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Immune system is emerging as a crucial protagonist in a huge variety of oncologic and non-
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oncologic conditions including response to vaccines and viral infections (such as SARS-
CoV-2). The increasing knowledge of molecular biology underlying these diseases allowed
the identification of specific targets and the possibility to use tailored therapies against
them. Immunotherapies and vaccines are, indeed, more and more used nowadays for treat-
ing infections, cancer and autoimmune diseases and, therefore, there is the need to iden-
tify, quantify and monitor immune cell trafficking before and after treatment. This approach
will provide crucial information for therapy decision-making. Imaging of B and T-lympho-
cytes trafficking by using tailored radiopharmaceuticals proved to be a successful nuclear
medicine tool. In this review, we will provide an overview of the state of art and future trends
for “in vivo” imaging of lymphocyte trafficking and homing by mean of specific receptor-tai-
lored radiopharmaceuticals.
Semin Nucl Med 00:1-10 © 2022 Elsevier Inc. All rights reserved.
Introduction

In the past decades it has become clear that immune system
has a crucial role in the development, progression and

maintenance of a large variety of disorders, for example can-
cer, inflammatory or autoimmune (AI) conditions and infec-
tive diseases as recently demonstrated by the cytokine storm
during SARS CoV-2 infection.1-3 The increasing knowledge
of molecular biology of the diseases allowed the identification
of the main protagonists of a given physio-pathological pro-
cess and the possibility to use specific therapies and vaccines
against them. In recent years, indeed, we are assisting to a
quick progress in technology and pharmacology fields, as
demonstrated by the development of different immunothera-
pies that are, nowadays, largely used for treating cancer and
AI diseases. Indeed, by targeting specific molecules, antigens
and pathways that are involved in the development of the
disease, it is now possible to efficiently treat the single patient
and the single lesion, thus allowing a personalized treatment.
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However, to reprogram immune cells of the host against can-
cer, for example by removing intrinsic immune suppression,
may also trigger a cascade of events that can be dangerous for
the patient. Therefore, there is the need of novel non-invasive
tools that are able not only to provide a “histological” charac-
terization of the disease, but also to monitor cellular traffick-
ing during and after immunotherapies (ie, check point
inhibitors), thus providing a prompt evaluation of therapeu-
tic efficacy and side effects. At the moment, indeed, thera-
peutic efficacy is assessed by measuring tumor volume with
conventional radiological imaging modalities, such as ultra-
sounds (US), computed tomography (CT) or magnetic reso-
nance imaging (MRI), but this approach can be misleading. A
tumor enlargement after therapy may be caused by either a
real progression of the disease that is not responding to treat-
ment, or by an enrichment of helpful immune cells within
the tumor microenvironment that are playing a crucial role
against cancer. This situation is called “pseudo-progression”
and, despite the evidence of a lesion enlargement, it is a sign
of a good response to treatment by mean of an increased
immune cell infiltrate.4 To differentiate a progression from a
pseudo-progression is not possible with conventional radio-
logical imaging that is based only on “dimensional” criteria
and fails to provide an “in vivo” characterization of infiltrat-
ing immune cells. On the other hands, molecular imaging of
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immune cell trafficking may achieve such differentiation.
Radiomics is also showing to be promising in characterizing
tumor heterogeneity and predicting both prognosis and
response to treatment.5

Amongst the different cells involved in tumor microenvi-
ronment as well as in many chronic inflammatory diseases,
T-lymphocytes are one of the most investigated, since their
role in regulation of immune system in these conditions, is
well known. Targeting tumor infiltrating T lymphocytes
(TILs) is, therefore, becoming a promising strategy for diag-
nostic, prognostic and therapeutic purposes. Nevertheless,
this task cannot be easily accomplished “ex-vivo” by biopsy,
for example, due to the fact that is an invasive procedure, not
all the patients are suitable for a biopsy, not all the lesions are
accessible and, most important, the biopsy is limited to a sin-
gle point and that it does not provide a comprehensive spa-
tial and temporal evaluation of the neighbouring areas that
are closed to sampled point.
In the era of “precision medicine,” we are quickly moving

from these traditional methods towards molecular imaging
that allows the “in vivo” characterization of biologic processes
at the cellular and molecular level. These burgeoning field is
radically revolutionising the way of conceiving a disease,
demonstrating to be useful not only for accurately diagnose a
disease by assessing a specific cellular or molecular target,
but also for selecting candidates to immunotherapy and for
therapy follow-up purposes.3,6

In this optic, Nuclear Medicine (NM) offers a plethora of
specific single photon emission tomography (SPECT) or pos-
itron emission tomography (PET) radiopharmaceuticals and
strategies able to non-invasively assess and monitor immune
cell subtypes in many clinical indications.
In this review, we will provide a panoramic overview of

the state of art and future trends for “in vivo” imaging of lym-
phocytes trafficking. We will not describe direct cell labelling
techniques or reporter gene techniques, but will concentrate
Figure 1 Schematic representation of targets for available recept
cytes, NK cells and B-lymphocytes.
on targeting lymphocytes by using specific receptor-tailored
radiopharmaceuticals (Fig. 1, Table 1).
Present status: published
radiopharmaceuticals
The use of antibodies against specific immune cell popula-
tions, to monitor their trafficking in vivo, has been largely
investigated in both preclinical and clinical settings.7,8 T-cells
and natural killer (NK) cells play a crucial anti-tumor cyto-
toxic effect therefore, they can serve as potential targets for
assessing the response to a specific cancer immunotherapy.9-
11 This would be accomplished by using antibodies against
CD2 and CD7, that are expressed in their surface. Neverthe-
less, the use of a probe against these two markers would not
allow discriminating between NK and T-cells.

Mayer et al., in a preclinical study, compared two mouse-
anti-human antibodies directed against CD2 and CD7,
respectively with a control anti-CD3 clone reporting no
impact on, in vitro, T cell proliferation or apoptotic proper-
ties for both whole anti-CD2 and anti-CD7 and for their
respective fragments.8 Moreover, Fab tracers were also able
to detect the accumulation of anti-tumor T-cells transferred
in a mice with induced acute leukemia, thus providing useful
information on response to adoptive cell therapy (ACT).
Nevertheless, the use of whole anti-CD2 antibodies resulted
in a systemic T-cells depletion and in a reduced anti-tumoral
activity, in vivo, thus again underlying that playing with the
immune system can be problematic and requires a special
attention to the possible side effects on immune system itself.

PET isotopes, for example 11C and 18F, have been tested
for imaging NK trafficking in murine models. The use of
11C-methyl iodide- labelled NKs in fibrosarcoma xenograft
models allowed the quantification of the number of effector
or-tailored radiopharmaceuticals for imaging T-lympho-



Table 1 SPECT and PET Radiopharmaceuticals for Imaging Immune Cells

Target Probe
Immune Cell
Population

Imaging
Modality Isotope Applications References

CD2
CD7

Anti-CD2
Anti-CD7

T-cells
NK

SPECT 111In Preclinical 10, 14, 15
PET 89Zr

11C
18F

Preclinical 8, 12, 13

CD56 Anti-CD56 NK SPECT 99mTc Preclinical 9, 16
CD3 Anti-CD3

(Muromonab,
Visilizumab)

T-cells SPECT 99mTc Preclinical
Clinical

17-21

PET 89Zr Preclinical 22-27
CD4 Anti-CD4 T-cells SPECT 111In Preclinical 33

PET 89Zr Preclinical 34
CD8 Anti-CD8 T-cells PET 89Zr

64Cu
Preclinical 36, 37

CTLA-4
PD-1/PD-L1

Anti- CTLA-4
PD-1/PD-L1

T-cells SPECT 111In Preclinical 39-41
PET 64Cu

68Ga
89Zr

Preclinical 43, 45-49

CD25 IL2 T-cells SPECT 123I
99mTc

Preclinical
Clinical

50-50, 62-69

PET 18F
68Ga

Preclinical 70-73

CD20
CD19

Anti-CD20 (Rituximab,
Ibritumomab)

Anti-CD19

B-cells SPECT 111In
99mTc

Clinical 76-80

PET 124I
89Zr
64Cu

Preclinical
Clinical

81, 82-88

TNF-a Anti-TNF-a
(Infliximab)

B-cells SPECT 99mTc Clinical 89, 90

SDF1-a CXCR4 T-cells
B-cells
Tumoral cells

SPECT 111In Preclinical 99
PET 124I

18F
68Ga

Preclinical
Clinical

100-104
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cells within the tumor and provided information on their
biodistribution in vivo.12 Other researchers genetically modi-
fied NKs to express a chimeric antigen receptor that specifi-
cally binds to the tumor associated ErbB2 (HER2/neu)
antigen and explored the ability of 18F-FDG labelled NKs for
imaging their trafficking in mouse sarcoma cell lines. Autora-
diography showed an increased uptake of the radiopharma-
ceutical in HER2/neu positive tumors and histology
demonstrated that genetically engineered cells accumulated
in the tumors with higher extent compared to parental NK.
Therefore, they concluded that this approach could be
applied for monitoring NK-cell-based immunotherapies.13

NKs has also been labelled with 111In-oxine for SPECT imag-
ing with gamma-camera in patients with metastatic renal car-
cinoma.10 However, only a half of the metastatic lesions
showed an increased uptake of radiolabeled NK cells and
high amount of 111In was released from the cells. Moreover,
111In toxicity negatively impaired NK trafficking into the
tumor. Similar findings were also achieved in patients with
metastatic colorectal cancer and melanoma.14,15

In order to overcome the limitations of ex-vivo NKs label-
ling, it has been investigated the use of anti-CD56 monoclo-
nal antibodies (mAbs) that bind to the CD56 expressed on
NK surface. 99mTc-labelled anti-CD56 was administered in
thyroid tumor xenografts, previously injected with human
NKs. A control group of mice was injected with granulocytes.
After 24 hours 99mTc-labelled anti-CD56 showed higher
tumor-to-background (T/B) ratios in each tumor compared
to the group that received granulocytes. T/B ratios also corre-
lated with tumor infiltrating NKs at histology, thus conclud-
ing that radiolabelled anti-CD56 mAbs could represent
a promising tool for non-invasively image NK cells before,
during and after immunotherapies.9,16 Nevertheless, more
preclinical studies are needed to eventually confirm the feasi-
bility of labelled anti-CD56 in imaging NK trafficking before
translating this approach in humans.

CD3 is another marker of all T-cells that can be labelled
with both SPECT and PET isotopes.

99mTc-labelled anti-CD3 has been used in several pre-
clinical and clinical studies for imaging rheumatoid arthri-
tis and acute rejection in renal transplants.17-21 These
studies mainly used Muromonab (OKT3), the first mAb
that received the approval of FDA for therapy. But also
99mTc-Visilizumab, a humanized anti-CD3 mAb binding
the T cell receptor (TCR) expressed on activated T cells
homing in inflamed tissues, was used in different mouse
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models demonstrating that unlabelled Visilizumab induces
margination of peripheral blood mononuclear cells from
circulation to small bowel and lymphoid tissues (lymph
nodes, spleen, MALT tissue). This mechanism can be
successfully visualized by 99mTc-Visilizumab.17 Overall,
these studies, demonstrated high uptake of the radiophar-
maceutical in T lymphocytes infiltrates.17-21

Compared to SPECT radiopharmaceuticals, PET isotopes
offer the advantage of higher T/B ratios and better image
quality and several efforts have been devoted to the develop-
ment of novel labelled CD3 mAb for PET imaging. In preclin-
ical setting, 89Zr-CD3 mAb was used to monitor T-cells
trafficking in bladder and breast cancer and to assess the effi-
cacy of anti CLA4 therapy in murine models bearing colon
cancer.22-24 In addition to tumoral uptake, these studies
reported an increased uptake in spleen, thymus, lymph
nodes, due to the high expression of CD3+ T-cells in these
lymphatic organs, as well as in the liver, due to its role in the
clearance of the mAb.23, 25-27

Nevertheless, given the affinity to native TCR, mAb against
CD3 may have an effect on T-cells functions as demonstrated
by Beckford and colleagues, who reported a relative deple-
tion of CD4+ T-cells and an expansion of CD8+ T-cells after
the administration of 89Zr-anti CD3.22

Overall these studies, together with other studies using
non radioactive probes for CD3+ cells imaging, for example
using nanobubbles for US or nanoparticles for MRI imag-
ing,28-30 clearly demonstrated that this approach is very
promising for visualizing and quantifying T-cells infiltrate in
many oncologic and inflammatory diseases.
The approaches previously described allow imaging total

T-cells population without the possibility to discriminate
between regulatory T-cells, CD4+ and CD8+ since all these
subsets express CD3, CD2 and CD7. Nevertheless, it is also
possible to imaging CD4+ and CD8+ cells, separately. CD4+
T lymphocytes are involved in the pathogenesis of several
immune-mediated diseases, such as multiple sclerosis and
inflammatory bowel diseases (IBD) and other AI
disorders.31,32 111In-labelled anti CD4 (whole Ab) was used
in animal models of colitis and showed increased uptake in
inflamed bowel segments.33 Others investigated the possible
use of 89Zr-anti CD4 cys-diabody, that does not include the
Fc region of Abs, for imaging colitis in mice. An increased
uptake in inflamed bowel as well as in regional lymph-nodes
was observed as proof of the involvement of CD4+ cells in
inflammatory conditions and this was also confirmed by
immunohistochemistry. Moreover, they used unlabeled anti
CD4 cys-diabody to assess its impact on the number of circu-
lating T-cells and found that a dose of 40 mg is able to deter-
mine a transient depletion of T-cells in blood, lymph-nodes
and spleen, thus suggesting an impaired functionality due to
the binding of this diabody to TCR.33,34

The other major T-lymphocyte subset, namely the cyto-
toxic CD8+ cells, have been engineered and labeled with ß+
isotopes for immune-PET imaging.35,36 Fragments and mini-
bodies were, indeed, developed in order to accelerate plasma
clearance, remove the Fc effector functions, thus being bio-
logically inert but maintaining the specific targeting. These
minibodies fragments have been labeled with 64Cu35 and
89Zr36 and were used in different preclinical models of dis-
eases and immunotherapeutic models. In the first study of
Tavar�e et al., they injected two different 64Cu labeled anti-
CD8 minibodies into antigen-positive, antigen-negative,
immunodeficient, antigen-blocked, and antigen-depleted
mice in order to assess the distribution of the radiopharma-
ceuticals in lymphoid tissues. Both engineered minibodies
retained their ability to target CD8+ cells in antigen-positive
rats showing high uptake in spleen and lymph-nodes.35 The
same group also used 89Zr for labelling anti-CD8 cys-diabody
to detect changes in tumor-infiltrating CD8 cells in preclini-
cal tumor and immunotherapy models including ACT trans-
fer, agonistic antibody therapy, and immune-checkpoint
inhibitors (anti�PD-L1), thus providing new tools to
assess antitumor immune responses at different kind of
immunotherapies.36

In recent years, immune checkpoint inhibitors have
become a successful strategy to treat cancer. In particular, the
discovery of cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), programmed cell death protein 1 (PD-1) and its
ligand (PD-L1), expressed on activated T-cells and showing
inhibitory properties on T-cells activation, lead to the devel-
opment of CTLA-4 and PD-1 blockers thus quickly becom-
ing a promising immune-therapy for advanced cancer.37

Nevertheless, a non-negligible percentage of patients fail to
respond to these treatments, therefore, there was the clinical
need to develop efficient tools to predict and to promptly
evaluate patients’ response. To this purpose, several
strategies have been proposed to image both repressor and
co-stimulatory molecules.7

In particular, antibodies specifically directed against PD-L1
have been labeled with 111In, 64Cu, 68Ga and used in differ-
ent tumor xenografts.38-43 Overall, these preclinical studies
found proportionality between radiopharmaceutical uptake
and PD-L1 expression in tumoral cells, thus underlining the
potential role of this approach to select patients eligible to
anti PD-1/PD-L1 treatments. In addition to whole antibodies,
89Zr labeled engineered fragments have also been developed
and used for immuno-PET imaging in nude mice, bearing
tumor xenografts with high PD-L1 expression, and in healthy
non-human primates (NHPs), to assess the biodistribution.44

The visualization of PD-L1+ tumoral cells in xenografts mod-
els appeared from 24 h after injection and persisted up to
120 h, with high T/B ratio. In the NHP models, PET imaging
showed moderate accumulation in liver, kidneys, spleen,
lymph nodes, and salivary glands.

Radiolabelled anti-PD-1 drugs have been also tested to
monitor its expression on TILs. In melanoma models, 64Cu-
labelled anti-mouse PD-1 antibody showed high uptake in
tumor lesions and spleen45 and, in another experiment,
64Cu-labelled humanized antibody pembrolizumab con-
firmed the feasibility of this approach in detecting PD-1
expression by a subpopulation of TILs.46

CTLA-4 has also become a target to predict a good
response to immune checkpoint inhibitors and it has
been mainly labelled with 64Cu for PET imaging in pre-
clinical setting.



Figure 2 Axial sections of SPECT/MRI with 99mTc-HYNIC IL2 show-
ing increased pancreatic uptake in a patient with insulitis.
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In an interesting experiment, 64Cu-labelled Ipilimumab
was used in different cell lines of non-small cell lung cancers
(NSCLC) showing different degrees of CTLA-4 expression.
Notably, labelled Ipilimumab showed high uptake in A559
tumors (with high expression of CTLA-4) and lower uptake
in H358 and A460 cell lines (with low expression of CTLA-
4), thus once again underlying the potential role of these tai-
lored approaches in quantifying target molecules and in pro-
viding crucial prognostic information in terms of therapy
efficacy prediction.47 Other authors, used 64Cu labelled
whole murine antibody against CTLA-4 in mice bearing
tumor xenografts and in immune competent BALB/c mice in
order to compare the biodistribution. PET images showed a
significantly higher uptake in the first group, with a specific
binding to CTLA-4, compared to normal mice.48

Imaging of CKs offers several advantages over the use of
antibodies. First of all, CKs have a small molecular weight
and therefore show a quick plasma clearance, secondly, they
are widely available thanks to the large adoption of recombi-
nant DNA methodologies, and finally they are not immuno-
genic. Amongst the different CKs that have been studied, IL-
2 has become an attractive target for imaging in the last deca-
des being a surrogate marker of activated T lymphocytes.
This cytokine is composed by 133 amino acids and has a
molecular weight of 15 KDa. It is produced and secreted by
T-lymphocytes (mainly CD4 and CD8) and exerts a crucial
role in promoting the proliferation of T and B lymphocytes,
the differentiation of monocytes, macrophages, NK and oli-
godendrocytes. Biological effects of IL2 are mediated by its
specific interaction with IL2 receptor (IL2R), a hetero-trimer
composed by three units, namely CD25, CD122 and CD132,
that is mainly expressed in activated T-lymphocytes. CD25 is
the most important unit for biological activities of IL2. There-
fore, imaging with radiolabelled IL2 provides an in vivo
detection of CD25+ cells.
Our group has more than 30 years of experience in this

field. The first attempts date back to the end of 800s with
123I-labelled IL2 that was successfully used, in both preclini-
cal and clinical studies, for imaging different clinical indica-
tions characterized by T-lymphocytes infiltrate.49-54 In
particular, 123I-IL2 was able to image pancreatic ß cells of
rats bearing type 1 diabetes mellitus (DM1) thus, providing a
marker of insulitis, that often precedes the clinical onset of
DM1.49,51 These findings were confirmed by CD25+ staining
at histology that detected higher presence of activated T-lym-
phocytes in the pancreas of diabetic mice, compared to nor-
mal controls. This approach was also used in patients for
detecting T-lymphocytes infiltrate in coeliac disease, prior
and post gluten-free diet showing higher uptake of 123I-IL2
in the bowel at basal time and lower uptake after an appro-
priate diet and scintigraphic findings were confirmed by jeju-
nal biopsies.52 In Crohn’s disease (CD) 123I-IL2 was able to
differentiate quiescent disease from active phases.53 Given
the very promising results achieved also in other autoim-
mune and chronic inflammatory diseases, such as Hashimoto
thyroiditis, Graves’ diseases, vulnerable atherosclerotic
plaques or rejecting transplants,54-56 as well as oncologic
diseases, for example head and neck carcinoma and
hypernefroma,57,58 several efforts have being devoted toward
the development of 99mTc-labelled IL2.59, 60 Preclinical and
clinical studies on 99mTc-HYNIC-IL2 achieved similar results
in terms of specific binding to IL2R, distribution and safety
obtained with iodinated IL2 with the advantage of the use of
an isotope that is less expensive, does not require cyclotron,
is more available, has better physical and dosimetric proper-
ties and it is more suitable for gamma-camera imaging
(Fig. 2). Overall preclinical and clinical studies with labelled-
IL2 showed quick plasma clearance, high uptake in kidneys,
liver and spleen. 99mTc-HYNIC-IL2 was largely used in the
past decades for imaging the same indications previously
studied with iodinated-IL2, with the addition of Sj€ogren’s
Syndrome and melanoma lesions.61-68 In particular, in the
most recent clinical study, scintigraphy with 99mTc-HYNIC-
IL2 was performed at basal time and after immunotherapy
with Ipilimumab and Pembrolizumab in five patients with
metastatic melanoma. The uptake of labelled IL2 in cutane-
ous lesions was correlated with the entity of TILs at biopsy
and, interestingly, more avid lesions showed a better
response to treatment compared to lesions that showed lower
or absent uptake at basal scintigraphy, thus underlying the
potential role of this approach not only in selecting patients
eligible to a specific immunotherapy, but also in discriminat-
ing true progression (bad prognosis) from pseudo-progres-
sion (good prognosis).3,68

More recently, several efforts have been devoted to
develop a reproducible radiolabelling procedure with 18F
and 68Ga for immune-PET imaging.69-72 First attempts were
conducted by Di Gialleonardo et al. by using 18F and obtain-
ing good results in terms of biological activity of IL2 and its
binding to CD25+ cells,69 nevertheless, this procedure is
extremely long, laborious and expensive, it requires cyclo-
tron and very high activities of 18F for the labelling and it
ends with limited doses of radiopharmaceutical that would
be sufficient for one or two patients maximum.69-71 The
increasing availability of 68Ge/68Ga generators is moving the
attention of the researcher to develop 68Ga-labelled IL2 but
the choice of chelator is the main issue since most of these
agents require high temperatures for the conjugation, thus
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causing degradation of IL2. Nevertheless, the advent of new
chelating agents that can be handled at room temperature is
opening new opportunities to label IL2 with 68Ga whose
half- life, perfectly fits with the short plasmatic half-life of
IL2.
Finally, given the poor solubility in aqueous solvents and

the tendency to aggregation of IL2, the labelling procedure is
difficult but the promising and encouraging results achieved
so far in many clinical indications are warranting the devel-
opment of ready-to-use kits for labelling.
B-lymphocytes represent the other destiny of maturation

and differentiation of a lymphocyte and they play a central
role in humoral immunity of adaptive immune system, by
producing antibodies after the binding of an antigen to B cell
receptor (BCR9 expressed on their surface. Their role in auto-
immunity, chronic inflammatory diseases and hematologic
malignancies is nowadays well established. Indeed, in past
decades several radiopharmaceuticals and approaches have
been developed for tracking B-cells’ network.73 Direct label-
ling of lymphocytes has been attempted first with 51Cr74 and
then with 111In75 and provided to be a non-invasive tool to
in vivo monitor their homing in several AI diseases as well as
in lymphoma. Nevertheless, a larger amount of literature
exists on indirect labelling of B-cells, by using MAbs against
specific surface antigens expressed by B-lymphocytes, in
order to achieve a selective imaging of this population. Since
the introduction of anti-CD20 mAbs in clinical practice for
the treatment of lymphomas and several AI disorders, it has
become a target for imaging with SPECT and PET
radiopharmaceuticals.76,77 Immunoscintigraphy with 99mTc-
rituximab has been successfully used in patients with rheu-
matoid arthritis (RA), psoriasic arthritis (PsA), systemic lupus
erythematosus (SLE), polychondritis, sarcoidosis, Behcet’s
disease, dermatopolymyositis, Sjogren syndrome (SS) stud-
ied by Malviya et al.78. In these patients, whole body planar
images were acquired at six and 20 post injection (p.i.) before
treatment with unlabelled rituximab (Fig. 3). The scan
showed increased uptake of the radiopharmaceutical in
affected sites, depending on the pathology, after 6 hours and
persisting, with higher T/B ratios, at 20 hours. Interestingly,
in patients with RA and PsA, 99mTc-rituximab showed a vari-
able uptake in some affected joints but not in all the painful
or swelling joints, thus underlying that different sites may
Figure 3 Anterior views of 99mTc-rituximab in a patient with r
with 16nlabeled rituximab (right panel).
show different degree of B-lymphocytes infiltration. This bio-
marker could be, therefore, extremely useful for mapping B-
cells homing in the single patient, not only to assess the eligi-
bility of that patient for the treatment with cold antibody,
but also to select the sites that will benefit from this personal-
ized treatment.78,79 Rituximab has also been labelled with
124I for immune-PET imaging in five patients affected by RA
reaching similar conclusions and demonstrating once again
the utility of labelled anti-CD20 in assessing disease activity,
nevertheless the implementation of 124I-rituximab in clinical
practice is not justified by the high costs.80 Relapsing or
refractory non-Hodgkin lymphoma (NHL) is a paradigmatic
example of the theranostic opportunities provided by NM
imaging. A pre-therapy scintigraphy using 111In- Ibritumo-
mab (Zevalin), another anti-CD20 antibodies approved for
the therapy of NHL, or in alternative a 89Zr-rituximab
immuno-PET, is performed in order to assess CD20 expres-
sion and to predict the response to cold Zevalin or to the
radio-immunotherapy with 90Y or 177Lu-Zevalin.81-86

Anti-CD19 is also been labelled with 64Cu for imaging
experimental AI encephalomyelitis in mice. PET images
showed significantly higher uptake in affected mice com-
pared to normal controls as also demonstrated by ex vivo
analysis.87

Anti-TNF-a mAbs represent another possible approach in
in vivo image B-cell trafficking (Fig. 4).3,11

99mTc-infliximab scintigraphy in patients with CD was
able to discriminate responders and non-responder patients
treated with anti-TNF-a.88 In another study conducted in
patients with active RA 99mTc-infliximab scintigraphy was
performed before intra-articular treatment with unlabelled
infliximab, and provided variable degree of joint uptake
being able to predict the success of therapy.89
Future trends
The rapid improvements in technology and radiochemistry
are revolutionizing the approach to many oncologic and
non-oncological diseases allowing an in vivo histological
detection and quantification of a particular molecule, cell or
pathway. PET radiopharmaceuticals such as 18F, 68Ga, 64Cu
are becoming more and more available in many centers and
heumatoid arthritis before (left panel) and after therapy



Figure 4 Anterior views of 99mTc-adalimumab (anti TNF-a) in a
patient with rheumatoid arthritis showing increased expression of
TNF-a in the hands.
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may fit better with the biological half-life of small molecules,
CKs and peptides. Indeed, despite the use of whole antibod-
ies has been largely adopted, mainly in the past decades, their
long circulation times due to slow plasma clearance and the
need of long-lived isotopes remains a major concern that lim-
its their use in clinical practice.90 Therefore, CKs, peptides
and minibodies will be the future of molecular imaging. The
world of NM imaging of immune cells is constantly expand-
ing and will continue to grow thanks to the discovery of new
targets and the development of novel tailored radiopharma-
ceuticals able to image cancers, AI diseases, inflammatory
and infective conditions at molecular level. What we can
image today is just the “tip of the iceberg” but, in future, we
will concentrate on other unexplored protagonists of tumor
biology and other components involved in the pathogenesis
of AI conditions or novel emerging infective diseases, thus
providing new insights on their pathogenesis and new
advanced tools for personalized diagnosis and therapy.
By using 18F-FDG PET/CT, we recently speculated that

lymphopenia observed during SARS CoV-2 could be due to
the margination of T-lymphocytes into bowel rather their
apoptosis or functional exhaustion, thus inducing large bowel
inflammation.91 Compared to normal subjects, COVID
patients showed significantly higher FDG uptake into ileum,
caecum and right colon wall. After recovery, this hypermetab-
olism tend to normalize in all these segments except for right
colon. Moreover, we found an inverse correlation between
CD4+ cells and 18F-FDG uptake in the wall of large bowel,
thus suggesting a possible migration of T-lymphocytes into
the bowel and explaining the underlying causes of lymphope-
nia frequently observed in COVID patients. If confirmed by
larger studies by using more specific strategies for imaging T-
cells trafficking, this would be relevant to better understand
the pathogenesis of this emerging infection and to develop
specific therapeutic strategies or vaccines.

Imaging T and B-lymphocytes proved to be a successful
strategy to evaluate, quantify and monitor their trafficking
before and after immune-modulatory drugs providing unde-
niable prognostic information in terms of prediction of ther-
apy response and, therefore, being able to plan the most
appropriate treatment. Amongst the different approaches
investigated, radiolabelled CKs, peptides and minibodies
seem to be the most promising, versatile and potentially
translatable in clinical practice for imaging a wide variety of
immune-mediated diseases. At the moment, one of the major
impediments is the lack of ready-to-use kits for labelling but
several efforts have been already put in place and hopefully
they will become available in upcoming years.

In addition to T and B-lymphocytes imaging, there are a
multitude of attractive theranostic approaches under investi-
gation and are providing very promising results such as fibro-
blast activation protein for imaging tumor stroma,
angiogenetic molecules such as vascular endothelial grow fac-
tors, reporter genes therapies, CAR-T cells, the use of nano-
particles and many other alternative ways to image the
complex interaction between immune system and host.92

Amongst these novel approaches, imaging of chemokine
receptor CXCR4, is becoming more and more attractive due
to its role in hematopoiesis, organogenesis, vascularization
and its involvement in several infective, inflammatory and
neoplastic diseases.93-97 CXCR4 is expressed by hematopoi-
etic stem cells, as well as by T and B lymphocytes, neutro-
phils, monocytes, macrophages, eosinophils and in tumoral
cells of both solid and hematological cancers. In particular, it
is now well clear that, after its binding with its endogenous
ligand, namely stromal cell-derived factor (SDF1-a), this
cytokine triggers signal transduction cascades that induce
tumor growth and survival. Moreover, the CXCR4 expressed
by primary tumor, interacts with the SDF1-a expressed by
distant organs, such as liver, bone marrow, lungs, thus pro-
moting in distant metastatization.95-97

These aspects represent interesting opportunities for the
development of CXCR4-specific probes for both imaging and
therapeutic purposes and several efforts are being directed in
this field. Both SPECT, mainly with 111In98 and PET radio-
pharmaceuticals, with 124I and 18F99 have been developed
and tested in preclinical models but the high liver and intesti-
nal uptake and the low T/B ratio were the main limitations to
their use in humans. One of the most promising radiophar-
maceuticals for imaging CXCR4 network is represented by
68Ga-Pentixafor that has been tested in preclinical models of
human small cell lung cancer xenografts100 as well as in
humans mainly affected by lung cancer, pancreatic cancer,
liver cancer and multiple myeloma, where 18F-FDG has
some limitations,101,102 or for staging and therapy assess-
ment of non FDG avid lymphoma variants.103 Preliminary
evidences suggest 68Ga-Pentixafor as a valuable candidate, in
future, for imaging CXCR4 network in cancer, being able to
select patients who will benefit from target therapies and to
evaluate treatment response with higher accuracy than con-
ventional imaging modalities.
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Overall, these novel molecular approaches could be of par-
amount importance also for the development of specific can-
cer vaccines able to induce immune response against specific
tumor antigens. Many speculations and clinical trials are
ongoing to assess the efficacy of cancer vaccines, neverthe-
less, despite encouraging results have been obtained in pre-
clinical studies, their efficacy in clinical trials is controversial
mainly due to the of the huge complexity in the targeting
specific antigens that are exclusively expressed by cancer,
thus preventing AI reactions against normal cells.104 In this
optic, NM imaging would facilitate the identification of spe-
cific target antigens thus accelerating the research on novel
therapeutic strategies.
An important prerequisite for clinical translation of all

these approaches is the need of prospective, randomized tri-
als also better exploring dosimetric and genomic aspects in
order to better plan a diagnostic and therapeutic strategy
avoiding toxicity and undesirable effects.105
Conclusions
Medical research is moving fast and is quickly changing the
way to approach to patients, diseases and treatments. There
is now the clinical need to identify molecular targets that are
specifically expressed by a pathologic condition for guiding a
tailored therapy. But, it is interesting to note, that the concept
of “personalized treatment” is rising up from the “depersonal-
ization” of the patient that is no more conceived in his and/or
her wholeness, rather than as a complex network of cells,
antigens, pathways and biological phenomena that offer the
possibility to be studied at molecular level. Nevertheless,
identifying specific targets would allow choosing the most
appropriate treatment for that patient and for that disease,
thus providing crucial prognostic information for therapy
decision-making.
Molecular imaging of lymphocytes is demonstrating to be

a promising strategy to image a huge variety of diseases.
Potentially, all the conditions in which immune system is
involved, ranging from infective and inflammatory disorders,
passing from AI diseased and ending to cancer, would benefit
from this kind of approach. Many radiopharmaceuticals and
diagnostic strategies have been, and are currently, investi-
gated being the use of labelled CKs, peptides and minibodies
the most promising. Several technical issues should be solved
before their licit translation in clinical practice, but the quick
progress in instrumentations, technology, radiochemistry
and dosimetric field will make them valuable allies in our
daily practice.
The future of molecular imaging is bright.
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