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ABSTRACT
Early reports suggest the fatality rate from COVID-19 varies 
greatly across countries, but non-random testing and 
incomplete vital registration systems render it impossible 
to directly estimate the infection fatality rate (IFR) in 
many low- and middle-income countries. To fill this gap, 
we estimate the adjustments required to extrapolate 
estimates of the IFR from high-income to lower-income 
regions. Accounting for differences in the distribution of 
age, sex and relevant comorbidities yields substantial 
differences in the predicted IFR across 21 world regions, 
ranging from 0.11% in Western Sub-Saharan Africa to 
1.07% for high-income Asia Pacific. However, these 
predictions must be treated as lower bounds in low- and 
middle-income countries as they are grounded in fatality 
rates from countries with advanced health systems. To 
adjust for health system capacity, we incorporate regional 
differences in the relative odds of infection fatality from 
childhood respiratory syncytial virus. This adjustment 
greatly diminishes but does not entirely erase the 
demography-based advantage predicted in the lowest 
income settings, with regional estimates of the predicted 
COVID-19 IFR ranging from 0.37% in Western Sub-Saharan 
Africa to 1.45% for Eastern Europe.

INTRODUCTION
Key policy decisions for COVID-19 contain-
ment hinge on its infection fatality rate (IFR). 
Data from the hardest-hit countries show that 
the IFR varies by sex, age and certain comor-
bidities, suggesting a method to extrapolate 
estimates to new contexts with limited data 
infrastructure.1–7 In this article, we combine 
recent estimates of the sex-specific and age-
specific IFR from France with data on comor-
bidities conditional on death with COVID-19 
in Italy to calculate the inverse: an IFR condi-
tional on sex, age and comorbidity (cIFR). 
We apply these estimates to the distribution 
of sex, age and relevant morbidities for 187 
countries from the Global Burden of Disease 
(GBD) data set.7 Results reveal substantial 
differences across 21 world regions, with 
demographics-based IFR predictions ranging 

from 0.11% in Western Sub-Saharan Africa to 
1.07% for high-income Asia Pacific. Despite 
the comparatively low IFR estimates our 
model predicts for the lowest income regions, 
these IFR estimates are appreciably higher 
than other recent estimates for the same 
areas.8

We understand these predicted IFRs as 
lower bounds on mortality in low- and middle-
income countries, since they are derived 
implicitly assuming access to advanced 
healthcare. To account for the likelihood 
of higher fatality rates in under-resourced 
health systems, we adjust the predicted IFRs 
for differences in the relative odds of infec-
tion fatality from childhood respiratory 
syncytial virus (RSV) between world regions 
as a proxy for local capacity to treat viral 
respiratory illnesses. This adjustment greatly 

Summary box

►► Given limited testing and vital statistics data, few 
measures of the COVID-19 infection fatality rate (IFR) 
exist for developing countries.

►► In Europe and North America, measures of COVID-19 
IFRs are known to vary by age, gender and 
comorbidities.

►► Existing model-based estimates for the developing 
world have not fully accounted for these factors in 
predicting IFRs.

►► Using variation in demographics, comorbidities and 
health system capacity, we predict COVID-19 IFRs 
for 187 countries, ranging from 0.43% in Western 
Sub-Saharan Africa to 1.45% in Eastern Europe.

►► Despite lower measured health system capacities, 
predicted IFRs for most of Sub-Saharan Africa none-
theless remain well below IFRs for high-income 
countries, while Eastern Europe is predicted to fare 
particularly poorly.

►► Policy-makers in low-income countries should be 
cognizant that any demographic advantages with 
respect to COVID-19 fatality rates are likely to be 
partially offset by disadvantages in health system 
capacity.
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diminishes, but does not entirely erase, the demography-
based advantage predicted in the lowest income settings, 
with regional estimates of the predicted COVID-19 IFR 
ranging from 0.43% in Western Sub-Saharan Africa to 
1.45% for Eastern Europe.

PREDICTING THE CIFR
Here we outline the calculation of our benchmark: the 
predicted cIFR status, starting from the IFR estimates by 
age and sex reported in Salje et al4 for France. The latter 
are, to our knowledge, the most recent peer-reviewed IFR 
estimates for COVID-19 which report variations for all 
age brackets and differentiate by sex. They are lower than 
earlier figures from Walker et al 9, particularly among 
younger age groups, but are quite similar in the highest 
age brackets.

The core assumption behind our approach is that vari-
ation in the IFR within France by age, sex and comor-
bidity can be used to predict the variation in IFRs across 
countries based on their age, sex and comorbidity distri-
butions. To date these are the key factors that have well 
studied, statistically and clinically significant associations 
with COVID-19 severity and death. Importantly, we do 
not require that the underlying distributions of age, sex 
or comorbidities are similar between France and other 
countries in our sample; on the contrary, differences 
across countries in these distributions will drive the varia-
tion in predicted IFRs. We now demonstrate our method 
to extricate from the French age and sex-specific IFRs 
that part which we claim is portable across contexts: the 
probability of dying (d) given infection from COVID-19 
(I) and the age (a), sex (s), and comorbidity status (c) of 
patients, that is, ‍P

(
d|c; I, a, s

)
‍. We term this the cIFR and 

use subscripts for notational convenience, so that

	﻿‍ cIFR = PIas

(
d|c

)
‍�

Applying Bayes’ rule, we can recover this cIFR by relating 
it to the ratio of comorbidity prevalence among COVID-19 
fatalities relative to COVID-19 infections (conditional on 
age and sex) and age and sex-specific IFRs:

	﻿‍
cIFR = PIas

(
d|c

)
=

PIas
(
c|d

)
PIas

(
c
) PIas

(
d
)
‍�

(1)

We now discuss how we measure each of these 
probabilities.

(1) ‍PIas

(
c|d

)
‍ denotes the probability of comorbidity 

status given death of COVID-19, age and sex. We rely 
on the assumption that this probability is independent 
of age and sex, ‍PIas

(
c|d

)
≈ P

(
c|d, I

)
‍, which is supported 

by data from New York City. (As shown in online supple-
mental figure 1, data from New York City indicate that 
among those who die from COVID-19, the share that 
has any comorbidity is stable across age groups and very 
similar for both.) We calculate ‍P

(
c|d, I

)
‍, using the Italian 

Istituto Superiore della Sanità reports on the number 
of comorbidities conditional on COVID-19 death.10 
The choice to combine data from France and Italy was 

motivated by the fact that the latest published estimates 
of mortality by age and gender come from France, while 
reliable data on comorbidities among COVID-19 deaths 
are available for Italy but not France. Given our assump-
tion that the cIFR is portable across contexts (with the 
same health system capacity), countries with the same 
comorbidity and sex distribution at each age should have 
the same age-specific IFR. We show in theonline supple-
mental figure 1 that France and Italy are similar in terms 
of comorbidity and sex distributions for a given age, and 
that the age-specific IFR estimates for the two countries 
(reported in Salje et al4 and Ferraro et al11) are very close. 
Thus by equation (1), the two countries should also 
have the same prevalence of comorbidities among their 
COVID-19 fatalities at each age.

(2) ‍PIas

(
c
)
‍ denotes the presence of underlying 

conditions given infection, age and sex. We assume 

‍PIas

(
c
)
≈ P

(
c|a, s

)
‍ and take the probability of having 

any COVID-19-relevant comorbidity by age and sex in 
France from the GBD data set. This assumption would 
be violated if the pool of infected systematically differs 
from the general population. Recent evidence from the 
USA suggests that comorbidities are as present among 
the infected as in the general population.12 Further-
more, data from Italy show attack rates above 50% in 
some provinces. This, together with the absence of wide-
spread immunity11 further supports this claim. Note that 
for simplicity we rely on an indicator for any COVID-19-
relevant comorbidity, although the type, number and 
combination of different diagnoses are likely to affect 
the cIFR. The comorbidities considered relevant for 
COVID-19 by Clark et al7 are the following: cardiovascular 
diseases, chronic kidney diseases, chronic respiratory 
diseases, chronic liver disease, diabetes mellitus, cancers 
with direct immunosuppression, cancers with possible 
immunosuppression, HIV/AIDS, tuberculosis, chronic 
neurological disorders, sickle cell disorders.

(3) ‍PIas

(
d
)
‍ denotes the sex and age-specific IFRs from 

Salje et al 4 which come from France.
With these ingredients, we can calculate the cIFR 

assuming healthcare levels similar to high-income coun-
tries (HICs) in (1), which we find to be an increasing 
and non-linear function of both age and comorbidity 
(figure 1 and table 1, labelled ‘HIC’). For those without 
a comorbidity, the cIFR is effectively zero and flat up 
to the age of 50, and then increases roughly 20-fold 
between 50–59 and 70–79 years (from 0.01% to 0.17% 
for women and from 0.02% to 0.48% for men). With a 
comorbidity, the pattern is similar, but because the cIFR 
is already higher at younger ages, the age gradient is 
flatter, roughly doubling the cIFR for each decade above 
age 50. The difference in the cIFR between patients with 
and without comorbidities is large but declines rapidly 
with age. Finally, the female cIFR is lower than the male 
cIFR for each age and comorbidity status.

We integrate the cIFR over each country’s sex, age 
and comorbidity distribution to obtain a country-specific 
average IFR. Figure 2 shows our main results, aggregated 

https://dx.doi.org/10.1136/bmjgh-2020-003094
https://dx.doi.org/10.1136/bmjgh-2020-003094
https://dx.doi.org/10.1136/bmjgh-2020-003094
https://dx.doi.org/10.1136/bmjgh-2020-003094
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Figure 1  cIFRs, adjusted for health system capacity, by country income group (log scale). cIFRs, infection fatality rates 
conditional on age, sex and comorbidity; HICs, high-income countries; LICs, low-income countries; LMICs, lower middle-
income countries; UMICs, upper middle-incomecountries.

Table 1  cIFRs, adjusted for health system capacity, by income group (percentage points)

Comorbidity

LIC LMIC

Females Males Females Males

0 >0 0 >0 0 >0 0 >0

Age, years

0–19 0.0003 0.2583 0.0003 0.2807 0.0002 0.1670 0.0002 0.1825

20–29 0.0016 0.3727 0.0025 0.6551 0.0010 0.2435 0.0016 0.4324

30–39 0.0066 0.9167 0.0098 1.3538 0.0043 0.6080 0.0063 0.9127

40–49 0.0142 1.1632 0.0249 1.8018 0.0092 0.7912 0.0161 1.2563

50–59 0.0783 3.4838 0.1263 3.8523 0.0511 2.4923 0.0832 2.8623

60–69 0.2917 5.4639 0.7042 7.4230 0.1941 4.1954 0.4768 5.9842

70–79 1.0952 8.3357 2.7756 12.1281 0.7466 6.8290 1.9421 10.4667

80+ 6.7997 19.3879 19.9064 42.2803 4.7666 16.7857 14.4353 38.4637

cIFRs, infection fatality rates conditional on age, sex and comorbidity; LIC, low-income country; LMIC, lower middle-income country.

Comorbidities

UMIC HIC

Females Males Females Males

0 >0 0 >0 0 >0 0 >0

Age, years

0–19 0.0001 0.1001 0.0001 0.1098 0.00004 0.0361 0.00004 0.0397

20–29 0.00060 0.1470 0.00095 0.2631 0.00021 0.0534 0.00034 0.0963

30–39 0.0025 0.3713 0.0038 0.5645 0.0009 0.1364 0.0014 0.2100

40–49 0.0055 0.4928 0.0097 0.7985 0.0020 0.1847 0.0035 0.3057

50–59 0.0308 1.6196 0.0505 1.9255 0.0112 0.6353 0.0185 0.7865

60–69 0.1188 2.9143 0.2959 4.3776 0.0438 1.2395 0.1105 2.0008

70–79 0.4659 5.0878 1.2381 8.3111 0.1749 2.3906 0.4755 4.3483

80+ 3.0436 13.3843 9.4946 32.8492 1.1708 7.0568 3.7759 19.9581

Table reports the health-system adjusted cIFR derived in Section Predicting the cIFR and online supplementary appendix A1.
HIC, high-income country; UMIC, upper middle-income country.

https://dx.doi.org/10.1136/bmjgh-2020-003094
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Figure 2  Infection fatality ratio (IFR) by world region. Column 1 states total population in millions for each region. Column 
2 reports population by 10-year age groups and by number of comorbidities (light grey: 0 comorbidity; dark grey: any 
comorbidity); the height of the graphs is proportional to the number of people in the most populous age group. Column 
3 reports (a) regional IFRs calculated as an average of the IFRs conditional on age, sex and comorbidity weighted by the 
proportion of the population in each age, sex and comorbidity group and (b) regional IFRs adjusted for health system capacity 
(see Section Adjusting for differences in health system capacity).
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by 21 world regions (we display the unaggregated results 
in online supplemental figure 2). We find substantial 
variation in predicted IFRs across regions—by a factor 
of 10 between the highest (high-income Asia Pacific with 
an IFR of 1.07%) and the lowest (Western Sub-Saharan 
Africa with an IFR of 0.11%). The variation is system-
atic, as low-income regions have lower predicted IFRs 
than high-income regions. Demography is a key driver 
of these results: age distributions vary substantially across 
regions, with Sub-Saharan Africa and Oceania having 
the youngest and richer regions having the oldest popu-
lations. Regional variation in comorbidities also helps 
explain variation in predicted IFRs across regions: high-
income regions display more comorbidities among the 
elderly than low-income settings, while the reverse is 
true among the young and middle-aged segments of the 
population. Finally, because the IFR is always lower for 
women than for men, variation in sex imbalances in the 
highest age brackets (tilted toward women everywhere) 
also contributes to variation in the average IFR.

ADJUSTING FOR DIFFERENCES IN HEALTH SYSTEM CAPACITY
We interpret our predicted IFR estimates as lower bounds 
on the true probability of dying from COVID-19 in low 
and middle-income settings, as data on fatalities come 
from countries with advanced health systems. Health 
system weaknesses in lower income settings likely imply 
that a larger proportion of severe COVID-19 cases result 
in death due to suboptimal medical care, and this will 
likely diminish the demographic advantages of low-
income countries (LICs). To account for this, we adjust 
our IFR estimates for health-system strength based on a 
region’s demonstrated capacity to prevent fatalities from 
viral lung infections. We derive this adjustment from 
comparative regional hospital case fatality rates for RSV 
among children aged 0–59 months.

We chose this demographic to derive our health system 
capacity measure because restricting attention to this 
age bracket approximately purges the RSV IFRs of cross-
country variation in the distribution of ages, comorbid-
ities (as children under five have very low burdens of 

chronic diseases such as hypertension, kidney disease or 
other conditions of organ degradation) and sex (as sex 
ratios under 5 years are more balanced than for older 
groups). With nearly equivalent age, sex and comor-
bidity rates in this demographic, we take remaining 
cross-country variation in the IFR for RSV to be attrib-
utable principally to health system capacity. We choose 
RSV acute lower respiratory infection (ALRI) as a proxy 
for COVID-19 as they are viral lower respiratory infec-
tions with overlapping symptoms. Like COVID-19, RSV 
usually causes mild symptoms, but occasionally develops 
into a life-threatening illness. As with all viruses, neither 
is treatable with antibiotics, and, until COVID-19, RSV 
was unique among the major organisms that cause death 
from respiratory tract infections to have neither any 
vaccine nor recognised treatment.13 14

Normalising the IFR for childhood RSV in HICs to 1, 
we apply the ratio of these IFRs between regions to scale 
up our demography-adjusted and comorbidity-adjusted 
IFR predictions. Unfortunately, we lack country-level IFR 
estimates. However, Shi et al15 provide data from which 
RSV IFRs for severe cases can be inferred by World Bank 
income level: HICs, LICs, lower middle-income countries 
(LMICs) and upper middle-income countries (UMICs). 
The ratios of the IFRs for children hospitalised with 
RSV between HICs and LICs, LMICs and UMICs from 
this data are 8.54, 5.45 and 3.23, respectively. While we 
assume that all severe cases warranting hospitalisation 
obtain it in HICs, this is not necessarily the case in other 
income groups, and thus these relative hospital fatality 
ratios require an adjustment to become infection fatality 
ratios. We take this adjustment from Wang et al,16 from 
which the relationship between hospital case fatality rates 
and IFRs can be mapped for LMICs and HICs for child-
hood influenza, another comparable respiratory virus. 
Using this mapping, we translate our RSV IFRs specifically 
among hospitalised children into IFRs among all severe 
cases, which are estimated to have ratios to HIC IFRs 
of 7.40, 4.72, 2.80 for LICs, LMICs and UMICs, respec-
tively. Taking these ratios as ORs rather than risk ratios 
(to maintain coherent probability bounds), we rescale 

Figure 3  Validation with independently estimated infection fatalityrates (IFRs). (A) Random sample studies, representative of 
large proportion of country’s population. (B) All studies included in Meyerowitz-Katz and Merone 17 or found through online 
search.

https://dx.doi.org/10.1136/bmjgh-2020-003094
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the predicted cIFRs by these region-specific adjustments 
to calculate a cIFR conditional on regional health system 
capacity (see online supplementary appendix A1 for 
details).

Adjusting for health system capacity increases the 
cIFR in poorer regions by almost an order of magnitude 
(figure 1 and table 1). At ages 60 and below, the cIFR is 
increased by a factor of 6–7 in LICs, by a factor of 4 in 
LMICs and by a factor of 2–3 in UMICs. For older ages, 
the increase in the cIFR is less stark, but the adjusted 
cIFR is still two to four times as large as the unadjusted 
one. Lower health system capacity thus both increases 
the cIFR at each age and comorbidity status and flattens 
its age gradient.

With this health system-adjusted cIFR in hand, we 
recalculate the country-specific IFRs (and add them 
to figure  2 and online supplemental figure 2). The 
health system strength adjustment starkly increases the 
predicted COVID-19 IFRs for the lowest income regions, 
nearly though not entirely erasing their demographic 
advantages: the predicted IFRs double on average in 
UMICs, almost triple in LMICs and increase by a factor 
of 3.7 in LICs. As examples, IFRs increase from 0.13% 
to 0.44% in Sub-Saharan Africa, from 0.39% to 0.73% in 
Latin America and from 0.31% to 0.73% in South and 
Central Asia. Eastern Europe is predicted to have particu-
larly high IFRs (1.43%), as it is characterised by an ageing 
population, high prevalence of comorbidities at a given 
age and low predicted health system capacity based on its 
income levels.

Our method of accounting for differences in health 
system capacity is crude in that we currently only have 
indicative numbers for RSV ALRI by income group, 
rather than national-level adjustments. However, the 
wide gap in childhood respiratory tract IFRs of between 
2.8-fold and 7.4-fold between income groups has impli-
cations for COVID-19 IFRs that are too large to ignore.

VALIDATING THE PREDICTIONS WITH SEROLOGICAL STUDIES 
FROM RANDOM SAMPLES
We can test the validity of our core assumption, namely, 
that variation in age, sex and comorbidity distributions 
as well as health system capacity explain differences in 
IFRs across countries by comparing our predicted IFRs 
to independently measured IFRs. For this exercise, we 
consider all studies reporting either IFRs or infection 
rates for populations with available COVID-19 fatalities, 
which were listed in the systematic review by Meyerowitz-
Katz and Merone17 or retrieved through an online 
search on July 2. Out of the 32 studies selected in this 
way, 6 studies measure infection rates by testing for sero-
prevalence of COVID-19 antibodies in population-based 
random samples. We judge this to be the best method 
of estimating infection rates and thus IFRs, because 
random sampling is required to be truly representative, 
and antibody seroprevalence indicates all cumulative 
cases, whereas ‘swab’ tests only detect current cases. We 

thus compare our predicted IFRs first and foremost to 
the estimates in these six studies. While five of the six 
random sample studies are located in HICs, one is from 
an UMIC, allowing for validation of the health system-
adjusted IFRs constructed in the previous section. In a 
second step, we use all published IFR estimates in the 
comparison, including those which use convenience 
samples, adjusted case fatality rates (CFRs) or ‘swab’ 
tests.

The results are presented in figure  3A, where we 
plot the independent IFR estimates for the six random 
sampling studies in different countries on the horizontal 
axis against our predicted IFRs—using the health system-
adjusted IFRs from the previous section—on the vertical 
axis. The independent estimates and our predictions are 
reported in table  2. Comparing our estimates to these 
studies, we find a correlation of 61%, demonstrating 
that our method can successfully predict a considerable 
portion of the cross-country variation in IFRs. We note 
that Switzerland18 and Sweden19 are close to the 45° line, 
as are the estimates from Spain20 and Iceland,21 which 
have been acknowledged to be well designed, randomised 
data collection efforts. For Brazil,22 which tests the validity 
of our approach outside of high-income health systems, 
the health system-adjusted IFR also closely matches the 
independently estimated IFR, while the crude IFR is 
substantially lower at 0.40% (consistent with our expec-
tation that failing to adjust for health system capacity 
provides a lower bound on the true IFR outside of HICs). 
Belgium,23 on the other hand, has a very high IFR rela-
tive to our predicted number, but this source counts all 
suspect deaths in nursing homes as COVID-19 deaths (as 
reported in https://www.​bbc.​com/​news/​world-​europe-​
52491210), yielding the highest IFR among the included 
studies.

Figure 3B reports the results from a comparison with all 
the same studies listed in Meyerowitz-Katz and Merone17 
plus four additional random seroprevalence studies 
representative at subnational level. Twenty-six studies 
come from HICs and six from UMICs. The estimates 
displayed in this panel are much more noisy, including 
wide variations within single countries. Nonetheless, our 
method does retain a positive correlation, although a 
lower one, even with these measured IFRs.

Note that we lack coverage for LICs in this validation 
exercise. The lack of representative seroprevalence 
studies and COVID-19 mortality data to estimate IFRs in 
such contexts is a key motivation for this study and high-
lights the need for modelled predictions. For example, we 
are aware of two serological studies measuring prevalence 
rates from countries in Sub- Saharan Africa: one based on 
a representative sample of Nampula, Mozambique,24 and 
another of Kenyan blood donors.25 However, fatality data 
appear unreliable: even attributing all recorded deaths 
from COVID-19 in Mozambique and Kenya (6 and 
154 total deaths, respectively) to the surveyed regions 
of Nampula and Nairobi, the estimated IFRs would be 
disproportionately low at 0.018% and 0.028%.

https://dx.doi.org/10.1136/bmjgh-2020-003094
https://dx.doi.org/10.1136/bmjgh-2020-003094
https://www.bbc.com/news/world-europe-52491210
https://www.bbc.com/news/world-europe-52491210
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CONCLUSION
Our results illustrate the possibility of predicting 
COVID-19 IFRs with a methodology that (1) uses infor-
mation readily available for most of the world— namely 
age and comorbidity distributions as well as proxies 
for health system capacity, (2) relies on parsimonious 
and transparent assumptions and (3) appears broadly 
consistent with the limited set of IFRs generated from 
random COVID-19 testing. Although we produce esti-
mates at national level, subnational variability in distri-
butions of comorbidities, age and sex may be important 
enough to require IFR estimations at subnational level. 
A merit of our approach is its portability to any commu-
nity level where comorbidity, sex and age distributions 
and health system capacity (compared with France) are 
known.

While our calculations including adjustments for health 
system strength still suggest somewhat lower IFRs in the 
least developed economies than in the most advanced 
economies, our estimates are significantly higher than 
IFRs used in other recent COVID-19 forecasts for Africa,8 
and middle-income countries.9 In the absence of wide-
spread testing or reliable vital registration systems, trans-
parent calculations of likely IFRs provide an important 
input into optimal policy design under extreme uncer-
tainty, particularly as the pandemic expands into new 
geographies and/or a second wave of infections arrives.
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