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Abstract
Age, gender, diet, gene and lifestyle have been reported to affect metabolic status and

disease susceptibility through epigenetic pathway. But it remains indistinct that which fac-

tors account for certain epigenetic modifications. Our aim was to identify the influencing

factors on inter-individual DNA methylation variations of carbohydrate response element
binding protein (ChREBP) and global genome in peripheral blood leucocytes (PBLs).

ChREBP DNA methylation was determined by bisulfite sequencing, and genomic 5mdC

contents were quantified by capillary hydrophilic-interaction liquid chromatography/ in-

source fragmentation/ tandem mass spectrometry system in about 300 healthy individu-

als. Eleven single nucleotide polymorphisms (SNPs) spanning ChREBP and DNAmethyl-
transferase 1 (DNMT1) were genotyped by high resolution melting or PCR-restriction

fragment length polymorphism. DNMT1mRNA expression was analyzed by quantitative

PCR. We found ChREBP DNA methylation levels were statistically associated with age

(Beta (B) = 0.028, p = 0.006) and serum total cholesterol concentrations (TC) (B = 0.815,

p = 0.010), independent of sex, concentrations of triglyceride, high density lipoprotein cho-

lesterol, low density lipoprotein cholesterol (LDL-C), fasting blood glucose and systolic

blood pressure, diastolic blood pressure, PBLs counts and classifications. The DNMT1
haplotypes were related to ChREBP (odds ratio (OR) = 0.668, p = 0.029) and global (OR =

0.450, p = 0.015) DNA methylation as well as LDL-C, but not DNMT1 expression. How-

ever, only the relation to LDL-C was robust to correction for multiple testing (ORFDR =

1.593, pFDR = 0.013). These results indicated that the age and TC were independent influ-

ential factors of ChREBPmethylation and DNMT1 variants could probably influence LDL-

C to further modify ChREBP DNA methylation. Certainly, sequential comprehensive anal-

ysis of the interactions between genetic variants and blood lipid levels on ChREBP and

global DNA methylation was required.
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Introduction
DNAmethylation is a main epigenetic mechanism that affects gene transcription [1], tissue dif-
ferentiation [2] and chromatin remodeling [3]. It has been reported that DNAmethylation var-
iations are involved in changes of the metabolic status [4–6], while the dietary component
could also act as an epigenetic regulation agent against disease [7–11]. However, the underlying
mechanisms of how environment or nutrition mediates through epigenetic pathway affecting
disease susceptibility are still not clearly understood [12, 13]. These epigenetic modifications
are likely to adjust expressions of important genes mediating pathophysiology processes, and
are linked with direct benefits of diet and lifestyle, and might offer a rational and simple way to
prevent diseases. In fact, investigations have implicated inter-individual DNAmethylation var-
iations with age, gender, diet, lifestyle, and genetic variants [14–18] especially single nucleotide
polymorphisms (SNPs) in the DNA methyltransferases 1 (DNMT1), which could bind methyl
groups to hemi-methylated DNA [19]. These SNPs could affect DNMT1 protein folding, cata-
lytic activity and heterochromatin binding ability, thus leading to the changes of global and
loci-specific DNAmethylation [20–22]. But substantially less is known about the exact interac-
tions among epigenetic variations, genetic variants and environmental factors.

ChREBP (GenBank accession number: NC_000007.14), is a transcription factor binding
with genes of glucose, lipid and redox metabolism, and SNPs in ChREBP gene were reported to
be associated with plasma triglyceride levels and coronary artery disease (CAD) in our previous
study [23]. Furthermore, we found a distinct inter-individual DNAmethylation variation in
CpG island of ChREBP in peripheral blood leukocytes (PBLs). Then we speculate either or both
of metabolite and heredity would lead to epigenetic modifications in ChREBP. Lipid and glucose
levels and blood pressures were chosen as candidate influence factors based on ChREBP’s func-
tions, and SNPs in ChREBP andDNMT1 genes were selected as potential genetic cis-acting ele-
ments and trans-acting factors.

In order to reveal the modification factors on methylation variations in ChREBP, we investi-
gated associations among the DNAmethylation status of ChREBP gene plus global genome,
genetic variations within ChREBP and DNMT1 genes, the metabolite such as blood lipid levels
and fasting blood glucose (FBG) etc.

Materials and Methods

Study population
The study population consisted of 309 healthy individuals recruited in Zhongnan hospital
(Wuhan, China). General health was established using a general medical checklist. All subjects
were free of medication and showed no signs of CAD, hypertension, diabetes mellitus or dysli-
pidemia based on the physical examination results at the time of enrollment. Informed consent
was obtained from all subjects prior to their participation in the study fromMarch/30/2012 to
February/25/ 2014. Each subject’s clinical data and blood sample were collected and analyzed
anonymously. The authors didn’t have access to identifying information. This study was
approved and recorded in Medical Ethics Committee of Zhongnan Hospital of Wuhan Univer-
sity and met the declaration of Helsinki.

Clinical Data
The systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured using a
standard mercury sphygmomanometer. The serum concentrations of fasting blood glucose
(FBG), total glyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C),
and high density lipoprotein cholesterol (HDL-C) were determined using the AU5400 automatic
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biochemical analyzer (Beckman Coulter Co. Ltd). PBLs differential counts were analyzed using
the LH750 hematology analyzer (Beckman Coulter Co. Ltd). These analyzers were employed in
the Core Laboratory of Zhongnan Hospital using standard techniques.

SNP Selection and Genotyping
The SNPs were selected using Haploview 4.2 program [24] based on Chinese Han Beijing pop-
ulation (CHB) data from the HapMap database (http://www.hapmap.org, phase2). Two tag
SNPs spanning ChREBP and five tag SNPs spanning DNMT1 were chosen using pairwise r2

threshold of� 0.8 and minor allele frequency (MAF) threshold of� 0.05. The SNPs were
rs1051921, rs17145750 within ChREBP, and rs2288349, rs2228611, rs8111085, rs16999593,
rs2336691 within DNMT1 (Fig 1A and 1C).

Any of 5 tag SNPs could be chosen as a gene tag in a block with high linkage disequilib-
rium (LD) pattern, from 1-kb region upstream to 1-kb downstream of ChREBP. And the
high LD pattern of the 5 tag SNPs (rs1051921, rs17145750, rs7798357, rs7785479 and
rs7800944) plus 1 nonsynonymous SNP (rs3812316) in ChREBP was confirmed in our study
population (D` = 1, Fig 1B) [23]. On the other side, the picked 5 tag SNPs in DNMT1 cap-
tured all 22 SNPs, from 1-kb region upstream to 1-kb downstream of DNMT1 (GenBank
accession number: NC_0000019.10). And 4 of the 5 tag SNPs of DNMT1 (rs2288349,
rs2228611, rs8111085 and rs16999593) were in linkage disequilibrium in our study popula-
tion (D`� 0.77, Fig 1D) [25–27].

Genomic DNA of blood sample was isolated using standard proteinase K digestion and phe-
nol-chloroform extraction. Nine SNPs were genotyped by high-resolution melting (HRM) on
LightScanner 32 (Idaho Technology, USA). Two SNPs (rs3812316 & rs7798357) were geno-
typed by PCR-restriction fragment length polymorphism (PCR-RFLP) method due to G/C
transversion. Ten percent of DNA samples were randomly selected for genotype verification
using direct PCR sequencing (Qingke Company, Wuhan, China). The detail primer sequences
are available in S1 and S2 Tables.

Bisulfite sequencing for ChREBP DNAmethylation
After spectrophotometric quantization, 2 ug of genomic DNA was treated with bisulfite as
described previously [28]. Genomic DNA of PBLs was treated using CpGM.ssI methyltrans-
ferase (New England Biolabs) and was used as the methylated control, whereas the ‘C’ in non-
CpG island (‘C’ completely transforming to ‘T’) was considered as the unmethylated control.
Bisulfite DNA was amplified by PCR with bisulfite sequencing (BSP) primers designed by
Primer 3.0 and listed in S3 Table. PCR products were cloned into the PMD18-T vector (Takara,
Dalian, China), and ten positive clones from each sample were randomly selected for sequenc-
ing. DNAmethylation levels were calculated by the percentage of methylated CpG sites divided
by total CpG sites (290 CpG loci) in ten clones.

LC-ESI-MS/MS analysis on genomic 5mdC contents
The capillary hydrophilic interaction chromatography (cHILIC) was performed on a Shimadzu
Prominence nano-flow liquid chromatography system (Shimadzu, Tokyo, Japan) with two LC-
20AD nano pumps, two vacuum degassers, a LC-20AB high performance liquid chromatogra-
phy (HPLC) pump, a SIL-20AC HT auto-sampler, and a nano-flow control valve. The electro-
spray ionization/tandem mass spectrometry (ESI-MS/MS) experiment for detecting the
genomic 5-mdC contents was detailly described in the previous study [29]. The results showed
linearity within the range of 0.05% - 10% (molar ratio of 5-mdC/dC) with a coefficient value
(R2) 0.996.
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Fig 1. Linkage disequilibrium (LD)-plot. (A) LD-plot ofChREBP established using Haploview 4.2 program based on HapMap data.
Five tag SNPs of ChREBP investigated in this research were highlighted in black boxes; (B) LD-plot of ChREBP in 50 individuals of
our study population. The LD-plot was composed by 6 SNPs, including the 5 tag SNPs and 1 nonsynonymous SNP; (C) LD-plot of
DNMT1 established using Haploview 4.2 program based on HapMap data. Five tag SNPs in DNMT1 investigated in this research
were highlighted in black boxes; (D) LD-plot composed by the 5 tag SNPs of DNMT1 in 287 individuals of our study population.

doi:10.1371/journal.pone.0157128.g001
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Quantitative PCR of DNMT1 expression
The first strand cDNA in PBLs was synthesized using RevertAid™ First Strand cDNA Synthesis
Kit (Thermo Scientific lnc.) after mRNA was extracted by RNApure Blood Kit (CoWin Biosci-
ence Co. Ltd). Quantitative PCR (qPCR) of DNMT1 expression was performed in triplicate
using iTaq™ Universal SYBR GREEN mix (BioRad) on a CFX96 Real-Time PCR Detection Sys-
tem (BioRad). The qPCR primer sequences were listed in S4 Table. The mRNA levels were nor-
malized to GAPDH, and the results were expressed as mean ± standard deviation (SD).

Statistical analysis
Continuous variables were expressed as mean ± SD or as median (interquartile range). The
comparison of DNA methylation and expression levels among different genotypes was carried
out using Mann-Whitney U test or Kruskal-Wallis H test. The correlations between DNA
methylation and age, sex, blood pressure, blood index were analyzed by univariate regression
and multivariate regression. LD and haplotype construction were analyzed by the Haplo-
view4.2 and the SHEsis software platform (http://analysis.bio-x.cn/myAnalysis.php). The
SHEs is a program that uses a partition ligation-combination-subdivision EM algorithm in
haplotype reconstruction and frequency estimation. The associations were tested on most
likely haplotypes [30, 31]. Data was analyzed with SPSS software (version 16.0) and a p
value< 0.05 (two-tailed) was considered statistically significant. False Discovery Rate (FDR)
was applied for multiple testing corrections. The pFDR value was calculated by multiplying its p
value by the number of tests performed and then divided by the rank order of each p value
(where rank order 1 is assigned to the smallest p value). An FDR of 0.05 was used as a critical
value to assess whether pFDR value was significant [32].

Results

ChREBP DNAmethylation was independently related to age and serum
TC concentrations
A description of the study population is reported in Table 1.

We found that ChREBP DNAmethylation was correlated with age, TC, TG, LDL-C (all
p< 0.05), but was not related to sex, HDL-C, FBG, SBP, DBP, PBLs counts and classifications
(all p> 0.05). However, after forward stepwise multivariate linear regression, only age and TC
were independent factors associated with ChREBP DNAmethylation, explaining 6.9% varia-
tion in ChREBP DNAmethylation (Table 2).

Associations between ChREBP DNAmethylation and DNMT1 haplotype
Because the six SNPs in ChREBP in our study have constructed a high LD pattern (Fig 1B),
only 2 SNPs (rs1051921, rs17145750) were chosen to represent the haplotype of ChREBP.
However, we didn’t identify any significant association between individual SNP or haplotype
and levels of ChREBP DNAmethylation (S5 and S6 Tables).

Since DNMT1 plays a major role in the maintenance of methylation patterns, 5 tag SNPs
within DNMT1 were genotyped to estimate the trans-effect of genetic variants on ChREBP
DNAmethylation. Though no significant association was observed between single DNMT1
SNP and ChREBP DNAmethylation (S5 Table), significant difference was found in the fre-
quency of the GAAT haplotype of DNMT1 (composed of rs2288349, rs2228611, rs8111085
and rs16999593), between the subgroups with differential levels of ChREBP DNAmethylation
(p = 0.029, OR = 0.668, 95% CI = 0.465–0.960, Table 3). But after FDR correction, no signifi-
cant association was observed.
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Table 1. Clinical characteristics of the study population.

Clinical characteristic N Mean ± SD Median (interquartile range)

age, years 309 55.1 ± 10 53 (47–62)

sex, male/female 139/170

SBP, mmHg 309 116 ± 15 115 (106–126)

DBP, mmHg 309 70 ± 9 70 (63–76)

TC, mmol/L 309 4.34 ± 0.54 4.42 (4.03–4.70)

LDL-C, mmol/L 309 2.55 ± 0.36 2.61 (2.35–2.83)

HDL-C, mmol/L 309 1.32 ± 0.21 1.31 (1.18–1.43)

TG, mmol/L 309 0.92 ± 0.34 0.89 (0.69–1.13)

FBG, mmol/L 309 4.77 ± 0.45 4.73 (4.47–5.06)

PBLs counts, (×109/L) 309 5.61 ± 1.37 5.42 (4.71–6.35)

GRAN counts, (×109/L) 309 59.10 ± 8.02 59.60 (53.80–64.60)

LYM counts, (×109/L) 309 33.91 ± 7.79 33.3 (28.4–39.05)

MONO counts, (×109/L) 309 7.02 ± 2.59 7.20 (5.80–8.55)

ChREBP DNA methylation, % 309 21.05 ± 13.57 18.60 (11.03, 27.93)

global DNA methylation, % 159 4.41 ± 0.84 4.18 (3.75, 5.02)

DNMT1 expression 158 0.007 ± 0.0078 0.004 (0.0025, 0.0099)

SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol concentrations; LDL-C, low density lipoprotein cholesterol

concentrations; HDL-C, high density lipoprotein cholesterol concentrations; TG, total triglyceride concentrations; FBG, fasting blood glucose

concentrations; PBLs, peripheral blood leukocytes; GRAN, granulocytes; LYM, lymphocytes; MONO, monocytes.

doi:10.1371/journal.pone.0157128.t001

Table 2. Associations of clinical characteristics withChREBPDNAmethylation.

Clinical characteristics ChREBP DNA methylation

Univariate association Multivariate association

B p B p

age 0.030 0.000 0.028 0.006

sex -0.317 0.060 - -

TC 0.427 0.006 0.815 0.010

TG 0.517 0.038 - -

HDL-C -0.408 0.304 - -

LDL-C 0.550 0.018 - -

FBG -0.025 0.893 - -

SBP 0.001 0.862 - -

DBP -0.018 0.053 - -

PBLs counts 0.024 0.694 - -

GRAN counts -0.002 0.872 - -

LYM counts 0.002 0.869 - -

MONO counts 0.047 0.235 - -

R2 0.069

B, Beta; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol concentrations; LDL-C, low density lipoprotein cholesterol

concentrations; HDL-C, high density lipoprotein cholesterol concentrations; TG, total triglyceride concentrations; FBG, fasting blood glucose

concentrations; PBLs, peripheral blood leukocytes; GRAN, granulocytes; LYM, lymphocytes; MONO, monocytes. The levels of ChREBP DNA methylation

was sqrt-transformed, p < 0.05 was considered statistically significant (in bold).

doi:10.1371/journal.pone.0157128.t002
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Associations of DNMT1 haplotype with global DNAmethylation and
DNMT1 expression
To further verify the possible effect of the DNMT1 haplotype on DNA methylation, the influ-
ence of the DNMT1 haplotype on global DNAmethylation was analyzed. We observed a signif-
icant difference in haplotype GGGT frequencies between subgroups with the higher and lower
levels of global DNAmethylation (p = 0.015, OR = 0.450, 95% CI = 0.234–0.863, Table 4)
before FDR correction.

In order to reveal the mechanism underlying the possible relation of DNMT1 haplotypes
with ChREBP, and global DNA methylation, we speculated that the DNMT1 haplotype may
affect global and specific-locus DNAmethylation through regulation on the mRNA expression
level of DNMT1. Sequentially, the mRNA expression level of DNMT1 was measured and we
didn’t reveal any significant association between DNMT1 haplotypes and expression (S7
Table). However we did find a statistical association between DNMT1 haplotypes and LDL-C
even after FDR correction (Table 5), though we only find 2 SNPs were associated with lipid lev-
els before FDR correction (S8 Table).

Table 3. Comparisons of DNMT1 haplotype distributions in subgroups with the higher and lower levels ofChREBPDNAmethylation.

DNMT1 haplotype Haplotype frequencies (N
(ratio))

p OR 95% CI pFDR

Group 1 Group 2

AGAT 73 (0.255) 68 (0.238) 0.641 1.095 0.747–1.606 0.641

GAAT 75 (0.260) 99 (0.343) 0.029 0.668 0.465–0.960 0.145

GGAT 39 (0.136) 27 (0.092) 0.098 1.554 0.920–2.625 0.163

GGGC 40 (0.140) 49 (0.170) 0.321 0.794 0.504–1.253 0.401

GGGT 48 (0.167) 33 (0.115) 0.070 1.553 0.962–2.508 0.163

The population was divided into two subgroups with the lower and higher levels of ChREBP DNA methylation by the median level of 18.60%. Group 1 was

composed of the individuals with the levels of ChREBP DNA methylation less than 18.60%; Group 2 was composed of the individuals with the levels of

ChREBP DNA methylation more than or equal to 18.60%. Loci for the haplotype analysis: rs2288349, rs2228611, rs8111085, and rs16999593. N = 287;

pFDR, the adjusted p for multiple testing; Bold letter indicates the p value < 0.05. (All those haplotype frequencies < 0.03 will be ignored in analysis.)

doi:10.1371/journal.pone.0157128.t003

Table 4. Comparisons of DNMT1 haplotype distributions in subgroups with the higher and lower levels of global DNAmethylation.

DNMT1 haplotype Haplotype frequencies (N
(ratio))

P OR 95% CI pFDR

Group 3 Group 4

AGAT 49(0.310) 35(0.217) 0.052 1.653 0.994–2.749 0.130

GAAT 43(0.270) 46(0.286) 0.798 0.937 0.572–1.537 0.909

GGAT 15(0.092) 16(0.097) 0.909 0.957 0.451–2.030 0.909

GGGC 29(0.185) 27(0.169) 0.666 1.136 0.637–2.027 0.909

GGGT 16(0.099) 32(0.198) 0.015 0.450 0.234–0.863 0.090

AGAT 20(0.126) 17(0.106) 0.553 1.232 0.618–2.455 0.909

The population was divided into two subgroups with the lower and higher levels global DNA methylation by the median level of 4.18%. Group 3 was

composed of the individuals with the level of global DNA methylation less than 4.18%; Group 4 was composed of the individuals with the level of global

DNA methylation more than or equal to 4.18%. Loci for the haplotype analysis: rs2288349, rs2228611, rs8111085, and rs16999593. N = 159; pFDR, the
adjusted p for multiple testing; Bold letter indicates the p value < 0.05. (All those haplotype frequencies < 0.03 will be ignored in analysis.)

doi:10.1371/journal.pone.0157128.t004
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Discussion
In this study, we analyzed the DNAmethylation of ChREBP and global genome in PBLs, using
BSP and LC-ESI-MS/MS. We found that age and serum TC were independent modification
factors of ChREBP DNAmethylation, and observed an association related LDL-C to DNMT1
haplotypes which have nominal relationships with the DNAmethylation of ChREBP and
global genome. As reported, the genetic and epigenetic mechanisms independently involved in
the pathophysiological processes and disease developments [12, 13], however they might inter-
act in some processes to determine disease susceptibility together. In our study, we presented a
perspective on whether there were interactions between metabolites, genetic variants and epi-
genetic modifications of DNA methylation.

PBLs are good in vivo target cells for investigating the DNA methylation levels in ChREBP
gene and global genome, because the peripheral blood was easy to be collected and assayed.
Furthermore, as reported by Davies and Smith et al., the modification of DNA methylation sta-
tus in PBLs could reflect the modification on DNAmethylation in other organs [33, 34]. We
found an association between ChREBPDNAmethylation of PBLs and serum TC. It might indi-
cate a negative feedback of down-regulation on ChREBP expression mediated by DNA methyl-
ation under cell microenvironments with higher serum lipid levels, since ChREBP could
activate the transcription of lipid metabolism genes [35]. It also could be a reflection of the
DNAmethylation modification in liver induced by the elevated cholesterol level.

Bollati et al. also found a complex relationship among the DNAmethylation of tumor necro-
sis factor α (TNFα) in PBLs and blood levels of LDL-C, TC/HDL-C and LDL-C/HDL-C [36].
And Gillberg et al. found the DNAmethylation of peroxisome proliferator activated receptor
gamma coactivator 1 alpha (PPARGC1A) in subcutaneous adipose tissue was influenced by
high-fat overfeeding in a birth weight dependent manner [37].

Furthermore, we found that the higher level of ChREBPmethylation was associated with
aging, which was consistent with the previous literatures. Barbara et al. reported that CALCA
andMGMTmethylation levels increased with age in PBLs[38]. Tra et al. also confirmed that
the DNA methylation level of 23 loci elevated with age in T lymphocytes [39], while Fuke et al.
found that the genome methylation level decreased during the aging process in PBLs [14].
These results suggested there could be a contrary age-related alteration of DNA methylation
between global genome and specific genes in PBLs.

Table 5. Comparisons of DNMT1 haplotype distributions in subgroups with the higher and lower levels of serum LDL-C.

DNMT1 haplotype Haplotype frequencies (N (ratio)) p OR pFDR ORFDR

Group 5 Group 6

AGAT 66 (0.228) 74 (0.262) 0.333 0.828 0.326 0.812

GAAT 92 (0.317) 83 (0.2920) 0.527 1.123 0.419 1.000

GGAT 34 (0.117) 31 (0.108) 0.691 1.111 0.644 0.994

GGGC 34 (0.117) 55 (0.195) 0.008 0.534 0.010 0.561

GGGT 52 (0.180) 28 (0.100) 0.006 1.985 0.013 1.593

The population was divided into two subgroups with the lower and higher levels of serum LDL-C by the median level of 2.62 mmol/L. Group 5 was

composed of the individuals with serum LDL -C levels less than 2.62 mmol/L; Group 6 was composed of the individuals with serum LDL-C levels more

than or equal to 2.62 mmol/L. Loci for the haplotype analysis: rs2288349, rs2228611, rs8111085, and rs16999593. N = 287; pFDR, the adjusted p for

multiple testing; ORPDR, the adjusted OR for multiple test. Bold letter indicates the p value < 0.05. (All those haplotype frequencies < 0.03 will be ignored

in analysis.)

doi:10.1371/journal.pone.0157128.t005
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Moreover, we observed that serum LDL-C were related to DNMT1 haplotypes, while
ChREBP and global DNA methylation were only nominally associated with DNMT1 haplo-
types. Actually we reported a risk association of DNMT1 SNP rs2228611 with CAD in Han
population, but we didn’t investigate the relation between SNPs and lipid levels in this previous
study [40]. The influence of DNMT1 haplotype on LDL-C might be the underlying reason
involving DNMT1 SNPs with CAD, and probably ascribed to DNMT1 functions on DNA
methylation of specific lipid metabolism genes. The association of LDL-C with the interaction
among SNPs as haplotyps, but not a single SNP, was similar to some other studies [41–43].
And several investigations have reported the influence of DNMT1 haplotypes on specific loci.
Potter et al. reported associations of both maternal and infant DNMT3B genotypes with
IGFBP3methylation levels in the infants [44]. Boks et al. identified associations of genetically
heritable SNPs with differences in DNAmethylation levels not in the same chromosome,
which is similar to the trans-effects of the DNMT1 haplotype on ChREBPmethylation [45].
However, we didn’t find any statistically significant relationship between SNP and DNAmeth-
ylation levels, which might be due to the limited sample size or other disturbances. Overall,
compared to genetics variants, metabolites such as TC and the environmental factors such as
age played a dominant role on epigenetics variations.

In addition, serum LDL-C was associated not only with theDNMT1 haplotype (Table 2) but
also with ChREBPDNAmethylation (Table 5). Whether these indicated that genetic factors
indirectly adjusted the ChREBPDNAmethylation through influencing the metabolite concen-
tration needed further investigation, and this hypothesis could probably explain associations
between theDNMT1 haplotype and ChREBP DNAmethylation before FDR correction.

Our study has some limitations. Firstly, because we have investigated only 11 SNPs of
ChREBP and DNMT1 genes instead of global genome, we think that comprehensive studies
would be more efficient for finding genetic variants affecting DNAmethylation variations. Sec-
ondly, we didn’t investigate the functional mechanism for the association between ChREBP
DNAmethylation and serum TC. Thirdly, lipid concentrations could be influenced by other
genetic and epigenetic variability, which might be the confusing factors in the association study
between DNMT1 haplotypes and lipid levels, and should be included for future researches.

In conclusion, this study explored the complex regulator network among metabolites and
epigenetic and genetic variations. The results showed that age and serum TC were the modifi-
cation factors on inter-individual variation of ChREBP DNAmethylation, and genetic variants
might indirectly influence ChREBP DNAmethylation through adjusting metabolite blood lev-
els. If metabolites could modify an individual’s epigenetic status, it would be a good fundament
for diet therapy and a strong support for healthy lifestyle for the benefit of individuals and for
the sake of offsprings. And in the future, we might find some way to amend the genetic code in
an epigenetic way.
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