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Cancers of the gastrointestinal (GI) tract are often life-threatening malignancies, which can
be a severe burden to the health care system. Globally, the mortality rate from
gastrointestinal tumors has been increasing due to the lack of adequate diagnostic,
prognostic, and therapeutic measures to combat these tumors. Coumarin is a natural
product with remarkable antitumor activity, and it is widely found in various natural plant
sources. Researchers have explored coumarin and its related derivatives to investigate
their antitumor activity, and the potential molecular mechanisms involved. These
mechanisms include hormone antagonists, alkylating agents, inhibitors of angiogenesis,
inhibitors of topoisomerase, inducers of apoptosis, agents with antimitotic activity,
telomerase inhibitors, inhibitors of human carbonic anhydrase, as well as other potential
mechanisms. Consequently, drug design and discovery scientists and medicinal chemists
have collaborated to identify new coumarin-related agents in order to produce more
effective antitumor drugs against GI cancers. Herein, we summarize the therapeutic
effects of coumarin and its derivatives against GI cancer.
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INTRODUCTION

Cancer accounts for about 13% of all deaths globally (~7.9 million per year) and is considered a
major cause of mortality (1). It has been projected that the cancer death toll will increase to 12
million by 2030 (2). Tumors of the gastrointestinal (GI) tract are the second most frequent cause of
cancer-related mortality worldwide (3). According to studies performed in 2008, GI tumors are the
fourth and fifth most frequent type of malignancy in males and females, respectively (4). The major
GI cancers include tumors of the esophagus, stomach, pancreas, liver, and colon (5). Genetic
heterogeneity in several genes, including tumor-promotor genes, mismatch repair genes, and anti-
oncogenes, can all contribute to the tumorigenesis in the GI tract (6).

Moreover, an imbalance between cellular apoptosis and cellular proliferation can result in the
development of GI tumors (7). Carcinogenesis of the GI tract is influenced by many intrinsic and
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external risk factors, including alcohol use, being overweight,
genetic mutations, as well as infection with specific bacteria such
as Helicobacter pylori (8). Most patients with GI tumors report
symptoms only after the lesion has progressed, and invades into
either adjacent or distant organs. Nevertheless, the most
common symptoms are epigastric pain, upper abdominal
bloating, and a palpable abdominal mass (9). Altogether, these
tumors put a pressing load on health care providers and are
considered a public health issue (8). Patients with GI tumors can
have widely different prognoses, depending on the tumor type
and the stage at diagnosis. The results of most patients with GI
tumors can be improved with early diagnosis. Surgical resection
of the tumor, chemotherapy regimens including mitomycin,
cisplatin, or docetaxel, and radiotherapy alone or combined
with chemotherapy are the most common treatment
approaches in patients with GI cancer (10).

Phytochemicals are a group of non-nutrient bioactive
compounds, widely found in many plants such as grains,
vegetables, and fruits. Phytochemicals are often used to protect
against the development of chronic disorders, such as cancer,
neurodegenerative disorders, and cardiovascular disease (10, 11).
Various studies have evaluated the chemopreventive activity of
phytochemicals in GI tumors, and have shed light on their
potential protective mechanisms against cancer (2).

Coumarin is a benzopyranone compound with diverse
functions (12). Coumarin is usually extracted from naturally
occurring sources, as well as being prepared by chemical
synthesis. Coumarins are typically found in various plants,
such as rhizomes, bark, leaves, plant roots, and even in marine
plants (12).

Coumarins can exert a wide range of pharmaceutical
functions, including activity against bacteria, viral infections,
and fungal infections. It also has anti-cancer, anti-inflammatory,
anticoagulant, and anti-hypertensive activity (13, 14). The
benzopyrone backbone of coumarin contains many different
possible substitution regions. The possible variations in the
basic coumarin structure can be divided into five distinct
classes: simple coumarins, isocoumarins, furocoumarins,
pyranocoumarins, and dicoumarins. Laboratory researchers have
produced a wide range of more complicated coumarin–derived
structures, with wider applicability and more powerful
functionality. Coumarin and its derivatives have shown a variety
of therapeutic benefits in cancer patients. Coumarin exerts its anti-
cancer effects through several mechanisms of action, such as
suppression of CA (carbonic anhydrase) activity, suppressing
MDR (multiple drug resistance), promoting cell apoptosis, and
increased activity of the PI3K/Akt/mTOR signaling pathway
(15). Herein, we summarize some therapeutic effects of
coumarin against GI cancer.
PHARMACOKINETICS OF COUMARIN

When coumarins are given orally, they are immediately absorbed
through the mucosa of the GI tract and then disseminated
throughout the entire body (16). Both coumarin and its
Frontiers in Oncology | www.frontiersin.org 2
derivative 7-hydroxycoumarin are water-insoluble. Nevertheless,
these compounds still have a significant distribution coefficient.
Coumarins can rapidly cross the lipid bilayer of the plasma
membrane via passive diffusion, because they have a nonpolar
structure (17). Studies in clinical pharmacokinetics have shown
that coumarins are mainly metabolized in the liver via the first-
pass effect, and only 2–6% of the absorbed coumarin enters the
peripheral circulation (16).

Coumarin has a relatively short half-life and poor
bioavailability. Pharmacokinetics studies have shown that
approximately 35% of coumarin is bound to plasma proteins,
whereas 47% of 7-hydroxycoumarin is bound to plasma
proteins (16, 18–21). Coumarin undergoes an initial metabolic
process in liver microsomes mediated by CYP2A6 (cytochrome
P-450-bound mono-oxygenase enzyme), which results in the
production of 7-hydroxycoumarin (22, 23). Phase-II conjugation
results in the production of a glucuronide conjugate from 7-
hydroxycoumarin (16, 24, 25). Coumarin and its related
metabolites are readily excreted via the urine (26–29).

Hemorrhage is considered to be the main risk of coumarin
administration, due to its anticoagulant effects. Administration
of oral anticoagulants for prolonged periods is associated with an
increased risk of bleeding (30, 31). Warfarin is a coumarin
frequently used as an anticoagulant, and can cause unexpected
bleeding, especially in female patients, with duration of therapy
of 4 months or longer within the previous year, and those with an
advanced age (31). As an anticoagulant, coumarin suppresses the
metabolism of vitamin-K-dependent coagulation pathways,
leading to the defective metabolism of bone minerals. This
defective bone metabolism occurs mainly in older patients, and
postmenopausal women who receive chronic administration of
anticoagulants (30, 32). Small blood vessels such as venules and
arterioles can undergo acute thrombotic events following
consumption of oral anticoagulants such as coumarin; this can
result complete skin necrosis, particularly in the thighs, lower
extremities, and breasts. Administration of coumarin-based oral
anticoagulants during pregnancy carries a higher risk of
miscarriage. Consumption of warfarin between the 6th-12th

weeks of gestation can lead to warfarin embryopathy, which is
the most severe adverse effect of warfarin. Warfarin
embryopathy includes fetal abnormalities such as narrowing of
the upper respiratory tract, hypoplasia of the nasal bone, and
epiphyseal stippling (30–33).
COUMARIN: STRUCTURE AND ANTI-
CANCER ACTIVITY

Coumarins are currently categorized into four distinct classes:
pyranocoumarins, furanocoumarines, simple coumarins, and
coumarins with pyrone-substituents (34). Simple coumarins
include alkoxylated, alkylated, and hydroxylated–derivatives of
coumarin, and associated glycosides, such as skimmin,
umbelliferone, esculetin, herniarin, limettin, esculin, daphnin, and
daphnetin (34). Furanocoumarins contain a furan ringbound to the
coumarin ring. Furanocoumarins can be categorized into two
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groups based on the ring fusion sites: linear furanocoumarins
attached at C6/C7 and angular furanocoumarins attached at C7/
C8. Psoralen, imperatorin, and xanthotoxin are linear
furanocoumarines, while bergapten, isobergapten, pimpinellin,
isopimpinellin, and angelicin are examples of angular
furanocoumarins (34–37). Pyranocoumarins have a 6-membered
pyran ring attached to the benzene ring at C7–8 (angular) or C6-7
(linear). Seselin, visnadin, and xanthyletin are examples of
pyranocoumarins (38, 39). Coumarins with pyrone-substituents
are divided into three different groups: 3-phenylcoumarin
(gravelliferone and coumestrol); 4-hydroxycoumarin (icumarol
and novobiocin), and 3,4-benzocoumarin (alternariol). Plants do
not contain 4-hydroxycoumarins in their natural state. Warfarin is
also a synthetic compound belonging to this family (36, 40).

Coumarin compounds with multiple biological targets have
been recently identified, and these could be used as new
therapeutic agents to treat disorders, such as congestive heart
failure and cancer. Naturally occurring drugs have become
popular, since they are relatively cheap, have low toxicity, do
not cause the development of resistance, as well as having
significant efficacy (41, 42). Consequently, novel compounds
extracted from plants and microorganisms can be combined
with current chemotherapeutic drugs for cancer treatment (43).
Coumarins are a large family of natural agents with diverse
pharmacological properties. These compounds are currently
extracted from a wide range of plants, such as Artemisia,
Achillea, and Fraxinus genera, but they can also be synthesized
in the laboratory using standard chemical reactions. Various
techniques, including reflux, maceration, ultrasonic-mediated,
and microwaves, have been used to extract and purify coumarin
derivatives from plant source material. In the laboratory, organic
reactions such as Von Pechmann, Perkin, Wittig, and
Knoevenagel have been used to synthesize coumarins (42). The
shikimic acid pathway plays a pivotal role in coumarin
biosynthesis in nature. The shikimic pathway consists of a
series of enzymatic reactions resulting in the production of
umbelliferone, chorismic acid, p-coumaric acid, and cinnamic
acid. In addition, the enzyme cytochrome P450 plays a major
role in converting cinnamic acid into isofraxidin, umbelliferone
and scopoletin through an ortho-hydroxylation reaction (42, 44).

It is well known that many cancers can recur after being
treated with conventional chemotherapy. This phenomenon is
known as multidrug resistance (MDR), which is often due to up-
regulation of transmembrane protein drug-efflux pumps,
including p-glycoprotein (P-gp) also known as ATP-binding
cassette sub-family B member 1 (ABCB1), or multidrug
resistance-associated protein 2 (MRP2, ABCC2) which can
actively pump many anti-cancer drugs out of the cells, a
process powered by ATP hydrolysis. In this context, coumarins
have the potential to decrease the activity of MRP2 and P-gp, and
could overcome MDR.

Baghdadi et al. (45) isolated six coumarin derivatives,
including mansorin-I, mansorin-II, mansorin-III, mansorin-A,
mansorin-B, and mansorin-C, from Mansonia gagei a plant of
the Sterculariaceae heartwood family. Their study showed that
these agents had promising antitumor activity against
Frontiers in Oncology | www.frontiersin.org 3
hepatocellular carcinoma, breast cancer, colorectal cancer, and
cervical cancer cell lines. In this context, mansorin-II and
mansorin-III had the highest antitumor effect, with a half-
maximal inhibitory concentration (IC50) of 3.95-35.3 µM and
0.74 -36 µM, respectively. Moreover, mansorin-II was able to
potentiate the antitumor effects of taxol. This effect occurred
partly by inhibiting the P-gp efflux activity.

Carbonic anhydrase is a zinc-containing metalloenzyme,
responsible for catalyzing the reaction between carbon dioxide
and water to produce carbonic acid, bicarbonate, and hydrogen
ions. This reaction maintains the balance between the
intracellular and extracellular pH at stable levels, and allows
the transfer of ions through the transmembrane space, and other
metabolic processes to proceed (46). Sixteen different carbonic
anhydrase enzymes have been identified. Of these, CA I and CA
II are cytoplasmic enzymes, while CA IX and CA XII are
transmembrane proteases. Because cancer cells and their
surrounding microenvironment exist in a state of hypoxia, they
increase their rate of glycolysis to satisfy their metabolic
requirements, and therefore lactic acid accumulates in the
tumor microenvironment. CA XII and CA IX are up-regulated
in tumor cells dur to the action of HIF (hypoxia-inducible
transcription factor). Carbonic anhydrase enzyme plays a role
in the growth and metastatic dissemination of primary tumors,
as well as the development of resistance to chemotherapy
(46, 47).

CA IX and CA XII are highly expressed in many cancer types,
and may be promising targets for therapeutic intervention.
Belma et al. (48) investigated a wide range of compounds for
their inhibitory effect on CA XII, CA IX, CA II, and CA I
enzymes in colorectal cancer cells. They found that some
compounds could effectively inhibit both CA XII and CA IX.
The most active was 4-((((2-((1-(3-((2-oxo-2H-chromen-7-yl)
oxy)propyl)-1H-1,2,3-triazol-4-yl)methoxy)naphthalen-1-yl)-
methylene)amino)methyl)benzenesulfonamide, which could
selectively inhibit proliferation in colorectal cancer cells, and
had an inhibitory constant (Ki) of about 596.6 nM for CA XII
and 45.5 nM for CA IX.

The caspase family of enzymes are involved in the induction
of apoptosis. These enzymes include caspase-10, 9, 8, 7, 6, 3, and
2. Among these, caspase-10, 9, 8, and 2 are involved in the
initiation of apoptosis. Caspase-2 catalyzes its own cleavage and
becomes activated to trigger apoptosis under the influence of
intracellular signaling. Subsequently, the process of apoptosis is
executed by caspase-7, -6, and -3, which are activated by
upstream promoters. These caspases cleave various functional
and structural proteins, especially PARP (poly-ADP-ribose
polymerase) (49). Bcl-2 (B cell lymphoma-2) is a major tumor-
promoter gene that generally inhibits cellular apoptosis. The Bcl-
2 family contains proteins with both anti-apoptosis and pro-
apoptosis activity. PUMA, Bax, and Bad are examples of pro-
apoptotic proteins which are predominantly found in the
cytoplasm. After being activated by apoptosis signaling, these
proteins migrate to the mitochondrial outer membrane, where
they form transmembrane channels that allow the mitochondria
to expel cytochrome C, thus activating caspases resulting in
October 2021 | Volume 11 | Article 752784
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apoptosis. On the other hand, the Bcl-2 family also contains
proteins with anti-apoptotic properties, primarily found in the
mitochondrial outer membrane, which can inhibit apoptosis by
preventing loss of cytochrome C from the mitochondria (49).
Coumarin-derived compounds can modulate the expression of
pro-apoptotic proteins and could thus help to treat
malignant tumors.

Nordin et al. (50) extracted a coumarin compound known as
PulchrinA, from a Malaysian plant called Enicosanthellum
pulchrum in the Annonaceae family. They evaluated the
potential of this coumarin-derived agent to produce apoptosis
in ovarian tumor cells. Pulchrin A was found to reduce Bcl-2
expression and increase Bax protein expression via increasing
caspase-9 and caspase-3 activity, with an IC50 level about 22 mM
in ovarian cancer cells.

The phosphatidylinositol kinase PI3K is found in the
intracellular compartment. PI3K can activate other protein
kinases such as PKC, PKB, and PKA, and plays a pivotal role
in processes, such as cell differentiation, growth, migration and
apoptosis. AKT or PKB is a serine/threonine kinase, which is a
downstream target for PI3K, and is significantly correlated with
cellular proliferation and apoptosis. In addition, AKT activates
CDK2 and CDK4 and modulates p27, and acts as a cyclin-
dependent kinase inhibitor, thereby preventing cell cycle
progression. AKT also has anti-apoptotic activity by acting on
several pathways. Some examples of the anti-apoptotic activity of
AKT include, inhibiting caspases and Bax, inhibiting GSK3
activity (which increases apoptosis through cleavage of the
cytoskeleton protein b-catenin), as well as reducing the
adhesion of cells. AKT can increase the activity of
transcription factor NF-kB which in turn leads to increased
repair of DNA damage, reducing pro-apoptotic FasL gene
expression, and inhibiting the release of cytochrome C out of
the mitochondria. mTOR is another threonine/serine kinase,
which is a downstream target of AKT. Following its own
activation, mTOR activates the ribosomal proteins p70S6K and
E-BP1 (a translation inhibitor) (4). The binding of 4E-BP1 to
eIF-4E becomes weaker upon phosphorylation; as a result the
free eIF-4E is able to bind to other factors to initiate
protein translation.

After being activated, p70S6K can increase protein
production. The PI3K/AKT/mTOR pathway plays a crucial
role in the modulation of the cell cycle, cell viability,
proliferation, differentiation, and metastasis (51, 52). This
signaling pathway has been shown to be correlated with
human carcinogenesis. Abnormal up-regulation of this
signaling pathway has a role in the formation, growth,
progression, and chemoresistance of cancer cells, and could be
a new potential therapeutic target for cancer treatment (53, 54).
5-Methoxypsoralen is a linear furocoumarin (psoralen) extracted
from plant sources (such as parsley and bergamot) by alkali
treatment. In a study by Guo et al. (55), 5-methoxypsoralen was
found to inhibit PI3K, mTOR, and Akt phosphorylation and
expression in human glioma cells, resulting in the inhibition of
the PI3K/Akt/mTOR signaling axis. Following exposure to 5-
methoxypsoralen, the DNA in glioma cells was damaged by
fragmentation, and abundant autophagic vacuoles were formed.
Frontiers in Oncology | www.frontiersin.org 4
Microtubules are an important constituent of the cell
cytoskeleton, and control cell cycle progression, proliferation,
cell morphology, and intracellular signaling. Several anticancer
drugs can cause microtubule depolymerization, or else they block
microtubule aggregation, resulting in cell cycle arrest at the M-
phase, and thus mitosis is blocked in tumor cells. Microtubules
have three different binding sites for the anticancer drugs,
vincristine, paclitaxel, and colchicine. Therefore paclitaxel,
vincristine, and colchicine are often used to inhibit
microtubules. Moreover, these drugs are substrates of efflux
systems mediated by P-gp pumps, resulting in multidrug
resistance in cancer cells. A study by Dahong evaluated the
effects of the coumarin derivative, Ferulin C on proliferation in
breast cancer in vitro and in vivo. Ferulin C is a coumarin
isolated from the roots of Ferula ferulaeoides, which can also
bind to colchicine binding sites on b-tubulin, thus preventing its
aggregation. Ferulin C can inhibit the polymerization of tubulin
(IC50 = 9.2 mM) compared to colchicine (IC50 = 1.8 mM) used as
the reference. Ferulin C was found to specifically alter the
microtubule structure without affecting tubulin expression.
Ferulin C destablilized microtubules, and increased the activity
of p21, while it suppressed PAK1. Higher levels of PAK1 are
correlated with unfavorable outcomes, while higher levels of
p21 are correlated with favorable outcomes in patients with
breast cancer.

Ferulin C caused cell cycle arrest at the G1/S phase by
activating the p21Cip1/Waf1-CDK2 signaling axis. A xenograft
model of breast tumor was used in an in vivo study by Dahong,
where they assessed the anti-cancer effects of Ferulin C (low dose,
25 mg/kg; median dose, 50 mg/kg; high dose, 100 mg/kg). Their
study showed that Ferulin C could block breast tumor cell
proliferation in the xenograft model, and this anti-cancer
activity correlated with the in vitro results (56).
COUMARINS AND GASTRIC CANCER

Gastric cancer (GC) is among the most prevalent GI tumors
globally. Approximately 1 million patients are newly diagnosed
with gastric carcinoma each year. Because of its aggressiveness,
gastric cancer is the third cause of cancer-related death (57).
However, the conventional drugs are limited by unwanted
toxicity and adverse side effects due to their poor selectivity for
cancer cells compared to normal mammalian cells (58).
Consequently, identifying novel therapeutic agents with lower
toxicity is needed for more successful management of patients
with gastric cancer.

Molecular hybridization is a novel concept in drug
development and discovery. It is based on combining two or
more biologically active molecules by attaching them together
using appropriate covalent bonds. Compared to their individual
elements, the hybridized structures show superior or novel
biological functions (59).

Nucleotides are nitrogen-containing heterocyclic structures
that are basic components of RNA and DNA (60, 61). Because
nucleobases play major roles in various cellular processes,
nucleotides are often utilized as pharmacophores, especially in
October 2021 | Volume 11 | Article 752784
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antitumor drugs (62–64). Interestingly, nucleobases can show
in vitro cytotoxicity in a variety of human tumor cell lines (64)
caused by several mechanisms. The click reaction is an easy
synthetic approach to prepare the triazole scaffold (a nitrogen
containing heterocyclic compound) frequently used as a linker in
pharmaceutical research (65). Furthermore, the use of 1,2,3-
triazole is associated with increased solubility (66), improved
strength of binding to other biological compounds, and can show
synergistic effects on biological functions (67). Considering their
specific rigid structure and binding to particular hormone
receptors, steroids are a major family of biological compounds,
widely used in drug design (68). Modification of the C-16 atom
in steroids can be used to attach other moieties, in order to
produce tumor-targeted cytotoxic agents (69–73).

Using the molecular hybridization technique, Zhao et al.
prepared a group of analogues of the 1,4-disubstitued 1,2,3-
triazole-nucleobase, including additional moieties such as
steroids, coumarins, or quinolines (74). In their study, a
number of these compounds were shown to suppress the
cellular proliferation of tumor cells. In this context, compound
20c showed an anti-proliferative activity in SGC-7901 cells
(IC50 = 2.28 mM) and MGC-803 cells (IC50 = 1.48 mM) and
did not affect healthy non-cancerous cells. Compound 20c may
inhibit TGF b1 expression in gastric cancer cell lines, and
suppress cellular invasion and migration. Compound 20c could
be used as a novel skeleton for therapeutic agents against GC
with minimal side effects (74).

ISOIM (isoimperatorin) is a member of the 6,7-
furanocoumarin family and is isolated from plants in the
umbelliferae family, including Heracleum maximum, Angelica
dahurica, Peucedanum ostruthium. Chinese angelica has been
frequently utilized in ancient Chinese medicine (75).
Isoimperatorin is a secondary plant metabolite with numerous
pharmacological properties, such as anti-hypertensive, analgesic,
anti-inflammatory, antitumor, antiviral, and antibacterial
activity (76–80). In addition, ISOIM can inhibit proliferation
in several cancer cell lines, including skin cancer SK-MEL-2,
ovarian cancer SK-OV-3, lung cancer A549, breast cancer MCF-
7, glioblastoma XF498, and colon cancer HCT-15 (76–81).
ISOIM was found to suppress the proliferation of SGC-7901
gastric cancer cells and modify the expression of several anti- and
pro-apoptotic proteins (82).

In a study by Yang et al., the pro-apoptotic and anti-
proliferation properties of ISOIM in BGC-823 gastric cancer
cells were evaluated, along with the potential biological
mechanisms (83). The MTT assay measured cellular
proliferation, while hematoxylin and eosin staining, acridine
orange/ethidium bromide staining, and Hoechst 33258 were
employed to assess cell morphology. Flow cytometry assays
measured apoptosis and cell cycle status, and the expression
level of pro-apoptotic proteins was evaluated using Western
blotting. It was found that ISOIM could suppress proliferation
through inducing cell cycle arrest at the G2/M stage. Moreover,
ISOIM induced apoptosis through increased expression of Bax
(Bcl-2-associated X) and reduced expression of Bcl-2, thus
reducing the Bcl-2/Bax ratio compared to the control cells.
Frontiers in Oncology | www.frontiersin.org 5
Furthermore, the administration of ISOIM led to cytochrome c
release from the mitochondria into the cytosol, along with
activation of caspase-3, indicating that apoptosis was
stimulated by the mitochondrial pathway in BGC-823 cells (83).

Perumalsamy et al. performed an in silico and in vitro study to
investigate whether SSBC (styrene substituted biscoumarin)
could induce apoptosis and inhibit proliferation of tumor cells
(84). The MTT assay was used to measure proliferation in gastric
cancer (AGS) cell lines in addition to healthy lung cell lines
(MRC-5 and L-132). Molecular docking was used to examine the
binding between SSBC and Bcl2. Moreover, PASS (spectrum
prediction analysis) was used to evaluate the biological effects,
and ADME was used to measure pharmacological properties and
drug likeliness. DAPI/PI staining, Hoechst staining, and FACS
were employed to evaluate SSBC-induced apoptosis in AGS cells.
Western blotting and Quantitative Real-Time Reverse
Transcription (qRT-PCR) were used to investigate the
mechanisms of apoptosis induction. The IC50 values of SSBC
for MRC-5 and L-132 cells were 285 and 268 mg/mL,
respectively, while for AGS cells the IC50 was 4.56 mg/mL. In
silico analysis predicted that SSBC could bind to the BH3 domain
of anti-apoptotic proteins, which could then activate apoptosis
and cell death. Using ADME predicted that SSBC had a high
binding affinity (~ 99.08%) and a high absorption rate (~95.57%)
in the small intestine. The PASS software suggested that SSBC
could affect the expression level of several proteins involved in
apoptosis. Western blotting, FACS, DAPI/PI staining, qRT-PCR,
and Hoechst staining confirmed apoptosis in AGS cells. SSBC
may be particularly effective to trigger apoptosis mediated by the
intrinsic pathway, and thus in vivo studies and human clinical
trials for GC may be justified (84).

Farnesiferol C (FC) is a member of the coumarin family,
belonging to the sesquiterpene group, which is routinely
extracted from Ferula szowitziana DC roots (85). Apiaceae
(genus Ferula) are plants that are widely distributed in
Northern Africa, Central Asia, and the Mediterranean region
(86), and these plants are a rich source of natural compounds,
including coumarins and sesquiterpenes (87). FC has a variety of
biological functions, including anti-tumor activity in vitro and in
vivo, reducing the formation of new blood vessels, and also shows
activity against Leishmania infection (88). Nevertheless, FC has
poor solubility, and relatively low bioavailability both in vivo and
in vitro, which hinders its potential therapeutic applications (89).
However, recent studies have shown that FC solubility and
antiproliferative effects against cancer cells may be improved
by incorporation into dendrosome nanoparticles. Dendrosomes
are spherical, covalently linked, degradable, neutral, and self-
assembled nanoparticles which have become popular for their
ability to deliver herbal agents and genes into various cell lines
(89–93).

Aas et al. performed a study to determine the potential
antitumor effects on AGS cells of DFC (dendrosomal
farnesiferol C) (94). RT-PCR was used to assess the Bax/Bcl-2
ratio in order to determine apoptosis. MTT assay was used to
evaluate the antiproliferative effects of DFC. DFC inhibited AGS
proliferation in a time- and dose-dependent manner, compared
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to free FC. DFC increased the Bcl-2/Bax expression ratio in AGS
cells. Taken together, the nano-formulated farnesiferol C may be
useful in tumor-targeted therapy (94).

Table 1 lists some studies describing the anti-gastric cancer
effects of coumarins.
COUMARINS AND COLON CANCER

Colon cancer is a leading cause of morbidity and mortality
throughout the world (106). It has the second highest
incidence and cause of cancer-associated death. More than 1.8
million new cases and 881,000 deaths occurred in 2018 globally
(57). The mortality of colon cancer has fallen over recent decades
due to advances in both treatment and early detection; however,
the five-year survival rates remain low at advanced or metastatic
stages (106). At an early stage, the 5-year survival rate is nearly
90%, but the survival rate falls to near 10% when the disease is
advanced. Therefore, better understanding of the molecular
pathway of colon cancer progression is a serious need (107).

HMGA2 (high mobility group AT-hook 2) belongs to the high
mobility group family of proteins. It is a non-histone chromatin
protein with three AT-hook domains capable of binding in the
minor groove of AT-rich DNA sequences (108). HMGA2 acts as
an architectural transcription factor due to its ability to assemble
the nucleoprotein structure leading either to transcription
enhancement or repression (109). The expression of HMGA2 is
higher during embryogenesis, whereas in adult tissues its
expression is zero or very low (110). HMGA2 has an important
function in metastasis and regulates the epithelial-mesenchymal
Frontiers in Oncology | www.frontiersin.org 6
transition (EMT) (107). The EMT is where epithelial cells
transform into mesenchymal cells, and is essential for both
tumor progression and embryonic development. The EMT
results in elevated invasion, migration, or unrestricted
proliferation (111, 112). Besides, HMGA2 is commonly
upregulated in many types of cancer, and was correlated with
poor prognosis and lower survival rates in colon cancer (113).

Oxidative stress modulates many cellular processes, and
provides a favorable environment for cancer cells to progress
and survive. Many studies have shown the importance of
oxidative stress or oxidative damage in cancer initiation and
progression (114). Furthermore, oxidative stress- resistance is a
critical adaptive response that allows cancer cells to develop
resistance to chemotherapy drugs, resulting in chemoresistance
and cancer recurrence (115, 116). On the other hand, several
anti-cancer treatments are based on the production of excessive
reactive oxygen species (ROS) or the abrogation of antioxidant
pathways to kill cancer cells (117–120).

Chen et al. studied the involvement of HMGA2 in the
modulation of oxidative stress using luciferase reporter assays
(121). In addition, they studied dicoumarol (DIC), a coumarin
derivative involved in redox modulation that has some anti-
cancer effects. It was found that DIC could trigger apoptosis and
inhibit the migration of colon cancer cells that over-expressed
HMGA2. DIC could also promote the anti-cancer effect of 5-FU
in colony formation assays. Overall, their findings provided a
novel understanding of the molecular function of HMGA2, and
suggested a possible therapeutic application of DIC to prevent
progression in colon cancer cells that over-express
HMGA2 (121).
TABLE 1 | Anti-gastric cancer effects of coumarins.

Coumarin compound Dose Mechanisms Model Cell line Ref

Steroidal/coumarin/quinoline
moieties

1.48 mM, 2.28 mM Reduced expression of TGF b1, inhibited invasion and
migration

In vitro SGC-7901, MGC-
803

(74)

Styrene substituted
biscoumarin (SSBC)

4-64 mg/mL Induced apoptosis through intrinsic pathway In vitro AGS (84)

Isoimperatorin (ISOIM) 0.05-2 mM Anti-proliferative and pro-apoptotic effects In vitro BGC-823 (83)
2′-Z auraptene A 1, 2, 4 mM Anti-proliferative and pro-apoptotic effects In vitro MGC-803 (95)
Esculetin 850 mM Inhibited proliferation, induced apoptosis through IGF-1/PI3K/

Akt mitochondrial pathway
In vitro MGC-803 (96)

Isocoumarin 3,4,7 Cytotoxicity In vitro MGC80 (97)
Esculetin 12.5, 25, 50 mM Apoptosis via cyclophilin D-induced mitochondrial

permeability transition pore, increased ROS
In vitro GC-7901, MGC-

803, BGC-82
(98)

Dendrosomal farnesiferol C
(DFC)

80 mM Inhibited proliferation, increased Bax/Bcl-2 ratio In vitro AGS (94)

3-Bromoacetylcoumarin IC50 = 29 nM Significant cytotoxicity In vitro NUGC (99)
7-Diethylamino-3(20-
benzoxazolyl)-coumarin (DBC)

30, 100, 1000, 3000 nM Induced caspase-dependent apoptosis, reduced expression of
anti-apoptotic genes

In vitro SNU-620, SNU-
620-5FU (100)

Novel coumarin (compound
3d)

2.69 ± 0.60 µg/mL Acted as telomerase inhibitor, bound to telomerase active site In vitro SGC-7901
(101)

Xanthoxyletin 200, 400 mM Increased ROS In vitro SGC-7901
(102)

6,7-Dihydroxy derivative 100, 400 mM Antiproliferative activity In vitro TGBC11TKB
(103)

Coumarin ————— Quenched organic hydroperoxides and hydrogen peroxide In vitro
(104)

Coumarin (C), 7-hydroxy-
coumarin (7-OH-C)

IC50 = 1.59-3.57 mM for C,
0.68-2.69 mM for 7-OH-C

Inhibited cell proliferation In vitro
(105)
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Sulfonamides act as inhibitors of carbonic anydrase (CA)
enzymes, and show antitumor, antiepileptic, antiglaucoma, and
diuretic properties (122–127). In addition, coumarin
sulfonamides, and their derivatives act as selective inhibitors
for two carbonic anhydrase isoforms, including CA XII and CA
IX (128–132).

Zengin Kurt and his colleagues synthesized and characterized
27 novel compounds divided into three series: (1) sulfonamide-
based imines (6a-6i); (2) coumarin-based aldehydes (7a-7i); and
(3) coumarin-sulfonamide hybrid molecules (8a-8i), which were
characterized by IR, NMR, etc. (48). These compounds were
tested on different CA isoforms, including CA (I, II, IX, XII), to
measure the degree of inhibition. 4-((((2-((1-(3-((2-oxo-2H-
chromen-7-yl)oxy)propyl)-1H-1,2,3-triazol-4-yl)methoxy)
n a p h t h a l e n - 1 - y l ) - m e t h y l e n e ) a m i n o ) m e t h y l )
benzenesulfonamide (8i) was the best CA IX inhibitor with a Ki
of 45.5 nM. Furthermore, 8i could also selectively inhibit colon
cancer cell (HT-29) proliferation by directly targeting CA XII
and CA IX (48).

Cancer treatment is affected by genetic mutations occurring
in the tumor, and the survival rate in advanced or metastatic
stages remains poor. For instance, one of the clinical challenges
for EGFR targeted therapies is the KRAS gene mutation, so
alternative approaches are needed to reduce failure in colon
cancer therapy. One of these approaches may involve coumarin
or its derivatives (biological or synthetic). Lin et al. synthesized
five coumarin derivatives; nitro-substituted, dimethoxy-
substituted, and trifluoromethyl-substituted at various locations
(133). According to their findings, one nitro-coumarin
derivative, 5,7-dimethoxy-4-methyl-6-nitro-chromen-2-one,
had the highest cytotoxicity against colon cancer cells and
triggered apoptosis. This compound could also inhibit long-
term and short-term proliferation, and reduced colon cancer cell
migration. It was effective against colon cancer cells with either
mutant or wild-type KRAS genes (133).

Table 2 lists some studies on the anti-colon cancer effects
of coumarins.

Coumarins and Pancreatic Cancer
More than 300,000 patients die from pancreatic cancer every
year (159, 160). Pancreatic ductal adenocarcinoma (PDAC) is
the most lethal and aggressive type of pancreatic cancer with less
than 5% of patients surviving for five years (161). The CMGC
kinome group includes tyrosine-(Y)-phosphorylation-regulated
kinases (DYRKs), which carry out serine/threonine
phosphorylation and tyrosine phosphorylation (162). Due to
its location on human chromosome 21q22.2, which covers the
Down syndrome critical region (DSCR), DYRK1A has received
much interest amongst other DYRKs (163, 164). DYRK1A has
been described as a double-edged kinase, because it can either act
as a tumor suppressor or as an oncogene depending on the
substrates and cellular environment (163). DYRK1A over-
expression leads to cell cycle disturbance, cancer progression,
and increased aggressiveness, so that DYRK1A could be an
appealing drug target in chemotherapy. Over-expression of
DYRK1A disrupts the cell cycle by phosphorylating
components of the cell cycle machinery, as well as increasing
Frontiers in Oncology | www.frontiersin.org 7
the expression of Bcl-XL (anti-apoptotic protein) and
phosphorylating caspase 9 at threonine residue 125 (165–167).
A recent study revealed that DYRKY1A kinase could play an
oncogene role in NSCLC (non-small-cell lung cancer) (113),
glioma, and myeloid leukemia (108). Reducing the activity of
DYRK1A in cancer cells might be a new way to attack cancers
that have developed an innate resistance to pro-apoptotic stimuli
(165). For some time, the involvement of DYRK1A in PDAC was
not understood (168). Recently, it was discovered that DYRK1A
is elevated in PDAC and has a pro-tumorigenic effect. Moreover,
the expression of DYRK1A at protein and gene levels in human
pancreatic tumors are both significantly increased (168).
Upregulation of c-MET is another frequent alteration in
PDAC. Moreover, Sprouty2 (SPRY2) is a DYRK1A substrate,
which upregulates c-MET, and might increase oncogenesis (168).

Eight different isopentenyl-substituted compounds were
isolated from Glycyrrhiza uralensis Fisch. These were, four
coumarins, three flavonoids, and one benzofuran (169).
Licocoumarone (LC), one of the isolated compounds, inhibited
DYRK1A with an IC50 value of 12.56 mM. According to
molecular docking studies, LC filled the DYRK1A pocket and
generated hydrophobic contacts and hydrogen bonds with the
DYRK1A amino acids. The binding of LC to DYRK1A was
confirmed using drug affinity responsive target stability
(DARTS) and microscale thermophoresis (MST) approaches.
LC showed cytotoxicity against BxPC-3 cells that over-expressed
DYRK1A with an IC50 of 50.77 mM. LC also lowered the
quantity of c-MET protein, and could play a role in new
pancreatic cancer treatments (169).

Fu et al. prepared paclitaxel PEG-PLGA nanoparticles
emulsified in d-alpha tocopheryl polyethylene glycol 1000
succinate (TPGS) called PTX-PEG-PLGA-NP, and evaluated
its effects on apoptosis in pancreatic cancer cell line
(MIAPACA-2) (170). PTX-PEG-PLGA-NP was prepared in a
single step utilizing TPGS as an emulsifier, and had a high drug
loading. The physical and chemical properties, such as in vitro
release and stability, were assessed, and the drug loading and
particle size were used to optimize the formulation. The cellular
uptake of fluorescein coumarin 6 (C6) loaded PEG-PLGA-NP by
MIAPACA-2 cells was visualized using fluorescence microscopy,
and flow cytometry, The MTT assay was used to measure
proliferation and apoptosis of MIAPACA-2 cells following
exposure to PTX-PEG-PLGA-NP. The nanoparticles had a
90.26% PTX entrapment efficiency, a 10.13% PTX loading, an
average particle size of 92.33 nm, and a zeta potential of +10.48
mV. The nano preparation showed 25.9% drug release in 4 hours
compared to 98.5% for Taxol for injection, thus showing a
sustained-release effect. Cell uptake tests revealed that
MIAPACA-2 cells steadily took up c6-PEG-PLGA-NP over
time. The inhibition of MIAPACA-2 cell proliferation was not
significantly different in the PTX-PEG-PLGA-NP group
compared to the PTX group, according to MTT data. Flow
cytometry revealed that PTX-PEG-PLGA-NP caused more
apoptosis in MIAPACA-2 cells compared to PTX. The TPGS
emulsification process is simple to use and environmentally
friendly. The nanoparticles might be employed for pancreatic
cancer treatment in the future.
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TABLE 2 | Anti-colon cancer effects of coumarins.

Coumarin compound Dose Mechanisms Model Cell line Ref

Furanocoumarin 100 mM Anti cancer effects In vitro HCT116
(134)

Dicoumarol (DIC) 10 mM Inhibited proliferation in
HMGA2 overexpressing cells

In vitro DLD-1
(121)

Butyrate/GC combination 10 mM GC + 2mM butyrate Increased apoptosis In vitro HCT116
(135)

Coumarin 8a Inhibited proliferation by targeting CA XII
and CA IX

In vitro,
in vivo

HT-29 (48)

Coumarin derivatives ——— Inhibited proliferation In vitro LoVo
(136)

Copper-redox cycling by coumarin-di(2-
picolyl)amine hybrid molecule

50 µM Pro-oxidant, inhibited proliferation. In vitro HCT116
(137)

Nitro-coumarin derivative, 5,7-dimethoxy-4-
methyl-6-nitro-chromen-2-one

5, 10, 20 µM Activated apoptosis pathways In vitro HCT116
(133)

Poly(DGU-BDT) nanoparticles 100 µg/mL Cytotoxicity, high cellular uptake In vitro HeLa
(138)

Coumarin derivatives (6, 11, 13, 19, 21, 25,
39)

30, 100, 300 µM Inhibited CA IX and XII in hypoxia, another
unidentified target in normoxia

In vitro HT-29
(139)

Coumarin IC50: >200µM Cytotoxicity In vitro HCT116
(140)

Coumarin-6-sulfonamide derivatives (4a, b,
8a–d, 11a–d, 13a, b, and 15a–c)

8a (IC50 ¼ 8.5
3 ± 0.72)- 11a (IC50 ¼ 10.12 ± 0.90)-8d
16.02 ± 1.32- 11d 16.06 ± 1.28

Inhibited proliferation In vitro Caco-2
(141)

Coumarin-6 (TK-MS/DOX) IC50 = 1.6 ± 0.48 mg/mL Cytotoxicity In vitro Caco-2
(142)

Columbianadin (CBN) 25, 50 µM Induced apoptosis and necroptosis In vitro HCT-116
(143)

coumarin Compounds 2, 3–15, 17–18, and
20–23

50 µM Cytotoxicity In vitro HCT-116
(144)

Coumarin compound 7a IC50 = 4.8 ± 0.18 µg.mL-1 Cytotoxicity In vitro HCT-116
(145)

Coumarins (clausarin, dentatin, nordentatin,
xanthoxyletin)

———— Cytotoxicity In vitro HCT-116
(146)

Coumarins (mammeisin, mammein) COLO205 (9.7-10.7 mM)
KM12 (10.9-12.0 mM),

Inhibited proliferation In vitro COLO205,
KM12 (147)

Fused tricyclic coumarin sulfonate derivatives IC50 = 532 nM Inhibited cyclooxygenase-2 (COX-2)
enzyme

In vitro HT-29
(148)

5,7-Dihydroxy-4-
methyl-6-(3-methylbutanoyl)-coumarin
(DMAC)

40, 80 µM Caused cell death, PARP cleavage,
activated caspase-3

In vitro HCT116 and
LoVo (149)

Coumarin compounds IC50 = 0.01- 2.8 µM Cytotoxicity In vitro HCT-116
(150)

Coumarin compounds ————– Cytotoxicity In vitro HT-29
(151)

Esculetin IC50 = 55 µg/mL Induced apoptosis, activated mitogen-
activated protein kinases; specific
inhibitors of these kinases protected cells

In vitro HT-29
(152)

3-(1H-benzo[d]imidazol-2-yl)-7-(substituted
amino)-
2H-chromen-2-one (Compound 8)

10 µM Anticancer activity In vitro HCT-116,
HCT-15 (153)

Aesculetin 20,40,80 µM Inhibited proliferation In vitro HCT116,
HCT15,
DLD1

(154)

SN38-P-II, SN38-P-IV 40 mg/kg
IC50 = 15 to 90
ng/mL

Anti-tumor activity In vivo,
in vitro

HT-29,
HCT116 (155)

Furo[3,2-c]coumarin derivatives IC50 = 9 µM, 8 µM Inhibited proliferation In vitro HCT-15
(156)

Esculetin — Induced apoptosis (ER stress response) In vitro HT-29
(157)

(3E)-3-(4-Methylbenzylidene)-3,4-dihydro-
2H-chromen-2-one (MBDC)

IC50 = 15.6 mg/ml Cytotoxicity In vitro HT-29
(158)
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Table 3 lists some studies on the anti-pancreatic cancer effects
of coumarins.

Coumarins and Hepatocellular Carcinoma
Over 900,000 new cases of hepatocellular carcinoma (HCC) are
diagnosed annually worldwide, and it is the third main cause of
cancer-associated death (186, 187). The stage of HCC at diagnosis
is strongly associated with prognosis (187). Traditional
chemotherapy agents for advanced-stage HCC are often
ineffective. The development of new surgical approaches for
HCC have improved the 5-year survival rate (188). If HCC is
resistant to chemo-radiotherapy, it can spread to the lungs, brain,
adrenal glands, and lymph nodes (188). Researchers are trying to
understand more about the origin and progression of HCC, and
the relevant molecular mechanisms (189–191), but more studies
are needed to discover new agents for improved HCC treatment.
Misfolded proteins and damaged organelles are destroyed within
the cell by autophagy and lysosomal cleavage (192). Autophagy is
essential for cell survival (193, 194). Many natural compounds
have been found to have anti-cancer effects by promoting
autophagy (195, 196). Cui et al. studied HepG2 and MHCC97
(two human HCC cell lines) treated with hydroxypyridinone-
coumarin (HPC) in vitro (197). The MTT cytotoxicity test
assessed proliferation and viability with and without HPC
treatment. Cell autophagosomes were tagged with GFP-LC3 and
visualized with confocal fluorescence microscopy, and Western
blotting measured protein expression. HPC treatment reduced
HepG2 cell proliferation by 29% and MHCC97 proliferation by
36%. HPC treatment increased expression of Atg-3, Atg5, LC3-II
(LC3-phosphatidylethanolamine conjugate), and beclin-1, but
decreased protein expression of Akt and p62. HPC treatment
increased autophagy in MHCC97 and HepG2 cells as shown by
GFP-LC3B fluorescence labeling. HPC also induced
phosphorylation of ERK1/2 and led to Akt pathway down-
regulation (197).

The hydrazide-hydrazone molecular structure is a new scaffold
in medicinal chemistry that can inhibit both a- and b-glucosidase
enzymes and potentially show anti-cancer activity (184, 198–206).
The potential mechanisms of this are fourfold. Firstly, the
hydrazide-hydrazone moiety is a metal chelator that can remove
the catalytic zinc ion frommetalloenzymes (207, 208); Secondly, it
can form stable hydrogen bonds to its targets. Thirdly, its
molecular structure includes an amino group, which can serve
as a stand-in for aza-substituted amino acids. Fourthly the keto-
enol tautomerization (E- and Z-forms) may orient and fix the
conjugated hydrophobic substituent into the protein binding
pocket via the best fit configuration (209). The formation of
molecular hybrids between coumarins and hydrazide-hydrazone
moieties might lead to novel anti-cancer compounds.

Nasr and colleagues evaluated a new series of coumarin
hydrazide-hydrazone derivatives, for their activity against
leukemia (CCRF), resistant pancreatic carcinoma (Panc-1), and
hepatocellular carcinoma (HepG2) cancer cells in vitro (175).
One of the novel coumarin hydrazide-hydrazone hybrids,
bromocoumarin hydrazide-hydrazone derivative (BCHHD)
11b, demonstrated outstanding anti-cancer activity against
Frontiers in Oncology | www.frontiersin.org 9
cancer cells. Furthermore, BCHHD 11b triggered apoptosis by
activating caspases 3/7, and led to inhibition of cell metabolism.
Inhibition of CYP3A4 and GST led to cell death in a 11b dose-
dependent manner. Furthermore, microarray evaluation
revealed up-regulation and down-regulation of genes
associated with tumor growth, cell cycle, and apoptosis.
Moreover, BCHHD 11b could be not only useful in
chemotherapy, but also could be used as a transporter for
99mTc in vivo, as a radiopharmaceutical imaging agent for
cancer treatment (170, 175).

Table 4 lists some studies on anti-HCC cancer effects
of coumarins.

Coumarin and Esophageal Cancer
The most prevalent type of esophageal cancer is esophageal
squamous cell carcinoma (ESCC). The rate of ESCC incidence
varies by country, but the highest rates are seen in regions within
the esophageal cancer belt, which runs from North of Iran to
North and Central China (225).. The early stages of ESCC show
only vague symptoms leading to delayed diagnosis, and the
presence of drug-resistant cells has a detrimental effect on the
results of standard chemotherapy regimens (226, 227). Recently,
there has been a focus on cancer stem cells (CSCs) as a target for
more effective cancer therapy, because it has been found that
CSCs are largely responsible for recurrence, therapy resistance,
and metastasis in several human cancer types (228). Various
molecular markers are used to identify CSCs in different human
malignancies. For instance, CSCs are positive for CD15, CD44,
CD90, CXCR4, and CD133 antigens in ESCC (229–231).

Auraptene (AUR), or 7-geranyloxycoumarin, is a naturally
occurring prenyloxycoumarin found in plants within the
Apiaceae and Rutaceae families. AUR has been found to have
different biological benefits such as, antioxidant, anti-
inflammatory, anti-protozoal, anti-fungal, antibacterial, and
immune system boosting activities (232). AUR supplements
have been tested in animal cancer models, and it was shown
that they had chemopreventive effects in GI, liver, skin, prostate,
and breast cancer (233–242). The mechanisms of AUR
chemoprevention include inhibition of lipid peroxidation,
induction of glutathione S transferase activity, regulation of
inflammation, and inhibition of superoxide generation (233,
235, 236, 242). Furthermore, researchers have shown that AUR
has anti-cancer effects in vitro, and can inhibit the proliferation
of breast and renal cancer cell lines, and can induce apoptosis in
gastric, colon cancer, and leukemia cells. Some studies have
shown the anti-cancer activity of AUR against colon CSCs, and
AUR could inhibit the recurrence of colon tumors (243–248).

Saboor-Maleki and his colleagues investigated the anti-
cancer activity of AUR on ESCC cells and CSCs looking at
specific markers (249). They used the KYSE30 ESCC cell line to
examine the effects of AUR and combinations with 5-
fluorouracil, cisplatin, and paclitaxel. Furthermore, they used
qRT-PCR to evaluate the expression of p21 and p53 (two tumor
suppressor genes), BMI-1 (B cell-specific Moloney murine
leukemia virus integration site 1), and CD44 (cluster of
differentiation 44). Their findings revealed that AUR
October 2021 | Volume 11 | Article 752784
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increased the cytotoxicty of 5-fluorouracil, paclitaxel, and
cisplatin in KYSE30 cells, and the maximal effect was seen
after 72 hours of AUR treatment, which induced apoptosis. In
addition, qRT-PCR revealed that p53 and p21 were up-
Frontiers in Oncology | www.frontiersin.org 10
regulated, but BMI-1 and CD44 were down-regulated after
AUR treatment. AUR inhibited esophageal cancer stem-like
cells by increasing the effects of chemotherapy, and down-
regulating BMI-1 and CD44 (249).
TABLE 3 | Anti-pancreatic cancer effects of coumarins.

Coumarin compound Dose Mechanisms Model Cell line Ref

Licocoumarone 25 mM, 50 mM Inhibited DYRK1A and cell proliferation,
induced apoptosis

in vitro Human
PDAC cell
line BxPC-3

(169)

Scopoletin (SPL) Animals: 1 mg/kg bw/
day

Decreased activating transcription factor 6 (ATF6) and protein kinase RNA-like
endoplasmic reticulum kinase (PERK) in b-cells; reduced expression of
eukaryotic initiation factor2a, X-box binding protein 1, C/EBP homologous
protein, ATF4

in vitro
in vivo

Rat
insulinoma
5f (RIN5f)
cells,
Sprague
Dawley rats

(171)

Coumarin–
triazole

in vitro Porcine
pancreatic
lipase
(PPL)

(172)

Furocoumarin (psoralen) Selective cytoroxicity attributed to inhibition of mtKv1.3 in vitro B16F10
cells (173)

Isoprenylated coumarins 25 mM Compound 6 showed highest cytotoxicity with an LC50 of 4 µM.
induced apoptosis following a 24-h incubation

in vitro Panc-1
(174)

Bromocoumarin hydrazide-
hydrazone derivative
(BCHHD)

50 mM Induced apoptosis by caspase 3/7 activation,
inhibited CYP3A4 and GST in a dose-dependent manner, induced cytotoxicity

in vitro Panc-1
(175)

Daphnetin (7, 8-
dihydroxycoumarin)

1, 10, 20, 40 mM) Pre-treatment with daphnetin increased glucose stimulated insulin secretion,
decreased lipid peroxidation markers, increased antioxidant enzymes in STZ-
induced INS-1 cells.Inhibited apoptosis by increasing Bcl-2 protein, down-
regulated Bax and NF-kB protein levels

in vitro INS-1
(176)

Derivatives of 3‐
arylcoumarin (6a‐f and 7a‐f)

(0‐100 mM)CC-50 in vitro (BxPC3)
(177)

Fluorescein coumarin 6 (C6) Inhibited proliferation, induced apoptosis in vitro MIAPACA-2
(170)

Geranylgeranyl ether
coumarin derivative 9

6.25 lM Induced apoptosis and morphological changes within 24 h in vitro PANC-1
(178)

Esculetin 100 mM Inhibited proliferation, cell cycle arrest at G1-phase, induced mitochondrial
apoptosis, activated caspases 3, 8
and 9. Lowered intracellular ROS, decreased protein levels of p65-NF-kB

in vitro PANC-1,
MIA PaCa-2,
AsPC-1

(179)

FuranocoumarinBergamottin Bergamottin 25 mM. Induced membrane blebbing, cell shrinkage, organelle disintegration in PANC-1
cells.
Inhibited PANC-1 migration and colony formation. Bergamottin inhibited Akt/
mTOR signaling pathway.

in vitro PANC-1,
MIA PaCa-2,
PSN-1

(180)

4-Methylumbelliferone (MU) 0–100 µM 7-Hydroxy group was critical for inhibition of HA synthesis,
two hydroxy groups, 5,7 or 6,7 positions, were more effective

in vitro KP1-NL
(181)

17 synthetic coumarins 100 mM Six compounds were shown to have poor activity against PANC-1. Two
trifluoromethylphenyl compounds
33 and 34 were effective against three cancer cell lines, The position of the
trifluoromethyl substituent on the
phenyl ring (meta vs. para) was associated with selective activity against MIA and
PaCa-2 cells

in vitro PANC-1,
MIA PaCa-2,
Capan-1

(182)

7-Hydroxy-2-oxo-2H-
chromene-3-carboxylic acid
(3-phenylpropyl)amide (2c)

PC50 = 0.44 mM Inhibited PANC-1 colony formation and migration in a concentration-dependent
manner, compound 2c was lead structure against pancreatic cancer.

in vitro PANC-1
(183)

Derivatives of 6-brominated
coumarin hydrazide-
hydrazone (BCHHDs)

IC50: 3.60-6.50 mM Activated caspase 3/7, induced apoptosis in resistant Panc-1 cells.
Microarray analysis showed that BCHHD 7c induced apoptosis and cell cycle
arrest (G2/M), and up-regulated CDKN1A, DDIT4, GDF-15 genes, and down-
regulated CDC2, CDC20, CDK2 genes

in vitro Panc-1
(184)

Daphnetin 4 mg/kg body weight
IP 30 min before the
injection of sodium
taurocholate.

Daphnetin decreased serum alanine transaminase and creatinine (CR) levels,
increased superoxide dismutase
(SOD) activity, lowered apoptosis and neutrophil infiltration of pancreatic tissues in
rats. Daphnetin reduced pro-inflammatory
cytokines and increased anti-inflammatory cytokines in rat SAP.
Decreased expression of TLR4 and suppressed NF-kB signaling pathway.

in vivo rat severe
acute
pancreatitis
(SAP) model

(185)
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Osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-
benzopyran-2-one) has the chemical formula C15H16O3, and
is a biologically active coumarin compound isolated from
Fructus cnidii, a herb used in traditional Chinese medicine to
manage rheumatic pain, lumbar pain, and impotence (250, 251).
Earlier studies have shown that osthole has various medical
properties, including vasodilation, anti-osteoporosis, anti-
inflammation, anti-allergy, and anti-seizure activity (252–257).
In addition, osthole can trigger cellular apoptosis and suppress
proliferation and metastasis in tumor cells, and may inhibit
tumorigenesis (258–260).
Frontiers in Oncology | www.frontiersin.org 11
In a study by Zhu et al., the proliferation of ESCC cells was
suppressed by osthole in a time – and dose-dependent manner
(261). Additionally, osthole caused cell cycle arrest at G2/M
phase and triggered apoptosis. Moreover, cleaved caspase 9,
cleaved PARP1, cleaved caspase3, and BAX were up-regulated,
while the expression level of survivin, cyclin B1, PARP1, Bcl-2,
and Cdc2, were decreased Osthole increased PTEN expression
and decreased p-AKT (phosphorylated AKT) and PI3K, thereby
modulating the PTEN-PI3K/AKT signaling pathway.
Consequently, osthole may have a role in managing patients
suffering from ESCC (261).
TABLE 4 | Anti-hepatocellular cancer effects of coumarins.

Coumarin compound Dose Mechanisms Model Cell line Ref

Hydroxypyridinone-
coumarin

2 µM Induced autophagy, inhibited proliferation, activated ERK1/2, down-regulated the Akt
pathway

In vitro MHCC97
HepG (210)

Furanocoumarin 100 mM Anti cancer effect In vitro HepG2
(134)

Coumarin-3-carboxylic
acid

0–1000 µM. Inhibited DNA synthesis not by intercalation. Ames tests showed that all the tested agents or
phase I metabolites were non-mutagenic

In vitro CHANG
Hep-G2 (211)

Esculetin 2.24 mM Triggered mitochondrial caspase-dependent apoptosis In vivo
In vitro

Hepa1-6
(212)

Osthole 161.4 mM
137.0 mM

Inhibited HCC growth in vivo and in vitro, induced apoptosis by repressing NF-kB, increased
expression of apoptosis-related genes.

In vivo Hepa1-6
HepG2 (213)

4-Hydroxy-3-nitro-
coumarin
Ligand silver + 4-oxy-3-
nitro-coumarin-bis
(phenanthroline)

0, 20, 40, 80
mM for 4 h or
24 h
IC50 at 4h = 80
µM and at 24 h
=40 mM

Inhibited proliferation In vitro HepG2
CHANG (214)

Coumarin-dioxy-acetic acid
(cdoa)
copper-coumarin-
dioxyacetic acetate-
phenathroline [Cu(cdoa)
(phen)2]

0, 7.5, 15, 30
µM

[Cu(cdoa)(phen)2] inhibited proliferation more than the parent ligand [CdoaH2], phen, or the
simple salt.
Biochemical and morphological features
consistent with both necrotic and apoptotic cell death

In vitro Hep-G2
(215)

Novel synthetic
coumarins

50 µM Inhibited expression of NF-kB targeted genes In vitro HepG2
(216)

Natural coumarin 4.9 µM Increased necrosis
Inhibited tumor growth

In vitro
In vivo

HepG2
(217)

Clausarin, dentatin,
nordentatin, xantoxyletin

IC50 (µM)
17.6 ± 2.1
47.6 ± 2.8
29.9 ± 3.2
78.2 ± 2.2

Clausarin had the highest selective cytotoxicity. Xantoxyletin caused apoptosis and lowest
necrosis in HepG2 cells after 24 h

In vitro HepG2
(218)

Coumarin-triazole
hybrid

IC50 = 0.80
mM.

Inhibited proliferation In vitro HepG2
(219)

Thiazolylpyrazolyl
coumarin derivatives

IC50 = 5.4 –

10.7 µM
Anticancer activity In vitro HepG2

(220)
Coumarin hybrids IC50 = 0.49-

3.96mM
Inhibited proliferation In vitro Hep G2

(221)
7,8-Dihydroxy-3-(4-
nitrophenyl) coumarin

IC50 = 17.65
mM

Cell cycle arrest at S phase, loss of mitochondrial membrane potential, mediated ROS-
independent cell death

In vitro HepG2
(177)

7-Hydroxy-6,8-dimethoxy-
2H-1-benzopyran-2-one
(isofraxidin)

IC50 = 100 mM Inhibited invasion without influencing proliferation or attachment. Inhibited TPA-induced matrix
metalloproteinase-7 (MMP-7) at both protein and mRNA levels. More effective at low cell
density than at high density. Inhibited phosphorylation of
ERK1/2, without affecting NF-kB nuclear translocation, activator protein-1 (AP-1) DNA binding
activity, or degradation of IkB.

In vitro HuH-7,
HepG2 (222)

Juglansoside C extracted
from bark of Juglans
mandshurica.

IC50 = 70.9 mM Showed moderate cytotoxicity
Induced apoptosis in Hep3B cells

In vitro Hep3B
(223)

7-OH-4-Methylcoumarin IC50 = 356 µM Inhibited proliferation in a dose-dependent manner.
Reversed malignant phenotype and caused re-differentiation.

In vitro SMMC-
7721 (224)
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CONCLUSIONS

Coumarin compounds have a broad range of biological activity,
and consequently for decades many scientists have investigated
these compounds, and some have devised new related structures
to potentially treat cancer, as well as a plethora of other diseases.
Coumarins play a crucial role in numerous biological processes
such as antioxidant systems, regulation of cell growth, and
chemoprevention from various disorders. Coumarin compounds
have anti-cancer activity by regulating cell differentiation, growth,
and the immune system responses. Therefore, coumarins can be
combined with conventional drugs, to produce novel antitumor
treatments with higher efficacy and fewer adverse effects.

Various synthetic methods such as the Knoevenagel,
Pechmann, Perkin, Wittig, and Claisen reactions have been used
to prepare coumarins as well as a diverse range of derivatives.
Thanks to theses new molecular manipulation techniques, analogs
with more potent activity and a higher therapeutic index have
been discovered, even though coumarin itself and some of its
natural compounds may show hepatotoxicity, which may limit
their clinical use. Recent studies have shown that the antitumor
Frontiers in Oncology | www.frontiersin.org 12
effects of coumarins may be increased by the addition of various
substituents to specific areas of the coumarin structure. As a result,
this approach has led to the identification of some novel
antitumor compounds.

Moreover, both synthetic and natural coumarins have been
found to modulate specific signaling pathways, providing
mechanistic explanations for their antitumor activity.
Coumarin and its derivatives have promising antitumor
properties and may result in novel antitumor drug regimens,
however further laboratory studies are required before large scale
clinical trials can be undertaken.
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