HIV) (5–8). Across 5 countries of the meningitis belt in
Africa, ∼74% of bacterial meningitis cases between 2015 and
2017 occurred in children under the age of 14 years (9).
Further, a study comparing adult and pediatric tuberculous
meningitis (TBM) found a significantly higher rate of miliary
TB in children, likely indicative of the immature immune
system’s reduced capacity to contain the infection and prevent
dissemination (10). Herpes simplex encephalitis is also known
to be more severe in children compared to adults given
lower neonatal production of type 1 interferon and impaired
autophagy (11). Other diseases and infections characterized by
inflammation and active immune responses, such as juvenile-
onset systemic lupus erythematosus (12), Behçet’s disease (13),
para-infectious optic neuritis (14), and severe malaria (15), also
report different clinical manifestations in children compared
to adults.

Additionally, neurodevelopment may influence the impact
that CNS infections have on the developing brain. For instance,
age-related changes are seen in brain metabolism, which is
dependent on myelination and synaptogenesis, cerebral blood
flow, the balance between intracranial CSF and brain tissue, and
skull development, such as the closure of fontanels and sutures.
These factors have significant implications for children with
regards to their vulnerability to brain and/or spinal injury and
the consequences thereof (16).

Therefore, children cannot simply be considered “little adults,”
but rather warrant pediatric-specific treatment strategies that are
tailored to their unique developmental physiology. In this review,
we summarize the current evidence for peripheral immune
characteristics across childhood that render children at risk for
CNS infection and introduce the bidirectional link with the CNS
through the modulatory role that the brain has on the immune
response. Although we use data available from human studies
whenever possible, we have also utilized in vitro and in vivo
animal studies which also provide valuable data. For the purpose
of this review we have established the age categories as follows:
neonate (infants in the first 28 days after birth), infants (0–1
years), preschool children (1–6 years), primary school children
(6–12 years), adolescents (12–18 years) and adults (>18 years);
unless otherwise stated as specific to the study referenced. This
manuscript lays the foundation from which we explore the
specifics of infection and inflammation within the CNS and
the consequences to the maturing brain in part two of this
review series.

PERIPHERAL IMMUNE SYSTEM

The immune system is equipped with a vast array of cells
and immune modulators capable of sensing internal and
external stimuli, initiating host defense against pathogens, and
maintaining tissue homeostasis (17). Distinct immune features
are present during each life stage (Figures 1, 2), introducing
unique age-related challenges that may impact the response to
infections and increase children’s vulnerability to CNS infections.

Innate Immune System
The innate immune system forms the first line of defense against
invading pathogens, comprising monocytes, macrophages,
dendritic cells (DCs), neutrophils, and natural killer (NK) cells
(17). These innate immune cells share the ability to rapidly
detect pathogen-associated molecular patterns (PAMPs) and
danger-associated molecular patterns (DAMPs) through a
limited number of germ-line encoded pattern-recognition
receptors (PRRs). Activation of PRRs via non-sterile damage
(e.g., microorganisms or cytoplasmic PAMPs) or sterile damage
(e.g., neurotoxins, chemical compounds, endogenous DAMPs)
stimulates intracellular signaling that leads to inflammasome
mobilization and thereby caspase-1 activation, proteolysis,
release of interleukin (IL)-1β and IL-18, NF-κB activation,
and pyroptotic cell death (31–34). Members of the PRR family
involved with innate immunity include Toll-like receptors
(TLRs), nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs), retinoid acid-inducible gene-1-like receptors
(RIG1), and C-type lectin receptors (34). The TLR family (35)
consists of cell surface-expressed TLRs (TLR1, TLR2, TLR4,
TLR5, TLR6, and TLR11) that detect microbial structures
such as bacterial and fungal cell wall components along with
viral proteins; intracellularly-expressed TLRs (TLR3, TLR7,
TLR8, and TLR9), in turn, function to detect RNA of foreign
origin (36–40). Numerous studies demonstrate attenuation
of TLR responses in young children with maturation of the
TLR pathways occurring across childhood. This may in turn
contribute to the developmental profile of cytokine responses
with age (41).

Development of innate immune responses begins during
the fetal period, progresses during early childhood at various
cell-specific rates, and reaches full capacity during adolescence
(42). Monocytes and macrophages serve as significant effector
cells of the innate immune system by carrying out phagocytic
functions, producing key cytokines, and presenting phagocytosed
microorganisms to T lymphocytes (T cells) (41). Quantitatively,
these cell populations are often decreased in young children.
For example, pulmonary macrophages are low in preterm and
term infants but reach adult cell levels days following birth
(43). Although numbers may increase, important differences
in functionality often remain. Monocytes and macrophages
exhibit reduced production of cytokines such as IL-12 and
interferon (IFN)-γ, and reduced TLR-4 expression in neonates
and preterm infants compared to adults (17, 44). In addition to
cytokine production, phagocytosis of pathogens and subsequent
intracellular bacterial killing are important components of
the innate immune system. Several reports observed impaired
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FIGURE 1 | Age-dependent differences in the innate immune system. Changes in the innate immune cells during development, from in utero (week 27–birth), neonate

(infants in the first 28 days after birth), infants (0–1 years), preschool children (1–6 years), primary school children (6–12 years), to adolescents (12–18 years).
aMonocytes/macrophages-capable of phagocytoses and production of pro-inflammatory cytokines (18). bMyeloid DCs-potent initiators of TH1-mediated responses

(19). cPlasmacytoid DCs-act as antigen presenting cells and regulate T cell responses (19). dNeutrophils-release antimicrobial peptides and produce reactive oxygen

species (20, 21). eNatural killer cells-release granzyme B and perforin (22). CD, cluster of differentiation; DC, dendritic cell; DNA, deoxyribonucleic acid; HLA-DR,

human leukocyte antigen-DR; H2O2, hydrogen peroxide; IL, interleukin; IFN, interferon; NET, neutrophil extracellular trap; TGF-β, transforming growth factor β; TH,

T-helper; TLR, toll-like receptor.

phagocytic functions by neonatal monocytes, macrophages, and
neutrophils (45–48). The impairment appeared to be transient,
as adult levels of neonatal phagocytic abilities are reached 3
days following birth, however, the impact thereof on neonatal
bacterial susceptibility remains unexplored (48, 49). Additionally,
neonatal monocytes fail to activate adaptive immune cells, either
through reduced human leukocyte antigen (HLA)-DR expression
or inadequate cytokine production (48). In a separate study,
reduced HLA-DR expression by monocytes was suggested to play
a part in the increased risk of developing infectious complications
in preterm infants (50).

Similar to monocytes/macrophages, DCs serve as a vital
link between innate and adaptive immunity by processing and
presenting antigens to adaptive immune cells. Myeloid DCs
(mDC) produce low levels of IL-12 and are few in numbers early
on in life. Low expression of CD86+, CD80+ and HLA class

II, as well as a diminished capacity in priming CD4+ T helper
(TH) 1 and CD8+ T cell responses, have also been noted in
mDCs in young children (51). Concomitantly, these impairments
correlate with children’s susceptibility to disseminated infections
such as Salmonella spp and M. tuberculosis (52). Interesting,
plasmacytoid DCs (pDC) show a greater degree of impairment
(53). Schuller et al. observed that pDCs of preterm neonates
displayed altered morphology and cell function, with significant
decreases in the production of IFN-α/β in response to different
viral infections (54). These failures to activate the adaptive
immune system leave young children vulnerable to infection.

Neutrophils are the most abundant polymorphonuclear cells
and along with monocytes/macrophages, form the phagocytic
system of the innate immune system (48). Low numbers of
neutrophils are observed just before the third trimester but
increase significantly shortly before birth. Preschool children
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FIGURE 2 | Age-dependent differences in the adaptive immune system. Changes in the adaptive immune cells during development, from neonate (infants in the first

28 days after birth), infants (0–1 years), preschool children (1–6 years), primary school children (6–12 years), to adolescents (12–18 years). aCD4+ T cells-helper cells

that produce variety of cytokines (23). bTH1 cells-produces IFN-γ and initiates protective immune responses against viral/bacterial infections (24). cTH2 cells-produces

IL-4, IL-5, IL-9, IL-13, and IL-15 (24). dTH9 cells-produces IL-9, IL-10, and IL-21 (25). eTH17 cells-respond to extracellular bacteria and fungi (24). fCD3+ T

cells-important for activation of CD4+ and CD8+ T cells (26). gCD8+ T cells-cytotoxic cells capable of TNF-α and IFN-γ mediated killing (27). hTreg

cells-immunosuppression of CD4+ and CD8+ cell function; release inhibitory cytokines (24). iMemory B cells-exerts immunosuppression; can rapidly differentiate into

effector cells following antigen recognition (28). jTransitional B cells-exerts immunosuppression through IL-10 production (29). kPlasma blasts-most mature

class-switched subset of memory B cells (30). CD, cluster of differentiation; Ig, immunoglobulin; IL, interleukin; IFN-γ, interferon-γ; TH, T-helper; TNF-α, Tumor

necrosis factor-α.

have increased neutrophil concentrations compared to infants,
but these concentrations are still only half of adult levels (55).
Although the number of circulating neutrophils is high in
the days following birth, they demonstrate poor responses to
inflammatory stimuli, reduced chemotactic abilities, inadequate
bactericidal effects, and reduced ability to infiltrate into the
tissues from the bloodstream (48, 56). Neutrophil infiltration
into the CNS is a hallmark of bacterial meningitis and
an important bacterial meningitis diagnostic criterion (57).
Therefore, failure of children’s neutrophils to infiltrate into the
CNS may contribute to their increased risk of CNS infections.
Furthermore, neutrophils’ ability to produce hydrogen peroxide
(H2O2), one of the reactive oxygen species (ROS), in response
to Escherichia coli and Staphylococcus aureus, is significantly
reduced in infants. The level of H2O2 production gradually

increases with age, as children aged 10–15 years have similar
production levels to adults (58). In addition to these functional
deficiencies, Yost et al. reported impaired formation of DNA
lattices and neutrophil extracellular traps (NETs) as well as
reduced production of antimicrobial proteins in neonates,
which contribute to decreased extracellular bacterial killing (59).
Impaired tissue infiltration and microbial killing by neutrophils
are crucial risk factors for uncontrolled infections.

The lymphoid cell line of innate immunity comprises NK
cells and innate lymphoid cells (ILCs) consisting of distinct
populations: group 1 ILCs, group 2 ILCs, and group 3 ILCs (60).
NK cells can identify and kill virus-infected cells via cytotoxic
mechanisms and IFN-γ production without prior sensitization
(61). There are two subpopulations of NK cells which can be
distinguished by the cell surface density of CD56+, differing both
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functionally and phenotypically. The CD56bright subset serves
as the primary source of NK cell-derived immunoregulatory
cytokines, whereas CD56dim mediates natural cytotoxicity (61).
Animal models of bacterial meningitis and cerebral malaria have
found significant infiltration of NK cells secreting IFN-γ (62).
In fetal NK cells, Ivarsson et al. observed hyper-responsiveness
to both antibody-mediated and cytokine stimulation, and poor
responsiveness to HLA class I-negative cells. Additionally, NK
cell release of lytic factors and degranulation are decreased during
early life compared to older individuals (63). Several studies
have also reported neonatal NK cells to be more susceptible to
transforming growth factor (TGF)-β mediated suppression than
adults, suggesting that this multifunctional cytokine contributes
to NK cell immaturity during early development (64, 65). Infants
and preschool children have comparable NK cell percentages,
whereas adolescents possess significantly higher percentages (55).
This is in keeping with findings of previous studies reporting
an increase in the percentage rather than the number of NK
cells with age (66, 67). ILCs can produce a wide variety
of cytokines and participate in immunity against intra- and
extracellular bacteria, metabolic homeostasis, and lymphoid
tissue development (60). High frequencies and absolute numbers
of ILCs are present in cord blood and peripheral blood of primary
school children and adolescents, whereas decreased frequencies
of group 2 and 3 ILCs are observed in adults (68).

Although considered part of the innate immunity, the
complement system serves multi-functional roles in both
innate and adaptive immunity. These include initiating
proinflammatory responses through the close interaction with
TLRs, NLRs and inflammasomes, participating in B lymphocytes
(B cells) and T-cell responses, and cell homeostasis (69). The
activity of the complement system is subdued during early life
compared to adults (4). In a study which reviewed a spectrum
of primary immunodeficiencies at a tertiary pediatric hospital
in South Africa, more than half of the children (median age
10 years) with complement deficiencies, particularly in C3
and C6, experienced recurrent meningococcal meningitis
(70). Furthermore, complement proteins are also produced by
resident cells of the CNS, and appear to play a vital role in the
immunity against Herpes simplex encephalitis (69, 71).

Although several innate immune cells reach adult levels early
in childhood, the majority lack full functionality, with impaired
responses to inflammatory stimuli, inadequate production of
cytokines and poor microbial killing. Consequently, young
children are more susceptible to infections, some of which can
disseminate to the CNS.

Adaptive Immune System
The adaptive immune response commences when innate
responses are unable to successfully eliminate the pathogen and
requires antigen presentation by innate immune cells. Adaptive
immunity develops due to prior exposure to a stimulus and can
be characterized as cell-mediated or antibody-mediated response
(72, 73). Although we highlight the distinction between cell-
mediated and antibody-mediated response below, both T cells
and (B cells) are needed for an appropriate antibody-mediated

response as the T cells, specifically CD4+ TH cells, are needed for
antigen presentation, B cell activation, and antibody production.

Cell-Mediated Immunity
Conventional T cells can be divided into two functionally
different types namely, CD4+ TH cells and cytotoxic CD8+ T
cells (73). The former are responsible for prompting the function
of other cells via excreted cytokines and can further be divided
into regulatory and effector cells (TH1, 2, 9 and 17) (73, 74).
At birth, T cells are increased and remain so throughout early
infancy and normalize to adult levels in adolescence (66, 73).
Despite these high levels, the functionality of these cells is poor,
with diminished fetal IL-12 production, which plays a crucial
role in T cell functionality (74). Interestingly, both term and
preterm neonates demonstrate increased CD4+ TH cell counts
after birth that quickly stabilize during infancy; however, most are
naïve cells (73). On the contrary, significant decreases in CD4+

percentages are observed throughout infancy, childhood, and
adolescence, only increasing significantly during adulthood (55).
The ratio of CD3+/CD4+ T cells remain high from birth until
infancy and decrease significantly after 2 years of age, remaining
low throughout early childhood, adolescence, and adulthood
(66). Functional CD4+ T cells are important during bacterial
meningitis secondary to Hemophilus influenzae, Streptococcus
pneumoniae, andNeisseria meningitidis (75). Children with these
bacterial meningitides demonstrated increased CD4+ T cells
with elevated CD4+ CD45R+ (suppressor-inducer T cells) and
depressed CD4+ CDw29+ (helper-inducer, or memory T cells)
but decreased CD8+ T cells, suspected to correlate with impaired
antibody responses (75). In tuberculosis (TB), a lower abundance
of genes responsible for T-cell activation, proliferation, and
receptor signaling, as well as reduced peripheral T-cell responses,
are more profoundly seen in children with TBM as opposed to
those with pulmonary TB, suggesting that these impairments
may play a role in dissemination of the disease to the brain
(76, 77). Similar to several innate immune cells, T cells are often
depleted in number or, if normal to high levels, are dysfunctional
with low cytokine production which can limit effective adaptive
immune response.

The developing fetus exhibits an immune response skewed
toward TH2 immunity, which is characterized by the reduced
production of IFN-γ by T cells. Regulatory T (Treg) cells are
abundant in cord blood and display a suppressive function
on immune responses (78, 79). Treg cells along with resident
CNS immune cells help regulate neuroinflammation following
CNS infection by suppressing proinflammatory mediators
(79). Given the early recruitment of peripheral effector cells
during CNS infection, the timing of Treg-mediated immune
responses is crucial in ensuring resolution of neuroinflammatory
processes and minimizing brain injury associated with excessive
inflammation (80). For example, recruitment of increased Treg
cells during the early phase of West Nile Virus infection has been
associated with improved patient outcome (80). Furthermore,
in a viral encephalomyelitis model, depletion of Treg cells
in a diphtheria toxin-dependent manner resulted in severe
CNS inflammation and subsequent neuronal damage despite
no impact on viral clearance (81). Increased frequencies of
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Treg cells were also observed in children with various forms
of extra-pulmonary TB disease including TBM, which persisted
even following treatment (82). This could potentially reflect an
underlying immune susceptibility to disseminated TB disease.

Contrary to CD4+ TH cells, CD8+ T cells exert cytotoxic
function by killing infected cells (74, 83). Pre-school children,
adolescents and adults, exhibit significantly higher CD8+ T cell
percentages compared to infants (55). Risdon et al. demonstrated
that neonatal CD8+ T cells lacked appropriate responses and
required a greater stimulus to elicit their function (83). Moreover,
CD4+ and CD8+ T cells can also acquire a memory phenotype
following infection; however, low numbers are present in healthy
neonates and remain low even in older children (83). Compared
to neonates, adults and children (aged 5–10 years) possess
higher counts of memory and effector T cells (73). The ratio
of CD4+/CD8+ T cells also exhibits fluctuation with age: low
values are observed at birth, followed by increases during the
first 2 years of life, a decrease throughout childhood, and finally
stabilizing during adulthood (66). Both CD4+ and CD8+ T
cells participate in pathogen clearance following CNS infection.
Increased levels of CD4+ T cells were found in the CSF in some
forms of meningitis during acute infection (84). Furthermore,
CD4+ TH cells are important in maintaining CD8+ T cell-
mediated responses during CNS infection. Gradual CD4+ TH
cell depletion in a mouse viral encephalitis model affected
infiltrating CD8+ T cell effector functions and led to impaired
viral control (85). Specifically, IFN-γ production and granzyme
B expression were significantly reduced, however CD8+ T cell
recruitment to the CNS was only slightly diminished (85).
Functional exhaustion of T cells can be induced during chronic
infections, and although observed in both adults and infants,
the latter group experiences greater exhaustion, as reported
during congenital cytomegalovirus (CMV) infection (86). These
alterations in T cell levels and functionality could have significant
implications in the pathogenesis of CNS infections during
early life.

Antibody-Mediated Immunity
B cells are the driving force behind the antibody-mediated branch
of the adaptive immune system by secreting antibodies. The
immunoglobulin (Ig) molecules, or antibodies, exist in four
different isotypes in humans, namely IgM, IgA, IgG and IgE.
Once activated, B cells undergo isotype switching which allows
them to subsequently secrete antibodies of the different isotypes.
Isotype switching involves altering the effector function of the
secreted antibody without influencing antibody specificity (87).

Throughout life, peripheral B cells differentiate and mature
when confronted with foreign antigens; however, the most
discernible changes in the composition of the B cell pool occur
during the first 5 years of life (88). Resultantly, infants rely heavily
on their innate immune system for protection against infections
given the reduced ability to mount appropriate and prompt
adaptive responses due to lack of antigen exposure in utero
(89). Maternally derived antibodies exert their influence during
the neonatal period by shaping the B cell repertoire, allowing
for enhanced mucosal immunity and antimicrobial protection
(90, 91). The number of B cells has been shown to decrease with

age as children (5–10 years old) and adults exhibit lower levels
compared to neonates (73, 88). The expression of CD19+, an
antigen found on all B cells that is also used as a biomarker of
B cell development, was found to be highest in infants and young
children compared to older age groups (55). Flow cytometric
data have shown that the majority of the B cells at birth are
naïve and immature, with few memory B cells, reflecting a
lack of antigenic stimulation (73). The percentage of naïve B
cells as well as transitional B cells (CD24++CD38++) decreases
significantly with age (88). Interestingly, a mouse model of
pneumococcal meningitis showed that both T cells and B cells
were needed to delay spread to the CNS and improve survival
(92), demonstrating the importance of functional T cells and B
cells to prevent CNS dissemination.

Age-related changes have also been observed with respect to
antibody production. The number of switched and non-switched
IgG isotype memory B cells increases slowly during childhood
with adult numbers only being reached by 10–15 years of age
(88, 93, 94). Adult levels of IgA are only reached after puberty,
whereas adult levels of IgM are reached by 4 years of age
(94). Compared to adults, infants also have a shorter antibody
response duration and varying distribution of IgG isotypes (93).
Antibody-mediated responses are critical for the defense against
viral CNS infections. More specifically, B cell- and antibody-
deficient mice showed greater degree of dissemination to CNS
in a West Nile virus infection model (95, 96). Similar to CD8+ T
cells, B cell effector functions are also maintained by CD4+ TH
cells’ production of IL-21, reiterating the important interaction
between T cells and B cells for normal immune function (96, 97).

As previously mentioned, T cells and B cells have an
interactive relationship so alterations in adaptive immunity often
involves both cells. The study of deficiency of both B cells and T
cells using Rag1–/– mice demonstrated the importance of both
cell types in delaying progression of pneumococcal meningitis
(92). In this study, Ribes et al. showed that intracerebral S.
pneumoniae normally induces B cell and T cell recruitment in
wild-type mice. However, in Rag1–/– mice with no functional
B cells or T cells, the mice had worse clinical symptoms and
succumbed to the infection compared to wild-type mice (92).

Although data on the exact timing of immune vulnerabilities
and development may be heterogenous, it is clear that distinct
vulnerabilities are present in the pediatric innate and adaptive
immune system. Peripheral immune cells have been shown to
play an important role in local inflammatory responses during
CNS infections, with a great body of evidence being derived
from animal models and adult studies. However, while animal
studies are incredibly valuable to understanding the mechanisms
underlying health and disease, they are limited by the fact that
animals’ immune systems differ significantly from the human
immune system. For instance, maturation of the immune system
in rodent species (mice and rats), are delayed compared to
humans [reviewed in greater detail by (98)]. Therefore, these
developmental differences between animals and humans need to
be considered when interpreting results from various species that
are used to model the developing human immune system.

Given the immaturity of the developing immune system,
young children are at a disadvantage when confronted with
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infections, not just at the level of the periphery but the CNS as
well. However, further insight and research into the responses
against CNS infections of children at different levels of maturity
is required.

Lymphatic System
The lymphatic system is an open-ended system capable of
transporting fluid from the periphery back into circulation (99,
100). It plays an important role in immune cell differentiation,
immune-surveillance and activation, immune cell trafficking, and
facilitating antigen transport between the periphery and lymph
nodes (101–103). Monocytes, DCs, neutrophils, T cells and B
cells utilize lymphatic vessels for migration in both homeostasis
and during infection (104–106). Chemokine receptor 7 (CCR7)
appears to be the most universal regulator required for
lymphatic migration among most immune cells. CCR7-deficient
T cells, monocytes, and DCs demonstrate failed migration to
popliteal/cervical lymph nodes and reduction in migration from
the periphery in response to inflammatory stimuli, respectively
(107–109). Moreover, the importance of CCR7 in immune cell
migration to lymphatics was further emphasized in host defense,
wherein CCR7-deficient mice exhibited increased susceptibility
to both bacterial and viral infections (110–112). In neonates,
CCR7 is downregulated which could have negative implications
on their immune cell migration and host defense (113).

Early Life Vaccinology
Given the limitations of the innate and adaptive immune
responses in young children, establishing effective vaccination
strategies are needed to confer immune protection within this
vulnerable population and protect from disseminated infections
(114, 115). Vaccines comprise the antigen-specific stimulus,
known as immunogens, and the adjuvants, which are responsible
for directing the quantity and quality of the elicited immune
response (116, 117). Apart from improving vaccine efficacy
in neonates, adjuvants enhance immunogenicity and reduce
the number of immunizations required to establish protective
immunity (118). Vaccinology in childhood remains challenging
due to the continuous changes in immune responses during
the first 5 years of life, ultimately representing a “moving”
target of the optimal adjuvant due to age-dependent changes
in adjuvant activity (117, 119, 120). Therefore, most vaccines
administered in early life are subunit vaccines lacking adjuvant
activity, which plays a crucial role in stimulating and shaping
the immune response. There are several other challenges to
effective immunization in children. Firstly, there are difficulties
establishing the efficacy of vaccines given the restricted and
short-lived antibody response in infants. The age of priming
and at which the final dose in a series is given, along with
dose intervals and vaccine type, are all factors affecting antibody
responses to vaccines (121). A proposed way of circumventing
the short-lived antibody responses is repeated administrations
of the vaccine; however, this is often challenging to achieve in
developing countries. Secondly, it is challenging to overcome
the immunological milieu in neonates which is biased toward
TH2 responsiveness. Thirdly, it is difficult to overcome the
inhibitory effects of maternally derived antibodies which mask

B cell epitopes; this inhibition is dependent on the ratio of
maternally derived antibody titers and vaccine antigen dose
(122). This inhibitory effect has been reported for most of the
DNA vaccines as well as live and non-live vaccines. Despite these
challenges surrounding immunization during childhood, certain
vaccines, such as Bacille Calmette-Guerin (BCG) and Hepatitis B
vaccine (HBV), have demonstrated safety and efficacy to a certain
extent when given at birth (123), and the Hemophilus influenzae
type b (Hib) vaccine dramatically reduced the incidence of Hib-
associated meningitis in childhood (124).

Factors Affecting Early Life Immunity
It is well established that young children are more prone
to contracting infections due to their compromised immune
system. Although immature, the developing immune system has
the capacity to dynamically respond to the various influences.
As discussed above, age-related changes within the developing
peripheral immune system influence the response to infections
and increase the risk of children to CNS infections. However,
there are additional factors that may also have an effect. These
factors may be intrinsic, like sex hormones, or environmental,
such as malnutrition and maternal variables (i.e., maternal stress,
malnutrition, etc.).

Sex-Related Immune Differences
The impact of sex hormones on the outcome of many
infectious diseases, including invasive infections like meningitis,
has been documented as early as infancy, with higher
morbidity and mortality rates reported in males (125, 126).
For instance, the male bias in bacterial infections has been
observed in severe sepsis, Hemophilus influenza, streptococcal
pharyngitis, meningococcal disease, and TB (127). Changes
in sex hormones, which have a peak in infancy as well as
during puberty, may contribute to the relative “honeymoon”
of lower mortality and morbidity secondary to infectious
diseases in school-aged children (4–14 years old) (128).
Estradiol, testosterone, and progesterone have been shown to
regulate macrophage, lymphocyte, and DC functionality. For
instance, while testosterone exerts immunosuppressive effects
by downregulating T cell-mediated IL-4 and IFN-γ production,
estrogen enhances TH1 responses (129). Despite their tendency
toward TH2 immunity, females are capable of mounting stronger
cell- and antibody-mediated responses compared to their male
counterparts (130, 131). Following the peak in sex hormones
during adolescence, differences in the frequency of lymphocyte
populations become apparent. For instance, males have a higher
number of circulating B cells and NK cells in the periphery
compared to females (67, 132, 133). Conversely, adolescent
females (12–18 years old) have a higher number and percentage
of circulating CD4+ T cells, IgG levels and B cell receptor
expression (67, 132, 134). Unfortunately, contradictory findings
were reported with respect to CD8+ cell counts and CD4+/CD8+

ratios. Tollerud et al. found males to have higher CD8+ cell
counts and CD4+/CD8+ ratio, whereas Bartlett et al. reported
the opposite with CD4+/CD8+ ratio and found no differences in
CD8+ cell counts (67, 132). The resultant sexual dimorphism in
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immune response has also been described in bacterial and viral
infections with a few exceptions noted in certain cases (128, 135).

Importantly, sexual dimorphism is also apparent in CNS
immunity. In an animal model of vesicular stomatitis virus,
female mice displayed slower spread of the virus from rostral
to caudal ends of the brain, produced lower viral titers, and
showed overall enhanced recovery to two different viral strains
(136). This last observation showed significant correlation with
increased nitric oxide synthases (NOS) production, T cell
infiltration, major histocompatibility complex (MHC) class II
expression, and a higher frequency of reactive astrocytes (136). In
clinical studies, males appear to demonstrate a higher prevalence
of certain CNS infection, as demonstrated in bacterial, viral, and
TB meningitis (137–139). However, this is not generalized to
all CNS infections. For instance, congenital CMV shows equal
infection rates across both sexes, but the progression to severe
CMV and development of neurological sequelae are twice as
common in females than in males (140).

Sex-based differences have also been documented in response
to vaccines across the life span. Not only do females elicit
stronger antibody responses, but they also experience more
adverse reactions following vaccination compared to their male
counterparts (141). This has been observed in a variety of
vaccines including BCG (142, 143), influenza (144) and measles-
mumps-rubella (145). Given the lack of data, the underlying
mechanism(s) which mediate sex-based differences in response
to vaccines in children are not entirely understood and require
further study for application in vaccine design (141).

Malnutrition
Malnutrition is a global health problem contributing to more
than 40% of deaths among children under the age of five in
developing countries (146, 147). Schlaudecker et al., proposed
that the relationship between immunity and malnutrition is
bi-directional: malnutrition increases the risk of infections
and associated mortality, yet infections exacerbate malnutrition
through loss of appetite and catabolism induction (148).

Over the years, various associations between innate immune
parameters and malnutrition in children have been investigated.
In a Zambian cohort of severely malnourished and HIV-infected
children, defects in blood DC numbers and functionality were
noted (149). Endotoxemia contributed to failed DC maturation
(although this occurred in the minority of cases) and low DC
numbers. Separately, the DCs of malnourished children without
endotoxemia had reduced IL-12 production which improved
following nutritional treatment (149). Several clinical and animal
studies have reported reduced monocyte/macrophage numbers
in malnourished hosts (150–152). The apoptotic marker, CD95,
was found to be highly expressed on monocytes in the
blood of protein-energy malnourished infants, suggesting that
monocytes have a reduced lifespan (150). Despite their reduced
numbers, macrophages appear to preserve their microbicidal
activity (153, 154). However, impaired chemotaxis, lysosomal
enzyme synthesis, microbicidal activity, and glycolytic activity
in neutrophils have been noted in malnourished children
(155–157). Although moderate and severe malnutrition does not
affect the number of circulating NK cells in young children (8–36

months old), their activity was reduced in these patients but
normalized following nutritional therapy intervention (158, 159).
These alterations in the innate immune system of malnourished
children inhibit their first line of defense against disseminated
infections such as CNS infections.

Similarly, malnourishment negatively affects the adaptive
immune system in young children. Flow cytometric data
demonstrated significantly reduced numbers of T cell subsets,
particularly CD3+, CD4+ and CD8+, and B cells (CD20+)
in malnourished children with respiratory and gastrointestinal
infections (160). In a separate study comparing the ratios
of CD4+CD45RO+ (memory), CD4+CD45RA+/CD45RO−

(naive) and CD4+CD45RA+/CD45RO+ (Ddull) T cell subsets,
malnourished-infected children displayed reduced memory T
cells and elevated Ddull T cells compared to well-nourished
infected patients (161). Najera et al. also showed that compared
to well-nourished infected children, malnourished-infected
children had relatively lower circulating numbers of CD4+

CD62L− and CD8+ CD28− T cells, suggesting T cell functional
impairment (162). Apart from the decreased frequencies of
certain T cell subsets, a decrease in the production of numerous
key cytokines, a marker of decreased functionality, has also been
documented. Previous studies investigating peripheral blood
mononuclear cells of bacteria-infected malnourished children,
reported overexpression of TH2 cytokines (IL-4 and IL-10) and
reduced cytokines required for TH1 function (IFN-γ and IL-
2) and differentiation (IL-7, 12, 18, 21) (163–165). Additionally,
antibody-mediated responses are affected by malnutrition, with
increased levels of IgG1 and IgE and reduced B cell numbers;
however, TH1 immunoglobulins, IgG2a and IgG3, appear
unaffected by malnutrition (160, 166). Thymic atrophy occurs
commonly during aging and has also been observed in children
with severe acute malnutrition. Consequently, this leads to lower
naïve T cell output, reduced adaptive immune responses, and
limited TCR diversity (167, 168).

Vaccination in the context of malnutrition has been
extensively reviewed in the past (169, 170). Overall, it appears
that malnourished children are capable of mounting appropriate
responses to a variety of vaccines, with exception of a few
studies which noted low seroconversion rates and vaccine-
specific antibody titers in severe acutely malnourished children
(169, 171, 172). There are several possible explanations to why
malnourished children may be more susceptible to infection
but mount protective responses to vaccines. Firstly, short-term
antibody responses were the focus in these vaccine studies
which may have neglected the impact of malnourishment
on the longevity and quality of vaccine responses. Secondly,
most vaccines are highly adjuvanted allowing them to prevail
over the immune impairment caused by malnutrition. Lastly,
the morbidity and mortality associated with malnourished-
infected children may result from innate immune response
impairments, whilst adaptive responses remain sufficient to
an extent (172). It is clear that malnourishment, which
is prevalent in developing countries where there is also
the largest burden of infections, decreases children’s innate
and adaptive immune response, compounding their risk of
severe infections.
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Maternal Factors
During fetal development, the maternal environment (i.e.,
maternal nutrition, toxins, infections, stress) is one of the
main factors affecting the normal development of the fetus,
including its immune system. The fetal and maternal immune
systems communicate bidirectionally to ensure maternal
immunocompetence and appropriate fetal immune system
development (173, 174). Exacerbated maternal immune
activation characterized by increases in proinflammatory
cytokines can negatively impact the developing immune
system of the fetus as well as have neurodevelopmental
implications (175). The fetal immune system can be affected
differentially across gestational periods, creating “windows” of
vulnerability (176).

The fetal immune system is also particularly vulnerable to
maternal malnutrition and prenatal stress. Maternal malnutrition
leads to changes in placental size, morphology and blood
flow which subsequently leads to compromised fetal nutrition
and immune system development (177). Moreover, maternal
deficiency in micronutrients, such as zinc, has been linked with
diminished lymphocyte activity and reduced concentrations of
antibodies in infants (178). Both preclinical and clinical research
suggest that prenatal stress leads to immune system alterations
in infants, of which the latter includes a study examining
infectious disease outcomes in children who experienced in utero
stress (179). The study reported that, compared to non-exposed
infants, infants subjected to prenatal stress had a 25 and 31%
increased risk of developing severe infections (meningitis, sepsis,
ethmoiditis) and less severe infections (pneumonia, bronchitis,
upper respiratory tract infections) during childhood respectively
(179). In a separate study, infants who experienced maternal
prenatal stress exhibited altered innate and adaptive immune
responses at 6 months of age (180). For instance, responder
frequencies of IFN-γ to antigens were decreased whereas IL-
4 was increased suggestive of a dominant TH2 response (180).
Certain immune markers in cord blood have also been associated
with a variety of different stresses as reported by mothers.
For example, stressful deliveries have been shown to influence
lymphocyte subsets in neonates (181). Additionally, Wright
et al. reported an association between prenatal maternal stress
(individual stressors and socioeconomic stress) and alterations
in cord blood mononuclear cell cytokine responses (182).
Moreover, preclinical studies comparing neonate germ-free
mice and conventionally colonized mice demonstrated the
importance of maternal microbiota exposure in influencing key
neurodevelopmental events (183, 184). For instance, germ-free
mice exhibited decreased tumor necrosis factor (TNF)-α and IL-
β expression, altered cell death, and an increase in bothmicroglial
number and size, compared to conventionally colonized mice
(183). The role of microglia during CNS development will be
discussed further in part two of this review series.

Several other studies have also demonstrated the importance
of microbial colonization on the development of optimal
postnatal host immune responses (185–188); as reviewed by (4).
Based on these findings, it is evident that prenatal maternal and
postnatal environmental factors can shape early life immune

responses and neurodevelopmental events, leading to changes
that could potentially persist during early childhood. Further
research into these factors could have important implications in
understanding the state of immunity in neonates, assessing their
susceptibility to infectious diseases, and identifying potential
interventions that can minimize their risk to infections.

BIDIRECTIONAL CROSSTALK BETWEEN
THE PERIPHERAL IMMUNE SYSTEM
AND CNS

Although the CNS is separated from the peripheral immune
system by the semi-permeable blood-brain barrier (BBB), the
peripheral immune system and the brain communicate in
a bidirectional manner. This bidirectional communication
is possible due to the receptors shared between the
systems. For instance, peripheral immune cells such as
monocytes/macrophages, T and B cells, and DCs express
neural receptors including α- and β-adrenergic and acetylcholine
receptors (189, 190). Conversely, sensory neurons also express
receptors for cytokines such as TNF-α, as well as certain PRRs
such as TLR (191). The brain regulates the immune system
via hormonal pathways, including the hypothalamic-pituitary
adrenal (HPA) and hypothalamic-pituitary-thyroid (HPT) axes,
and neuronal mechanisms including the autonomic nervous
system. Whereas the immune system can regulate the CNS
directly by releasing cytokines or indirectly through secondary
messengers and signaling via the vagus nerve (Figure 3)
(192, 193).

Glucocorticoids, a class of corticosteroids which is released
upon stimulation of the HPA axis, modulates a variety of immune
functions. Many infections are known to activate the HPA axis
via cytokines that stimulate the hypothalamus to produce
corticotropin releasing hormone (CRH) which stimulates the
anterior pituitary to excrete adrenocorticotropin hormone
(ACTH), culminating with the release of glucocorticoid
from the adrenal glands (194). The most characteristic
immunomodulatory effect is a shift from a proinflammatory
to an anti-inflammatory response (195). This shift toward an
anti-inflammatory response is achieved by the suppression
of transcription factors, NF-κB and activator protein 1 (AP-
1), resulting in the downregulation of genes responsible for
encoding proinflammatory mediators (196, 197). In general,
glucocorticoids regulate immune cell maturation, differentiation,
migration, and trafficking (198, 199). Activation of the HPA axis,
such as with stress, increases susceptibility to infectious diseases,
such as viral infections and bacterial infections (200). Similar to
the immune system, the HPA axis changes during development,
with initially low or hyporeactive response to stimuli in
infancy (200). Interestingly, a study in rats demonstrated
that this hyporeactive response results from immaturity of
neural pathways providing stimulatory signals and inhibitory
signals (200).

Similar to the HPA axis, the HPT axis also has
immunomodulatory effects on certain aspects of the immune
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FIGURE 3 | Crosstalk between the peripheral immune system and central nervous system. The brain exerts immunomodulatory effects on the immune system

through the release of (1) corticosteroids and catecholamines from the hypothalamic-pituitary adrenal (HPA) axis and (2) thyroid hormones from the

hypothalamic-pituitary thyroid (HPT) axis. The peripheral immune system regulates the central nervous system (CNS) via the release of inflammatory mediators and

signaling via the vagus nerve. DMN, dorsal motor nucleus of the vagus nerve; IL-1, interleukin-1; NE, norepinephrine; TH, T-helper; TRH, thyroid-releasing hormone;

TSH, thyroid-stimulating hormone; T4, thyroxine; T3, triiodothyronine.

system. Thyroid hormones, triiodothyronine (T3), and thyroxine
(T4) exert stimulatory effects on immune cells (201–203). For
instance, increased DC functional activation and phenotypic
maturation (204), increased NK cell activity (205), and increased
macrophage-mediated phagocytosis (206) have been observed
following the administration of these hormones. Furthermore,
during inflammation, the release of cytokines such IL-1,
can indirectly inhibit the secretion of thyroid-stimulating
hormone (TSH) through the inhibitory effects exerted on

thyrotropin-releasing hormone (TRH) (207), often causing the
condition known as “euthyroid sick syndrome.”

Catecholamines, such as norepinephrine and adrenaline,
are neurotransmitters released from the sympathetic and
parasympathetic nerve fibers of the autonomic nervous system
regulate the immune system both locally and systemically
(208, 209). As with glucocorticoids, catecholamines drive a
TH2 shift systemically (210), which has been substantiated by
both preclinical and clinical studies (211–213). For instance,
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administration of either α- or β-adrenergic receptor agonists
resulted in reduced LPS-induced TNF-α production in mice
(211). Furthermore, the circulating catecholamine, adrenaline,
exerts inhibitory effects on NK cells by either acting on α- or
β-adrenergic receptors expressed on the cell surface or through
IL-12 and IFN-γ suppression, both of which are crucial for
NK cell activity (212, 213). The effect of catecholamines on
TH1/TH2 balance may not always be generalizable, as under
certain conditions they might differentially affect local immune
responses (195). The outcome of infectious diseases is dependent
on the balance of TH1/TH2 responses. Although it is clear that
the above-mentioned hormones and neurotransmitters exert a
variety of immunomodulatory effects, the implications on CNS
infections require further investigation (214).

Conversely, the immune system can modulate the brain
by stimulating the vagus nerve and subsequently activating
neural pathways via systemically released cytokines (189, 215).
The vagus nerve is one of three major nerves originating
from the parasympathetic nervous system. It further regulates
immune responses to infections and inflammation through a
neural circuit known as the inflammatory reflex (216). Briefly,
inflammatory mediators released by peripheral immune cells
during bacterial and/or viral infections are capable of activating
vagal sensory neurons. Following activation of vagal sensory
nerve fibers, the signal is propagated to the splenic nerve which
in turn triggers the release of norepinephrine from adrenergic
receptors, culminating on a specialized subset of T cells that
release acetylcholine (189, 216). Acetylcholine subsequently
controls the inflammatory response and suppresses the release
of proinflammatory cytokines by acting on macrophages (189).
Interest in utilizing vagus nerve stimulation to treat chronic
inflammatory conditions, such as rheumatoid arthritis, has
grown in recent years and there are current pilot studies in
humans with promising results. For example, Drewes et al. found
that vagus nerve stimulation in patients with rheumatoid arthritis
reduced IFN-γ and was well tolerated in those with high disease
burden (217). Further studies to investigate application of vagus
nerve stimulation in infections may be warranted.

CONCLUSION

This review summarizes differences in the immune system across
different ages and highlights the various internal and external
factors which differentially impact immune development and the
subsequent immune responses that ensue. It is well established
that immunity varies with age, as early childhood (infants to

preschool children) marks a vulnerable period in which the
immune system is highly susceptible to infections, not only
within the periphery but CNS as well. In contrast, adolescents
and adults appear better equipped in responding to infections
as the immune system seems to reach full functionality during
these periods. However, although the developing immune system
is vulnerable, the absence of robust immune responses may also
be considered a form of resilience and a means of avoiding
a potentially detrimental overload of immune reactions during
early life (4, 128). The balance of incremental development of
the early immune system and adequate pathogen defense is a
tenuous one and is likely overwhelmed in children with a high
pathogen exposure and suboptimal environmental circumstances
(e.g., maternal stress, malnutrition). Further, communication
between the peripheral immune system and CNS occurs through
integrative pathways establishing a controlled regulatory system,
yet perturbations occurring at any level can alter disease
susceptibility and severity (193, 218). Therefore, optimal neuro-
immune crosstalk is essential in the wake of infectious insults,
especially in young children given their vulnerability. Further
insight into the impact of CNS infections on the developing brain
will be discussed in part two of this review series.
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