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Sterile inflammation characterized by unresolved chronic inflammation is well

established to promote the progression of multiple autoimmune diseases,

metabolic disorders, neurodegenerative diseases, and cardiovascular diseases,

collectively termed as sterile inflammatory diseases. In recent years, substantial

evidence has revealed that the inflammatory response is closely related

to cardiovascular diseases. Cyclic guanosine monophosphate–adenosine

monophosphate synthase (cGAS)-stimulator of interferon genes (STING)

pathway which is activated by cytoplasmic DNA promotes the activation

of interferon regulatory factor 3 (IRF3) or nuclear factor-κB (NF-κB), thus

leading to upregulation of the levels of inflammatory factors and interferons

(IFNs). Therefore, studying the role of inflammation caused by cGAS-STING

pathway in cardiovascular diseases could provide a new therapeutic target for

cardiovascular diseases. This review focuses on that cGAS-STING-mediated

inflammatory response in the progression of cardiovascular diseases and the

prospects of cGAS or STING inhibitors for treatment of cardiovascular diseases.

KEYWORDS

STING, cGAS, inflammation, cardiovascular diseases, therapy

Introduction

The first line of defense in mammals is orchestrated by the innate immune

system which recognizes various pathogens and damage-associated molecular patterns

(PAMPs and DAMPs) through pattern recognition receptors (PRRs) (1). DNA, RNA,

lipopolysaccharide (LPS), peptidoglycan, and other components produced by viruses,

bacteria, and other invading microorganisms comprise PAMPs, whereas high mobility

group box 1 (HMGB1), endogenous DNA, and other substances induced by cellular
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stress are called DAMPs (2). DNA receptors such as cGAS which

acts as an important PRR in the cytoplasm and recognizes free

cytoplasmic DNA activate STING by synthesizing 2′-3′-cyclic

GMP-AMP (2′-3′-cGAMP), indicating that cGAS-STING

pathway plays a critical role in the innate immune response

(1, 3–5). Activated STING is transported by vesicles through

the endoplasmic reticulum-Golgi intermediate compartment

(ERGIC) and activates TANK binding kinase 1 (TBK1),

interferon regulatory factor 3 (IRF3), nuclear factors-κB

(NF-κB), and other downstream signaling molecules (6–9).

Activation of IRF3 and NF-κB can upregulate the levels of

IFNs, interferon stimulated genes (ISGs), and inflammatory

factors, however, in a large number of conditions, excessive

inflammation causes damage to host tissue and leading to organ

dysfunction, which in turn regulate the progression of multiple

autoimmune diseases, metabolic disorders, neurodegenerative

diseases, and cardiovascular diseases, collectively termed as

sterile inflammatory diseases (10–13). Inflammatory processes

crucially regulate the onset, progression and outcomes of

cardiovascular diseases (13). In the onset and progression of

atherosclerosis, a large number of mediators which regulate the

inflammatory processes play pivotal roles (14). Coincidentally,

in the pathogenesis of heart failure, the persistent inflammatory

response is functionally important for contributing to adverse

outcomes (15). Yearly, the important role of cGAS-STING

signaling pathway in sterile inflammation has historically

been appreciated (11). Emerging evidence supports that

targeting cGAS-STING-mediated inflammation can be

effective in treatment for cardiovascular diseases (16–21). This

review focuses on the role of cGAS-STING-mediated sterile

inflammation in cardiovascular diseases as well as the discovery

of cGAS and STING inhibitors.

The activation of
DNA-cGAS-STING-mediated
inflammation in cardiovascular
diseases

Under cardiovascular pathological conditions, disrupting

DNA compartmentalization and/or its metabolism leads to

cGAS activation (22, 23). Cytoplasmic DNA is accumulated

by a variety of ways, including the efflux of mtDNA and

nuclear DNA (micronuclei) into cytosol induced by membrane

integrity following mitochondrial stress and chromosomal

damage, extracellular DNA released from dying cells, DNA

aggregation caused by loss-of-function gene mutations in the

nucleases (DNase I, DNase II, TREX1, and RNase H2) (24–

26). ELISA, LC-MS, and LC-MS/MS are the main approaches

to detect the content of cGAMP in heart or vascular tissues

(16, 21, 27, 28). Immunofluorescene staining with dsDNAand

qPCR of cytosolic mtDNA are the main approaches to detect the

content of cytosolic DNA in heart or vascular tissues (21, 28–35).

Oxidative stress, mitochondrial damage, and mtDNA leakage

are considered to be the main reason for generation of cGAMP

or accumulation of cytosolic DNA in cardiovascular diseases

(16, 21, 29–35). Herein, we summarize the studies that have

uncovered the increased content of cGAMP or cytoplasmic

DNA in cardiovascular diseases (Table 1).

Recognizing cytoplasmic DNA by cGAS, generated cGAMP

binds to STING and induces the formation of STING dimer

(4). Thus, reticulum STING which promotes the recruitment

and activation of TBK1 is transported to the Golgi apparatus

via the ERGIC, where palmitoylation of its Cys88 and Cys91

sites further promotes the recruitment and activation of

TBK1, thereby activating IRF3 and NF-κB (36, 37). Nuclear

transcription of IRF3 or NF-κB promotes the expression of

downstream inflammatory factors such as TNF-α, IL-6, IL-

1β, MCP-1, and IFNs, eventually leading to the inflammatory

response, suggesting activation of IRF3 or NF-κB play an

important role in sterile inflammatory diseases (9, 12, 22, 24, 38–

40). Furthermore, the C- terminal tail (CTT) is necessary for

STING to activate TBK1 and IRF3, and there is a conservative

consensus motif in the CTT (pLxIS; p is hydrophilic and

x is any residue), which is phosphorylated at Ser366 in

human STING (Ser365 in mice) (41, 42). This phosphorylation

is mediated by TBK1, which activates IRF3. In addition,

STING which is phosphorylated at Ser374 in human STING

(Ser373 in mice) activates inhibitor of nuclear factor-κB kinase

(IKK) during endoplasmic reticulum translocation, resulting

in the phosphorylation of inhibitor of nuclear factor-κB (IκB)

through ubiquitin-proteasome degradation and the release of

free NF-κB (43–45). Additionally, E3 ubiquitin ligase TNF

receptor associated factor 6 (TRAF6) mediates the linkage of

STING to K63 multiubiquitin chains, which then activates

NF-κB via the TGF-β activated kinase-1(TAK1)/TAK1 binding

protein2/3(TAB2/3)/IKK pathway (46). These data suggested

that STING might directly activate NF-κB to induce the

inflammatory response. However, contrary to this, it has been

reported that STING activates NF-κB through TBK1 (47,

48). At present, this is a controversial viewpoint that needs

further exploration.

In summary, STING is an important intracellular adaptor

protein that mediates the cellular inflammatory immune

response (Figure 1), and exploring the STING-mediated

inflammatory response will help to uncover the role of STING

in inflammatory diseases.

IRF3-mediated inflammation

Cryo-electron structural data imply that TBK1 is able

to phosphorylate the CTT of STING of an adjacent STING
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TABLE 1 cGAMP or cytosolic DNA was detected in experimental models of cardiovascular diseases.

Elevated

indicator

Test

sample

How to detect The reason for the

elevated level of

cGAMP or

cytosolic DNA

Diseases Changes in cGAS-STING

pathway

Experimental model Reference

Heart

disease

cGAMP Heart tissue ELISA assays Oxidative stress Diabetic

cardiomyopathy

Increased expression of cGAS,

elevated phosphorylation of TBK1

and IRF3

STZ and HFD-induced mice (16)

cGAMP Heart tissue LC-MS Impaired mitophagy Inflammation Elevated levels of ISGs and

inflammatory cytokines

exhaustive exercise-induced

Prkn−/− Pink−/− mice

(27)

Cytosolic

mtDNA

Heart tissue qPCR quantified

mtDNA release

Mitochondrial damage Smoke

exposure-induced

cardiac anomalies

Increased expression of

cGAS and STING

Mice following side-stream smoke

exposure

(30)

Cytosolic

DNA

Heart tissue Immunofluorescence

double staining

with anti-dsDNA

and motifilin

mtDNA leakage Diabetic

cardiomyopathy

Increased expression of cGAS and

STING, elevated phosphorylation

of TBK1 and IRF3

HFD-fed db/db mice (34)

Cytosolic

DNA

Cardiomyocyte Immunofluorescence

double staining

with anti-dsDNA

and motifilin

mtDNA leakage Diabetic

cardiomyopathy

Increased expression of cGAS and

STING, elevated phosphorylation

of TBK1 and IRF3

PA-stimulated H9C2 cells (34)

Vascular

disease

cGAMP Atherosclerotic

lesion

LC-MS/MS DNA damage Atherosclerosis Increased expression of STING Atherosclerotic patients,

western-type diet-induce

Apoe−/− mice

(21)

cGAMP Endothelial

cells

LC-MS Transfection with DNA Endothelial

dysfunction

Elevated phosphorylation of

STING, TBK1, and IRF3

Plasmid DNA or

mtDNA-stimulated hLMVECs

(28)

Cytosolic

DNA

Aortic tissue Immunofluorescence

double staining

with anti-dsDNA

and anti-Tommo20

Oxidative stress Aortic aneurysm

and dissection

Elevated expression and

phosphorylation of STING, TBK1,

and IRF3

Patients with ascending thoracic

aortic and dissection, HFD and

angiotensin II-challenged mice

(29)

(Continued)
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TABLE 1 Continued

Elevated

indicator

Test

sample

How to detect The reason for the

elevated level of

cGAMP or

cytosolic DNA

Diseases Changes in cGAS-STING

pathway

Experimental model Reference

Cytosolic

DNA

Vascular

smooth muscle

cells

Immunofluorescence

double staining

with anti-dsDNA

and anti-Tommo20

Oxidative stress Aortic aneurysm

and dissection

Elevated expression and

phosphorylation of STING, TBK1,

and IRF3

H2O2-stimulated aortic SMCs (29)

Cytosolic

DNA

Endothelial

cells

Immunofluorescence

double staining

with anti-dsDNA

and mitoTracker

Mitochondrial damage Endothelial

inflammation

Elevated phosphorylation of IRF3 PA-stimulated human aortic ECs (35)

Cytosolic

DNA

Atherosclerotic

lesion

Immunogold

staining with

dsDNA

DNA damage Atherosclerosis Increased expression of STING western-type diet-induce

Apoe−/− mice

(21)

Cytosolic

mtDNA

Endothelial

cells

qPCR of mtDNA in

cytosolic fraction

Mitochondrial damage Impaired

angiogenesis

Increased expression of cGAS and

STING, elevated phosphorylation

of IRF3

PA-stimulated human aortic ECs (31)

Cytosolic

mtDNA

Endothelial

cells

qPCR of cytosolic

mtDNA

GSDMD-mediated

mtDNA leakage

Endothelial

dysfunction

Not detected LPS-stimulated hLMVECs (28)

Cytosolic

mtDNA

Endothelial

cells

qPCR of cytosolic

mtDNA

Mitochondrial damage Endothelial-to-

mesenchymal

transition

Increased expression of cGAS and

STING, elevated phosphorylation

of IRF3

PA-stimulated human aortic ECs (32)

Cytosolic

DNA

Macrophage ELISA assays Not given Atherosclerosis Not detected oxLDL-stimulated J774.A1 cells (33)
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FIGURE 1

DNA-cGAS-STING-mediated inflammation. Endogenous or exogenous DNA leads to cGAS activation, which catalyzes the production of

cGAMP. Activated STING induced by cGAMP not only triggers the activation of TBK1-IRF3 and NF-κB which induce the transcription of IFNs and

inflammatory factors, but also prompts NLRP3 inflammasome activation through lysosomal rupture-induced K+ e	ux.

dimer, rather than the CTT of its own dimer (41). During

ER exit of STING, STING oligomer is transported by

vesicles through the endoplasmic reticulum-Golgi intermediate

compartment (ERGIC), where brought into close proximity

to the catalytically active IRF3 (8, 49). Phosphorylated

IRF3 forms a dimer that enters the nucleus and binds to

specific gene promoters to promote up-regulation of IFNs,

ISGs, and inflammatory factors. IRF3 was reported to be

involved in the pathological process after MI, whereas there

was a decrease in cardiomyocyte apoptosis in the IRF3-

deficient mouse model, which further improved the remodeling

after MI (50). Additional studies showed phosphorylated

IRF3 subsequently translocated into nucleus and increased

the expression of NOD-like receptor protein 3 (NLRP3),

leading to the development of sepsis and sepsis-induced

cardiomyopathy (19). Furthermore, adioprotective 105 kDa

protein (RP105), a negative regulator of TLR4, which inhibited

transcriptional activity of IRF3, performed a protective role

in myocardial ischemia reperfusion injury by anti-apoptosis

approach (51). These evidences indicated IRF3 was involved in

the pathological cardiomyopathy.

Chronic activation of STING-IRF3-mediated inflammation

contributes to inflammatory cardiovascular diseases. In fact,

free fatty acids cause activation of the STING-IRF3 pathway

and an increase in adhesion factors such as vascular cell

adhesion molecule 1 (VCAM-1) and intercellular adhesion

molecule 1 (ICAM-1) in endothelial cells, which can be

reversed by STING knockout (35). Moreover, a moderate-to-

strong immunoreactivity effect associated with IRF3 in the

endothelium and macrophages of the atherosclerotic plaques

in patients with coronary heart disease and in hyperlipidemic

mice (52). Nevertheless, IRF3 deficiency suppresses the

secretion of VCAM-1 and the expression of ICAM-1, which

subsequently attenuates macrophage infiltration in HFD-

induced Apoe−/− mice (52). The above inflammatory

factors mediated by the STING-IRF3 pathway induce the

inflammatory response, resulting in different degrees of injury

to organs.
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NF-κB-mediated inflammation

STING activates IKK complex on the Golgi apparatus

and phosphorylates the transcription factor IκB, resulting in

its degradation through the ubiquitin-proteasome pathway,

releasing free NF-κB into the nucleus (43, 48, 53). In

keratinocyte, DNA damage signals are transmitted to TRAF6 to

activate STING. In this process, TRAF6 acts as an E3 ubiquitin

ligase to mediate the linkage of STING to K63 multiubiquitin

chains. K63 multiubiquitin chains assemble TGF-β activated

kinase-1 (TAK1), TAK1 binding protein2/3 (TAB2/3), and

IKK to activate NF-κB and up-regulate inflammation (46).

Although many studies have shown that STING directly

activates NF-κB and causes inflammation, there is also literature

indicating that STING activates NF-κB through the TRAF6-

TBK1 axis. Two studies from different research groups showed

that IKKε as an isoenzyme of TBK1 involved in STING-

mediated NF-κB activation (43, 45). Therefore, whether STING-

NF-κB is mediated by TBK1 remains to be further clarified.

One thing is certain that phosphorylation of STING at

Leu373 is critical for NF-κB activation (44, 45), however,

the signal transduction pathway remains to be seen in

the future.

In high-fat diet-induced mice, the STING-NF-κB pathway

is activated in kupffer cells and inflammatory factors such

as IL-6, IL-1β, and TNFα are increased. However, the

inflammatory response in the livers of mice is reversed by

STING knockout or NF-κB inhibitor (54, 55). Recently,

activation of the STING-NF-κB pathway has been found

in mouse models of acute and chronic kidney injury

(56, 57). In the acute kidney injury of cisplatin-induced

mice, mitochondrial damage in renal tubular epithelial cells

leads to the leakage of mitochondrial DNA into the cytoplasm

and activation of the cGAS-STING-NF-κB pathway, eventually

contributing to the upregulation of inflammatory factors

(57). Consistently, renal tubular cell-specific transcription

factor A (TFAM) knockout activates the STING-NF-κB

pathway, leading to chronic kidney inflammation (57).

In summary, the STING-NF-κB pathway activates classic

inflammatory factors such as IL-6 and TNF-α and induces the

inflammatory response.

NLRP3-mediated inflammasome
activation

NLRP3 inflammasome activation which promotes pro-

inflammatory cytokines secretion and cysteinyl aspartate

specific proteinase (Caspase) activation plays a vital role in

the innate immune system (58, 59). Moreover, in sensing

DAMPs, increased nuclear localization of pro-Caspase-1

and activated Caspase 1 upregulated inflammatory genes in

lysophosphatidylcholine-indued human aortic endothelial

cells (HAECs) (60). Moritz et al. reported cGAS/STING

signaling activates NLRP3 inflammasome independently of

typeIinterferom (61). Mechanistically, STING trafficking

leads to lysosomal membrane permeabilization and a lytic

form of lysosomal cell death, thereby inducing the efflux

of K+. This subsequently leads to a decline in cytosolic

K+, thereby triggering the activation of NLRP3/apoptosis

associated speck-like protein (ASC)/Caspase-1 inflammasome,

which promotes sterile inflammation via mediating the

maturation and release of IL-1β and IL-18 (61). In fact, in

LPS-induced mice, genetic deletion of STING reduced the

expression of NLRP3 and activation of NLRP3/ASC/Caspase-

1inflammasome, which reduced myocardial inflammation

(19). Subsequent in vitro experiments revealed that the

protective effects of STING knockdown in LPS-induced

cardiomyocytes were reversed by NLRP3 overexpression

(19). Additionally, the cGAS-STING signaling pathway was

activated in diabetic hearts, which leads to the activation of

the NLRP3 inflammasome and proinflammatory cytokine

release. However, STING knockdown via adeno-associated

virus-9 (AAV9) in diabetic mouse heart alleviated cardiac

pyroptosis and the inflammatory response, thereby attenuating

the progression of diabetic cardiomyopathy (16). Moreover,

analysis of differentially expressed genes showed that NLRP3

inflammasome-related genes includingNlrp3,Gsdmd, Caspase1,

Il1b, Il18 were reduced by genetic deletion of STING in

RNA-sequencing (RNA-seq) analysis performed in ascending

aortas from wild-type mice and Stinggt/gt mice that were

unchallenged or challenged with HFD and angiotensin II

(Ang II) infusion (29). Notably, it was observed that, NLRP3

inflammasome activation dependent on cGAS-STING signaling

fueled myocardial inflammation and the development of

cardiovascular diseases.

cGAS-STING-mediated inflammation
promotes the pathological process
of cardiovascular diseases

Inflammation is closely related to the occurrence

of cardiovascular diseases. In recent years, uncovering

the STING-mediated inflammatory response has

advanced the study of cardiovascular diseases. The

approaches to cytoplasmic DNA accumulation and

how to activate cGAS-STING-mediated inflammatory

response under cardiovascular pathological conditions

have been summarized respectively. This section mainly

reviews the pathological process of cardiovascular

diseases regulated by cGAS-STING-driven inflammation

(Figure 2).
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FIGURE 2

cGAS-STING signaling activation mediates cardiovascular diseases via promoting sterile inflammation. Under cardiovascular pathological

conditions, disrupting DNA compartmentalization and/or its metabolism leads to cGAS-STING signaling activation. Nuclear transcription of IRF3

or NF-κB promotes the expression of downstream inflammatory factors (including VCAM1, GSDMD, CCL2, CXCL1, CXCL2, CXCL10, CXCL13,

TNF-α, IL-1β, IL-6, IL-18, MCP-1, MMP9, IFN-α, and IFN-β), eventually leading to the inflammatory response. Herein, the pathological process of

cardiovascular diseases regulated by cGAS-STING-driven inflammation includes endothelial injury, atherosclerosis, aortic aneurysm and

dissection, ischemia myocardial infraction, hypertrophy or diabetes associated heart failure, and myocardial injury caused by systemic

inflammation or chemo therapeutic drugs.

Vascular injury

It has been reported that patients with STING-associated

vasculopathy with onset in infancy (SAVI) were characterized

by systemic inflammation, severe cutaneous vasculopathy,

and interstitial lung disease, which caused by gain-of-function

mutations in Tmem173 (also called Sting1), including V147L,

N153S, V155M, and V155R (62). These mutations promote the

aggregation and activation of STING from the endoplasmic

reticulum to perinuclear vesicles without ligands, thereby

activating the STING-IRF3 pathway and increasing the

expression level of type | IFNs, which in turn promotes

inflammation (63, 64). Consistently, STING N153S or V154M

knock-in mouse model demonstrates that SAVI-associated

STING mutations cause inflammatory lung and skin disease

(63, 64). However, STING N153S in mice causes a systemic

inflammatory response independent of IRF3 by impacting T

cells at the early stages of thymocyte development (63).

A change in vascular permeability is the critical progression

of the lethal process of sepsis. LPS causes pyroptosis of vascular

endothelial cells, and the increased activation of gasdermin D

(GSDMD) promotes the release of mitochondrial DNA, thereby

activating the cGAS-STING pathway, inhibiting endothelial

cell proliferation, and ultimately leading to a change in
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vascular endothelial permeability (28). Nonetheless, exogenous

mitochondria exposure induces endothelial STING activation,

promoting effector memory T cell adhere to endothelial cell,

which was reversed by STING inhibitor (65). Mechanically,

different from canonical cGAS signaling, mitochondria-induced

endothelial STING activation which was mediated by IFN-

inducible factor 16 (IFI16) triggered the increases of NF-κB-

mediated adhesion molecules (65). Besides, as an important

driver of vascular inflammation, endothelial cells play an

important role in the onset of vascular injury or chronic

metabolic disease-associated tissue inflammatory injury (66).

Obesity is a metabolic disorder that fosters the occurrence

and complication of diverse disease, which goes along with

inflammation (67, 68). Increasing evidence showing that

increased plasma free fatty acids levels induced by obesity and

type 2 diabetes play detrimental roles in the pathogenesis of

cardiovascular diseases (69). Obesity leads to an increase in

the level of free fatty acids in the peripheral circulation, which

promotes the leakage of mitochondrial DNA from vascular

endothelial cells into the cytoplasm, which activates the cGAS-

STING-IRF3 pathway and up-regulates the expression of ICAM-

1, eventually contributing to vascular endothelial inflammation

(35). These evidences presented above demonstrate that STING-

mediated inflammation is involved in endothelial injury.

Atherosclerosis

Atherosclerosis (AS) is a chronic inflammatory disease,

which is the main cause of clinical cardiovascular events.

It’s reported that atherosclerotic plaque macrophage-derived

oxidized mitochondrial DNA induced STING-dependent

inflammation, eventually leading to exacerbation of

atherosclerosis (21). Pham PT et al. also found the accumulated

content of cytoplasmic DNA and the elevated levels of cGAMP

caused by DNA damage in atherosclerotic plaque of HFD-fed

Apoe−/− mice (21). Further studies revealed that activation

of cGAS-STING signaling cytoplasmic sensing in macrophage

triggered persistent vascular inflammation and induction

of multiple inflammatory factors (21). Mechanically, this

process might be mediated by transactive response DNA-

binding protein-43 kDa (TDP43)-induced mitochondrial

DNA release (70). Nonetheless, genetic deletion of STING

macrophage-derived or pharmacological blockade of STING

reduced inflammatory molecule expression and macrophage

infiltration, thereby resulting in the alleviation of the

progression of atherosclerosis in Apoe−/− mice fed with

HFD (21, 71).

In addition, atherosclerotic plaques consist of a surface

fibrous cap and an inner lipid core composed of abundant

lipids and necrotic cells, where the development of VSMC

phenotypic transformation play a vital role (72). Chronic

kidney diseases (CKD) promote premature aging of VSMCs

and cause it to undergo a phenotype transformation as a

result of autocrine/paracrine activation, resulting in the loss of

vascular smooth muscle cells in the fibrous cap and a thinning

of the fibrous cap, which accelerates atherosclerotic plaque

rupture (73). Furthermore, CKD-induced oxidative stress leads

to mitochondrial damage and mitochondrial permeability

transition pore (mPTP) opening in VSMCs, resulting in the

release of mitochondrial DNA into the cytoplasm and triggering

the inflammatory response through the cGAS-STING pathway

(74). The above studies have shown that intracellular DNA

accumulation promotes the development of atherosclerosis by

activating the STING-mediated inflammatory response.

Aortic aneurysm and dissection

Aortic aneurysms and dissections (AAD) are preceded

by ECM rupture and a progressive loss of VSMCs, which

eventually results in AAD form and the aorta rupture.

Wei L et al. found that dsDNA from aortic VSMCs

leaked into the cytoplasm to activate STING in human

and mouse AAD, resulting in necrosis of VSMC (29).

Moreover, dsDNA releases into the vascular wall to

recruit macrophages and activates the STING-TBK1-IRF3

pathway in macrophage (29). Then, the expression of matrix

metalloproteinase-9 (MMP9) is upregulated through IRF3

directly binding to the promoter of MMP9, which leads to

damage the vascular elastic plate and promote the AAD

process (29).

Myocardial infarction and
hypertrophy-associated heart failure

Pressure overload and ischemia are pivotal

pathophysiological causes of heart failure and myocardial

infarction (MI) (75). Accumulated experiments have proven

that overactive inflammation induced by MI contributed to the

increased size of cardiomyocyte and myocardial remodeling,

resulting in left ventricular systolic dysfunction (76). In fact,

response to MI, ischemic cell death and uptake of exogenous

DNA by macrophage fuel an acute inflammation, eventually

resulting in left ventricular dysfunction and death (20, 50).

Mechanically, Cao et al. found that the leakage of nucleic acids

to cytoplasmic induced by ischemic myocardial injury activated

the cGAS-STING signaling pathway, resulting in M1-like

polarization of macrophages and the induction of inflammatory

programs with increased levels of NLRP3, Caspase1, IL-1β, IL-6,

IL18, TNF-α, whereas inhibition of STING or cGAS promotes

the M2 transformation of recruited macrophages toward repair,

which is crucial to the recovery of MI (20). On another hand,
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single-cell RNA-seq analysis from myocardial tissues of MI

mice showed that cardiac resident macrophage-derived IRF3-

IFN axis provoked the expression of inflammatory cytokines

and chemokines (including TNF-α, IL-1β, IL-6, IFN-β, and

CXCL-10) and inflammatory cell infiltration into myocardium,

whereas interruption of IRF3 signaling by IFNAR-neutralizing

antibody or genetic deletion of cGAS, STING, or IRF3 reversed

these changes (50). Similarly, myocardial ischemia-reperfusion

led to cardiomyocytes release DNA and HMGB1, which enter

the circulation to activate the inflammatory response (77).

Correspondingly, blocking the macrophage-derived type I

IFNs signaling pathway by IFN antibody, STING antibody or

cGAS inhibitor in myocardial ischemia-reperfusion mice can

markedly reduce infarct size (77).

Heart failure is an end-stage clinical syndrome of

cardiovascular disease, which is characterized by cardiac

systolic or diastolic dysfunction and impaired ejection. Elevated

levels of STING, IFNα, and IFNβ have been found in human

samples of dilated and hypertrophic cardiomyopathy (78).

In the hearts of transverse aortic constriction (TAC) mice,

there is increased expression of STING, IFNα, and IFNβ,

however, STING knockout markedly improves cardiac function

in these mice (78). Moreover, 3 days after TAC surgery, the

expression levels of IFNs, CXCL10, IFIT3, and ISG15 in the

mouse myocardium are significantly increased, and further

knockdown of cGAS using adeno-associated virus (AAV9)

considerably reduces left ventricular remodeling and fibrosis in

these mice (79). These studies demonstrate that released DAMPs

promote the STING-mediated inflammatory response and the

pathological process of heart failure and myocardial infarction.

Diabetic cardiomyopathy

Diabetes as a chronic disease, long-term accumulation

of cardiac pressure overload may lead to heart failure

(80). Recently, STING has been reported to be involved in

islet damage, cholesterol metabolism and liver inflammation

(39, 54, 55, 70, 81–83), thus it can be seen that cGAS-

STING signaling is closely related to diabetic cardiomyopathy.

Diabetic cardiomyopathy has occurred from time to time in

clinical practice, and inflammation plays a crucial role in its

development. Yan et al. reported that NLRP3 inflammasome-

induced pyroptosis caused by the activation of cGAS-STING

signaling was participated in the development of diabetic

cardiomyopathy (16). Hyperlipidemia in diabetic mice caused

DNA leakage of myocardial cells to activate cGAS-STING

signaling, which led to pyroptosis and induced inflammation,

ultimately resulting in myocardial hypertrophy and remodeling

(16). Nonetheless, knockdown of Sting gene by AAV9 or

pharmacological inhibition of STING effectively alleviated

myocardial inflammation and diabetic cardiomyopathy (16,

34). In conclusion, it elucidated the critical role of cytosolic

mtDNA-induced cGAS-STING activation in the pathogenesis

of obesity-related DCM and provided preclinical validation

as a new potential therapeutic strategy for the treatment

of DCM.

Myocardial injury caused by systemic
inflammation or chemotherapeutic drugs

STING is involved in mediating systemic inflammation

caused by risk factors that lead to myocardial damage,

such as smoking, systemic lupus erythematosus (SLE), and

sepsis (4, 30, 84, 85). It has been reported that side-

flow smoke causes mitochondrial damage in cardiomyocytes,

which triggers the release of mitochondrial DNA into the

cytoplasm, leading to activation of the STING pathway

and the development of an abnormal cardiac structure

and cardiac dysfunction (30). Herein, knockout of Beclin

1, which is involved in autophagosome formation and

mitochondrial DNA clearance, exacerbates the STING-mediated

inflammatory response and cardiac dysfunction induced by

side-flow smoke (30). Under physiological conditions, DNase

III/three prime repair exonuclease 1 (TREX1) can remove

cytoplasmic DNA and prevent endogenous DNA accumulation

(84). Inactivating mutations in TREX1 might lead to SLE.

Since it is an autoimmune disease, SLE patients are more

prone to cardiovascular diseases than healthy people, and

one third of SLE deaths are caused by cardiovascular events

(85–87). Deficiency of TREX1 induced high levels of IFNs

through activation of the STING-IRF3 pathway, leading to

myocardium, vasculitis, and other diseases (85, 88). cGAS

knockout can inhibit the above inflammatory reactions (4).

On the other hand, LPS-induced septic cardiomyopathy has

been shown to have the characteristic with cardiac dysfunction

and inflammation (89–91). Nevertheless, deficiency of STING

considerably was found to improve cardiac function and

inflammation in mice (19). Furthermore, deficiency of STING

suppressed NLRP3/Caspase1-mediated pyroptosis induced by

LPS, thereby inhibiting the generation of mature IL-1β and IL-

18 (19). The above studies have confirmed that STING mediates

the induction of myocardial tissue inflammation and causes

myocardial injury in systemic inflammation.

In many clinical patients treated with chemotherapy drugs,

long-term chemotherapy has been observed to promote cardiac

insufficiency years later (92–95). Cisplatin is a broad-spectrum

chemotherapy drug that has been clinically found to cause

myocardial damage (92, 94). Our previous study found that

the expression of inflammatory factors, such as TNF-α and IL-

6, is upregulated in the myocardial tissues of cisplatin-induced

mice (96). However, genetic deletion of STING could effectively

inhibit the expression of myocardial inflammatory factors and

cardiac dysfunction induced by cisplatin (96). Thus, the role
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of the STING-mediated inflammatory response in myocardial

injury induced by chemotherapy drugs deserves more attention.

Discovery of drugs targeting
cGAS-STING

As mentioned above, cGAS-STING signaling participated

in the development of multiple sterile cardiovascular

diseases. Therefore, targeted inhibition of cGAS or STING

provides new avenues for the treatment of cardiovascular

diseases. Here, this section mainly discusses the cGAS

or STING inhibitors applied in cardiovascular diseases

(Table 2).

The development strategy of small molecule inhibitors

targeting cGAS is mainly through the following three

mechanisms: (1) mediate post-translational modification

(PTM) of cGAS (97); (2) block the binding of DNA to cGAS

(98); (3) occupy the cGAS catalytic pocket (99). Aspirin,

targeting the acetylation of cGAS at Lys 384, Lys394, and

Lys414, effectively suppressing autoimmunity induced by

genetic deletion of Trex1 (100). Inhibitors that target the

binding of DNA to cGAS include hydroxychloroquine

(HCQ), quinacrine (QC) and X6, which belong to the first

discovered inhibitor of cGAS (101, 102). Additionally, synthetic

oligonucleotides (ODNs) competitively inhibit the binding

of DNA to cGAS (103), which exerts the protective effect in

the development of atherosclerosis of Apoe−/− mice (104).

Suramin which competes with DNA for cGAS binding inhibited

migration and proliferation of VSMCs induced by FAM3A

overexpression or PDGF-AB treatment, leading to reduce

the neointima hyperplasia (105–107). In addition, suramin

prevents monocrotaline-induced pulmonary hypertension

(108). Perillaldehyde which inhibit the binding of DNA to

cGAS promotes perillaldehyde angiogenesis, which is beneficial

in the treatment of ischemic cardiovascular diseases (109).

In HFD-induced Apoe−/− mice, Perillaldehyde prevented

endothelial dysfunctions and increased NO generations,

resulting in reducing the size of atherosclerotic plaque in

aortic arteries (110). Competitive inhibitors in the catalytic site

RU.521 has been reported to be effective in protection against

septic cardiomyopathy induced by LPS (111, 112). Moreover,

another competitive inhibitor in the catalytic site PF-06928215

negated palmitic acid (PA)-induced cardiomyocyte contractile

dysfunction (113). Herein, It’s been aggregated that reported

cGAS inhibitors were proven to exert protective effects in

cardiovascular diseases (Table 2).

The development of existing STING inhibitors focused

mainly on the ligand-binding pocket and palmitoylation

site using computer-aided design. Candidate molecules

were then screened using high-throughput screening and

their STING-inhibitory efficiency was verified in mice or

humans. Inhibitors that target the ligand binding pockets

bind to STING’s endogenous ligand cGAMP, which prevents

cGAMP from activating STING. Such inhibitors include

SN-011, natural cyclic peptide Astin C, tetrahydroisoquinoline

(compounds 1 and 18), etc. (114–116). Astin C improved PA-

induced cardiomyocyte contractile dysfunction by inhibiting

cGAS-STING pathway (113). The palmitoylation of STING

sites Cys88 and Cys91 is necessary for the formation of

polymeric complexes and the recruitment of downstream

signaling pathway molecules during STING activation (8).

Inhibitors that inhibit the Cys91 site include nitrofurans

(C176, C178, C170, and C171), H151, and acrylamide

(BPK-21 and BPK-25) (117). Among these, both C176 and

H151 have protective effects on cardiomyopathy, including

diabetic cardiomyopathy, myocardial infraction, and ischemia-

reperfusion injury (17, 18, 34). Even more, two studies from

different countries reported that C176 inhibits the progression

of atherosclerosis induced by HFD or CKD in Apoe−/−

mice (21, 74). Nitro-fatty acids (NO2-Fas, NO2-cla, NO2-

OA) have an inhibitory effect on both palmitoylation sites

(118). Accumulated studies have reported that nitro-fatty

acids showed the effective protection against cardiovascular

diseases, which include ischemic ventricular arrhythmias,

cardiac remodeling, abdominal aortic aneurysm, pulmonary

hypertension, neointima formation, and endothelial injury

(119–124). What’s more, a safe and well-tolerated NO2-FAs,

CXA-10, has been being investigated in phase II clinical trails

for pulmonary hypertension (NCT04125745, NCT04053543,

and NCT03449524). Herein, It’s been aggregated that reported

STING inhibitors were proven to exert protective effects against

cardiovascular disease (Table 2). Therefore, the application of

cGAS or STING inhibitors will provide a new strategy for the

treatment of cardiovascular diseases.

Conclusion and perspective

In the onset, progression and outcomes of cardiovascular

diseases, the persistent inflammatory response is functionally

important for contributing to adverse clinical outcomes (13–

15). Yearly, the important role of cGAS-STING signaling

pathway in sterile inflammation has historically been

appreciated (11). Under pathological conditions, immune

cells, vascular endothelial cells, VSMCs, or cardiomyocytes

undergo mitochondrial damage or cell death, resulting

in the leakage of mitochondrial or nuclear DNA into the

cytoplasm (12). Stimulated by cytoplasmic DNA, the levels

of inflammatory factors, chemokines, and IFNs are elevated

through the cGAS-STING pathway (20, 27, 48, 125, 126).

Herein, we made a conclusion that how cGAS-STING

pathway is activated and how cGAS-STING pathway mediate

sterile inflammatory cardiovascular disease. From this point,

small molecule inhibitors targeting cGAS or STING may

represent a novel approach for the treatment of sterile
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TABLE 2 STING or cGAS inhibitors proven to exert protective e�ects in experimental models of cardiovascular diseases.

Compound Structure Target Molecular mechanism Cardiovascular

disease

Experimental model Reference

Heart disease Astin C STING Targeting the CDN-binding

domain

Cardiac anomaly PA-induced cardiomyocyte (113)

Nitro-fatty

acids

STING Targeting the palmitoylation

site

Ischemic ventricular

arrhythmias; cardiac

remodeling

Left anterior descending artery (LAD)

ligation; angiotensin II infusion;

(119, 120)

C-176 STING Targeting the palmitoylation

site at Cys91

Diabetic cardiomyopathy HFD-fed db/db mice (34)

H-151 STING Targeting the palmitoylation

site at Cys91

Myocardial infarction;

myocardial

ischemia-reperfusion injury

LAD; myocardial ischemia-reperfusion (17, 18)

RU.521 cGAS Targeting the catalytic site Septic cardiomyopathy LPS-induced sepsis (112)

PF-06928215 cGAS Targeting the catalytic site Cardiac anomaly PA-induced cardiomyocyte (113)

(Continued)
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TABLE 2 Continued

Compound Structure Target Molecular mechanism Cardiovascular

disease

Experimental model Reference

Vascular

disease

Nitro-fatty

acids

STING Targeting the palmitoylation

site

Abdominal aortic aneurysm;

pulmonary hypertension;

neointima formation;

endothelial injury

PCSK9-D377Y induced

hypercholesterolemia with angiotensin

II infusion; high-fat diet (HFD) or

hypoxia-induced mice; wire-mediated

vascular Injury; Inflammatory

factors-induced MS-1 cells

(121–124)

C-176 STING Targeting the palmitoylation

site at Cys91

Atherosclerosis Western-type diet-induce Apoe–/- mice;

CKD-induced Apoe−/− mice fed with

HFD

(21, 74)

Suramin cGAS Inhibiting the binding of

DNA to cGAS

Neointima formation;

pulmonary hypertension

Vessel grafting-induced carotid artery;

FAM3A or PDGF-AB-induced VSMCs;

Monocrotaline-induced rats

(105–108)

A151 5’-TTAGGGTTAGGGTTAGGGTTAGGG-3’ cGAS Inhibiting the binding of

DNA to cGAS

Atherosclerosis Normal diet-induced Apoe−/− mice (104)

Perillaldehyde cGAS Inhibiting the binding of

DNA to cGAS

Angiogenesis; atherosclerosis Sunitinib-injured zebra-fish embryos;

HFD-induced rat and Apoe−/− mice

(109, 110)
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inflammatory cardiovascular diseases. Notwithstanding, in

order to consider the clinical application of pharmacological

inhibitors targeting cGAS or STING, the bioactivity, target

selectivity, pharmaceutical absorption, and toxicity of these

inhibitors need to be further identified. Moreover, based on the

structure of these lead compounds, cGAS or STING inhibitors

mentioned above, chemical optimization will benefit the clinical

application of cGAS or STING inhibitors.
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