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ABSTRACT Lung adenocarcinoma (LUAD) is one of the most common malignant tumors. How to effectively
diagnose LUAD at an early stage and make an accurate judgement of the occurrence and progression of
LUAD are still the focus of current research. Support vector machine (SVM) is one of the most effective
methods for diagnosing LUAD of different stages. The study aimed to explore the dynamic change of
differentially expressed genes (DEGs) in different stages of LUAD, and to assess the risk of LUAD through
DEGs enriched pathways and establish a diagnostic model based on SVMmethod. Based on TMN stages and
gene expression profiles of 517 samples in TCGA-LUADdatabase, coefficient of variation (CV) combinedwith
one-way analysis of variance (ANOVA) were used to screen out feature genes in different TMN stages after
data standardization. Unsupervised clustering analysis was conducted on samples and feature genes. The
feature genes were analyzed by Pearson correlation coefficient to construct a co-expression network. Fisher
exact test was conducted to verify the most enriched pathways, and the variation of each pathway in different
stages was analyzed. SVM networks were trained and ROC curves were drawn based on the predicted results
so as to evaluate the predictive effectiveness of the SVMmodel. Unsupervised hierarchical clustering analysis
results showed that almost all the samples in stage III/IV were clustered together, while samples in stage I/II
were clustered together. The correlation of feature genes in different stages was different. In addition, with
the increase of malignant degree of lung cancer, the average shortest path of the network gradually
increased, while the closeness centrality gradually decreased. Finally, four feature pathways that could
distinguish different stages of LUAD were obtained and the ability was tested by the SVM model with an
accuracy of 91%. Functional level differences were quantified based on the expression of feature genes in
lung cancer patients of different stages, so as to help the diagnosis and prediction of lung cancer. The
accuracy of our model in differentiating between stage I/II and stage III/IV could reach 91%.
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Lung adenocarcinoma (LUAD) is the main subtype of non-small cell
lung cancer (NSCLC). In recent years, the incidence of LUAD has
increased gradually in the world, and the deaths caused by LUAD
accounts for nearly 50% of all lung cancer-related deaths(Kadara et al.
2012). Although the pathogenesis of LUAD has been well studied and
certain progress has been achieved in development of therapeutic

methods, LUAD remains to be one of the most aggressive and rapidly
fatal tumor types, with a total survival time less than 5 years
(Denisenko et al. 2018). The early stage of lung cancer appears no
obvious clinical manifestations, and only in the advanced stage do
symptoms such as chronic cough and bloody sputum gradually
appear (Latimer 2018), while some early symptoms such as fatigue,
shortness of breath, or upper back and chest pain are likely to be
neglected. Therefore, rapid diagnosis and treatment are essential to
improve the survival time of cancer sufferers (Jacobsen et al. 2017).

The traditional diagnostic methods for lung cancer in clinic
mainly include chest X-ray and computed tomography (CT)
(Prabhakar et al. 2018). However, in up to 25% of lung cancer cases,
chest X-ray do not reveal any abnormal lesions. While the CT scan
has the problem of high radiation and its accuracy also needs to be
improved (Hirsch et al. 2017). In addition, the clinical features of
early LUAD are complex, and its CT imaging is similar to that of
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many other diseases, like pneumonia and pulmonary infarction,
which is prone to cause misdiagnosis (Pascoe et al. 2018). The
diagnostic value for lesions ,5 mm or lesions with ground glass
opacity (Grade 1C) is limited. Depending on the imaging, puncture
biopsy can be performed. However, this method is invasive with a risk
of complications. Additionally, the approach not only cannot guar-
antee that tumor cells can be collected by a single puncture sampling,
but also may potentially induce the risk of cancer metastasis during
the invasive sampling process(Prabhakar, et al. 2018). Liquid biopsy,
a new blood test method, can accurately detect the expression of
specific genes in LUAD in a non-invasive manner. With the aid of
such technique, early diagnosis of lung cancer and long-term mon-
itoring of treatment response can be achieved according to the
expression status of the specific genes in patients’ peripheral blood.
Compared with traditional detection methods, gene test has high
sensitivity and specificity, and can avoid the risk of cancer spreading
caused by invasive testing (Hofman 2017; Pi et al. 2017).

The early diagnosis and detection of lung cancer are vital to
improve survival, but the clinical operation is complicated, and there
is no powerful diagnostic screening method available in routine
practice. Delay in early diagnosis can be avoided if various barriers
related to diagnosis are addressed (Cassim et al. 2019). The clinical
staging of lung cancer is a vital process that helps to determine the
treatment plan and guide the prognosis of the disease (Navani et al.
2015). Under different stages, the tumor microenvironment of LUAD
is different to some extent. For example, with the increase of tumor
stage, it is followed by increased tumor infiltrating macrophages, mast
cells and neutrophils (Banat et al. 2015). In addition, gene expression
also alters at different stages of LUAD. It has been found that the
numbers of differentially expressed genes (DEGs) in IB, IIB, IIIA and
IV tumors are 499, 602, 592 and 457, respectively. In early-stage
tumors, DEGs are tightly related to the negative regulation of signal
transduction, the apoptosis pathway and p53 signaling pathway.
While in advanced tumors, DEGs are noticeably activated in tran-
scription, response to organic substances, and biological processes
associated with synapse regulation (Wang et al. 2017a).

The traditional method for studying disease markers relies on the
expression level of single genes, as it is believed that each gene is
relatively independent, which makes it possible for gene expression
used in predicting the risk of illness. However, in biological individ-
uals, genes are not relatively independent but are functionally asso-
ciated. Therefore, in the study of feature gene selection across
different tumor stage, finding a group of genes that are crucial for
the classification of samples is the key to establish an effective
classification model. Support vector machine (SVM) is a preferable
method that can be used to establish the classification model. It is a
new machine learning method proposed by Vapnik et al. based on
statistical learning theory (Masoudi-Sobhanzadeh et al. 2019).
According to the structural risk minimization principle, SVM focuses
on the study of statistical learning based on small sample data, and
provides a unified framework for solving the learning of limited
number of samples (Van Gestel et al. 2001). There have been some
reports on the use of SVM to classify tumors or to screen the feature
genes in combination with other bioinformatics methods
(Blumenthal et al. 2017; Kang et al. 2019). But this method is still
in the early stage of exploration, it is important to build a more
complete classification model and apply it in classification of a variety
of cancers.

In order to consider the changes in patients’ molecular level and
functional level from a higher dimension, this study converted gene
expression information into functional imbalance variations. On the

one hand, it overcame the cross-platform and cross-sample instability
of a single gene marker. On the other hand, it suggested the potential
pathogenic mechanism from the functional level. Meanwhile, specific
genes enriched in corresponding functional pathways were likely to
be important therapeutic targets or diagnostic markers in clinical
practice. More importantly, our analysis found that some functional
pathways only exhibited imbalance variation of functional level in a
certain stage, while the imbalance did not occur in the previous stage.
This suggested that the conventional treatment method excessively
covers the patients, and the feature functional pathways we identified
can achieve more targeted and personalized treatments. Some of the
codes used to build the SVM classification model was disclosed on
GitHub link: https://github.com/Zhang-Chunyi/lung-adenocarci-
noma-classification-using-variant-pathways.git.

MATERIALS AND METHODS

Data pre-processing
Gene expression files and relevant clinical data of LUAD patients
were accessed from The Cancer Genome Atlas (TCGA) database
(https://genome-cancer.ucsc.edu/), totally including 517 LUAD sam-
ples and expression files of 18,895 genes. The sample data were
standardized as a preprocessing step. Thereafter, samples and genes
with a missing value greater than 10% were eliminated, and for the
remaining samples with a missing value, mean values of the corre-
sponding genes in other samples were replaced by. According to the
clinical staging characteristics, all samples were divided into 4 groups,
with stage I samples the malignancy of which were the lowest as the
control group. Themean value and standard deviation of each gene in
the control group were calculated. Z-score normalization was then
performed on all samples, and the expression of the gene in the
control group was subject to a standard normal distribution with a
mean of 0 and a variance of 1.

Feature gene extraction
Coefficient of Variation (CV) was used to evaluate the fluctuation of
genes in LUAD samples. According to the distribution of theCV in all
genes, only 25% of the genes with the CV in two-tail were selected as
the genes that might be related to LUAD, while the remaining 50% of
the genes could be considered to be independent with LUAD due to a
small fluctuation around 0. The CV can be calculated as shown in
Equation 1:

CV ¼ mean
sd

(1)

where mean refers to the average gene expression in all LUAD samples
and sd refers to corresponding standard deviation. The higher the CV
value, the more significant the positive gene fluctuation.

In order to identify the feature genes in each stage, we used
analysis of variance (ANOVA) to assess the significance of gene
expression in four groups, and P , 0.05 was considered statistically
significant. The genes identified by ANOVA were deferentially
expressed in at least two stages. In order to further identify the
two stages, we used the TukeyHSD test algorithm to conduct pairwise
comparison and finally identified the feature set of each stage.

Correlation analysis of the feature genes in each stage: The in-
teraction between genes changes with the development of LUAD. In
terms of biology, two related genes have common biological functions
in a healthy state, and they will cooperate or interact with each other.
In terms of expression, they are co-expressed. However, in a disease
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state, the functions of the genes are abnormal, and the co-expression
relationship is changed accordingly. Therefore, we investigated the
relationship among all feature genes in different stages. Genes that
had a Pearson correlation coefficient over 0.5 were considered positively
correlated, but negatively correlatedwhen the coefficient was lower than
-0.5. The overlapping genes among the 4 stages were taken and then
subjected to correlation analysis, with the results shown in heat map.

Unsupervised clustering analysis
Pearson correlation coefficient was used to analyze the correlation
between genes (Bishara and Hittner 2012), and the average linkage
similarity matrix was used to construct the correlation coefficient
matrix (Chen 2009). Unsupervised clustering analysis was performed
on samples and genes based on hierarchical clustering analysis. Based
on the results of unsupervised clustering analysis, we observed and
analyzed the effect of differentiating samples of different cancer stages
at the gene level. The clustering results were visualized using a heatmap.

Co-expression network analysis
As the correlation between gene expression is different in different
disease states, the specific system network of each disease stage should
also reflect significantly different network characteristics. We con-
structed a specific network for each grade based on the co-expression
relationship between genes. Due to the different disease states, the
topological properties that were reflected by the co-expression net-
works were significantly different, which prompted that in different
malignant grades, the efficiency of system network signal transmis-
sion was significantly different. Therefore, we analyzed the efficiency
from four topological properties, which were Average Shortest Path
(ASP), Closeness Centrality, Cluster Coefficient and Degree. If the
edge of the network is missing, the co-expression relationship be-
tween genes disappears, then the ASP of the network increases, while
Closeness Centrality, Cluster Coefficient andDegree decrease, leading
to the reduction in efficiency of the network signal transmission.
Finally, we used Degree of gene nodes in the network to evaluate the
importance of genes. The higher the degree, the more genes would be
affected when a gene is abnormally expressed. We converted the
degree of all genes into a weight of 0-1 by using sigmoid function, and

weight of the gene that was not in the network was minimum by
default. Equation 2:

sigmoidðdegreeÞ ¼ 1

1þ e2degree
(2)

Functional pathway enrichment
In order to further analyze the biological functions involved by feature
genes in different disease stages from the functional level, functional
enrichment analysis was conducted on feature genes in each stage.
Fisher exact test was adopted, and the significant enriched pathways
obtained were believed to be the biological functions regulated by these
feature genes. Since the expression of these genes varied at different
stages, and co-expression genes tended to participate in the same
biological functions, we speculated that these pathways could help
genes better distinguish samples of different stages. Meanwhile, these
pathways with abnormal functions in different stages could be used to
explain the mechanism of disease progression, and may contain
potential drug targets or diagnostic markers.

Score of functional pathway imbalance variation
As there were differences in feature genes in different stages, and all
genes with functional relevance were concentrated in the same
pathway, we adopted Equation 3 to calculate the overall deviation
score of the pathway based on the expression of the feature genes
enriched in the pathway in each sample. Equation 3:

AðPÞ ¼ log2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

viðXi2miÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

vjðXj2mjÞ2
s (3)

For function term P, A (P) is the score of functional imbalance, m
is the number of up-regulated DEGs in the pathway, n is the number

Figure 1 The distribution ofCV in genes. The x axis is CV and the y axis
is the distribution of density. The red and green vertical lines represent
75% and 25% of the quantile, respectively. Therefore, genes with CV
greater than 0.08 or less than -0.07 are considered to have greater
abnormal expression in LUAD.

Figure 2 Venn diagram of four stage feature genes The four stages in
the figure are marked with four colors. The intersection of any two
stages represents the significant difference between the shared genes
in the two stage samples.
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of down-regulated DEGs, v expresses the gene weight in the co-
expression network, Xi is the expression value of the up-regulated
gene i, Xj is the expression value of the down-regulated gene j, m
represents the mean value of gene expression in the stage I samples and
finally log base 2 is taken for conversion. Therefore, if A(P) = 0, it
indicates the balance between up-regulated genes and down-regulated
genes in the function. If A(P) . 0, it indicates that the up-regulated
genes are dominant and the functions are up-regulated, while A(P) ,
0 indicates that downregulated genes are dominant and the functions
are down-regulated. Equation 1 was used to calculate the deviation
degree of pathway P from the normal state.

Recursive feature elimination (RFE)
RFE (Liu et al. 2015) method was adopted to screen the optimal
feature sets. With the aid of RFE method, all features were randomly
constituted into several small feature sets. The training set was tested
iteratively by using RFE combined with cross validation, and k
insignificant features were eliminated from the training set each
time. Keep the cycle going until the best prediction accuracy was
ensured.

Classification model was established based on
variant pathways
In order to distinguish LUAD samples in four groups of different
stages by using the variant pathways with functional imbalance, we
used SVM to construct a diagnostic classification model. The ini-
tialization parameters of the model included the Gaussian RBF kernel
function with gamma of 0, and other parameters by default. The

gridsearch was used to optimize parameters, and the optimal pa-
rameter combination was solved. The ROC curve was drawn by
fivefold cross validation to evaluate the classification efficiency of the
model.

Data availability
The data used to support the findings of this study are available
from The Cancer Genome Atlas (TCGA) database (https://genome-
cancer.ucsc.edu/). The source code can be found at https://github.
com/Zhang-Chunyi/lung-adenocarcinoma-classification-using-variant-
pathways.git.

RESULTS

Data standardization
Combined with clinical information, there were 508 LUAD samples
with clear staging information, which included 277 stage I samples,
122 stage II samples, 84 stage III samples and 25 stage IV samples.

Figure 3 311 genes are used for unsupervised clustering analysis of four lung cancer stages The x axis represents the samples and the y axis
represents the genes. Four colors are used to mark the LUAD samples with different cancer stages, blue for stage I group, green for stage II group,
red for stage III group, and black for stage IV group. The red blocks represent up-regulated genes and green blocks represent down-regulated
genes.

n■ Table 1 The correlated gene pairs in four tumor stages were
analyzed by Pearson coefficient analysis

Positive Negative Total

Stage I 14500 80 14580
Stage II 6376 28 6404
Stage III 12357 61 12418
Stage IV 6022 10 6032
Overlap 2558 1 2559
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After standardized treatment, 25% of the genes in two-tail were
screened out according to the gene CV. As shown in Figure 1, genes
with CV . 0.08 or CV ,-0.07 were selected as candidate feature
genes, and a total of 9,449 genes were screened out in the four groups.
After Z-score standardization, the matrix (9449�508) data were finally
obtained.

Feature gene identification
We divided the samples into four groups: stage I, stage II, stage III and
stage IV. The malignancy of LUAD increased with the increase in the
sample stage. After standardization, 9,449 genes corresponding to
508 LUAD samples were obtained. In order to identify the feature

genes in each stage, we first identified 1,639 genes with significant
differential expression in four groups by ANOVA. Then we further
compared the genes between groups, and finally identified feature
genes in each group. In the end, 1,392 feature genes in stage I,
969 genes in stage II, 1,192 genes in stage III and 560 genes in stage IV
samples were obtained. The relationship among the genes in four
stages was exhibited in Figure 2, and it was found that 311 genes were
shared by four stages, which indicated that the expression of these
genes was different in four stages. During the malignant progression
of LUAD, the expression of these 311 genes displayed a dynamic
change. On the one hand, this expression pattern could be used as a
clinical indicator to monitor the cancer progression of patients. On

Figure 4 Correlation analysis of feature genes in 4 stages Each color block corresponds to the correlation coefficient of two genes, red for positive
correlation while blue for negative correlation.
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the other hand, the functions regulated by these genes were likely to
be associated with cancer progression.

Unsupervised clustering analysis
The 311 feature genes all showed differential expression in four
stages, which is an important feature for monitoring disease pro-
gression. Therefore, clustering analysis was performed based on
these 311 genes in four groups. Pearson correlation coefficient was
used to construct a correlation matrix. Unsupervised hierarchical
clustering analysis was performed to investigate the efficiency of
these genes in distinguishing samples in different stages. It could be
observed intuitively from Figure 3 that almost all stage III and stage
IV samples were clustered together, while stage I and stage II
samples were clustered together. Therefore, it could be concluded
that there were significant differences between the samples with
different malignant degrees at the molecular level. A high similarity
could be seen in cancers of early stages (stage I- II), while a high
similarity could also be seen in cancers of advanced stages (stage III-
IV). It was also found that the down-regulated genes were dominant
in the advanced LUAD samples (stage III- IV), while the
up-regulated genes were dominant in the early LUAD samples
(stage I- II), suggesting that the expression of more genes was
inhibited and functional level was down-regulated in the progres-
sion of lung cancer. We also found that a certain percentage of
advanced LUAD samples were clustered with early LUAD samples.

This indicated that in clinical practice, the molecular level of some
advanced samples was still close to that of early samples, and these
samples may have a better prognosis.

Correlation analysis
Genes with consistent function often show a significant co-expression
correlation that can be divided into synergy, antagonism and com-
pensation. In addition to the interaction between genes, the
co-expression correlation is also affected by the regulatory effects
of other small molecules, such as miRNAs and ceRNAs. In cancer
researches, the co-expression correlation is even more important
because it changes dynamically with the progress of cancer. The
dynamic change provides the basis for the pathological mechanism of
cancer progression, and is an important feature for dynamic mon-
itoring patients’ medical conditions.

The correlation coefficient between any two genes in each stage
feature gene set was calculated by Pearson algorithm. The number of
correlated gene pairs in four stage feature sets was listed in Table 1.
Most of the gene pairs were positively correlated while a few gene
pairs were negatively correlated. Meanwhile, there were 2,559 over-
lapped gene pairs with stable expression correlation in all four stage
feature sets, which involved 191 genes. It could be observed that the
191 genes were differentially expressed in four stages (Figure 4). Most
genes were still positively correlated, but the correlation degree and
type between any two genes varied in different stages. These results

Figure 5 Co-expression network diagram of four stage feature genes A to D corresponds stage I, stage II, stage III, stage IV group, respectively. The
closer the node color is to blue, the higher the node degree is in the network. The closer the node color is to red, the lower the node degree is.
Edges between nodes represent the correlation coefficient, and the stronger the correlation, the thicker the edge.
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suggested that the co-expression correlation between two genes
changed with the progression of LUAD.

Co-expression network analysis
Co-expression networks were constructed based on the four stage
feature sets, with genes as nodes and co-expression correlations as
edges. If the two genes are positively correlated, the edge is red. If they
are negatively correlated, the edge is green. The network construction
was implemented by cytoscape software (Figure 5), and network
analysis plug-in was used to analyze network topological properties
(Figure 6). As shown in Figure 5, some genes were clearly observed to
cluster in the co-expression network of each stage. Genes in each
cluster were significantly co-expressed, suggesting that the genes

might have consistent functions (Figure 5). Additionally, with the
increase in the malignant degree of lung cancer, the ASP of the
network gradually increased, indicating that the network was looser
and the signal transmission efficiency gradually decreased. Similarly,
Closeness Centrality decreased with disease progression, suggesting a
decreased efficiency of the network. However, there was no significant
difference in the degree distribution and clustering coefficient among
the four stages, which were only slightly higher in stage IV than those
in the other three stages.

Functional pathway enrichment analysis
Functional enrichment analysis was performed on feature genes in
each stage. Fisher exact test was performed to verify the enrichment

Figure 6 Analysis of network topological properties of four stages Analysis of 4 network topological properties, including ASP, Degree, Closeness
Centrality and Cluster Coefficient. ASP measures the average state of the shortest path of a gene to other nodes in the network. Therefore, the
shorter the ASP is, themore convergent the network is and the higher the signal transmission efficiency is. Degreemeasures the number of adjacent
nodes connected by a gene in the network. Higher degree indicates that more adjacent nodes can be affected by the gene and the signal
transmission efficiency is higher. Closeness Centrality reflects the degree of proximity between one node and other nodes in the network. The
smaller the Closeness Centrality is, the stronger the network contractility and the closer the distance between the genes are. Cluster Coefficient
represents the ability of adjacent nodes in a graph to form a complete graph. Theremay be submodules such as connected branches in the network
with high Cluster Coefficient.
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with P , 0.05 set as the threshold. We calculated the significant p
value corresponding to the pathways involved in each stage and the
number of genes enriched in the corresponding pathways, as shown
in Figure 7. GO analysis results showed that the functions involved in
stage I genes included pathogenic Escherichia coli infection and
ribosome biogenesis in eukaryotes. The functions associated with
stage II genes were focused on T/B cell receptor signaling pathway,
carbon metabolism, Natural killer cell mediated cytotoxicity, Primary
immunodeficiency and Primary immunodeficiency. While for stage
III genes, Primary immunodeficiency was the function the genes
predominantly activated in and for stage IV genes, the most
enriched functional pathways were T/B cell receptor signaling
pathway, Hematopoietic cell lineage and Primary immunodefi-
ciency. The functional enrichment analysis suggested that the
immune regulatory mechanism changed significantly during the
progression of LUAD. Abnormal immune systems include innate
immunity, specific adaptive immunity regulated by T/B lympho-
cytes, non-specific immunity regulated by natural killer, along with

other infection- and inflammation-related functions. It further
suggested that abnormal immune system was an important cause
for LUAD progression.

Score of functional pathway imbalance
Equation 3 was used to calculate the imbalance score of each enriched
functional pathway. In order to investigate whether the abnormality of
these functions significantly existed in different groups, ANOVA was
conducted to verify the imbalance score of each pathway. Finally,
12 pathways with significant differences in four stages were screened
out (Table 2) (P, 0.05). In order to analyze the imbalance state of each
pathway in the four stages more intuitively, we used scatter diagram to
visualize the dynamic change of the 12 pathways (Figure 8), which
could be observed using non-parametric linear fitting. It could be seen
that there was no obvious change of the pathways in stage I, which
fluctuated around 0. Significant fluctuations were generated from stage
II. To further clarify the imbalanced variation, we compared the mean
distribution of each pathway in the stages and visualized it by boxplot,

Figure 7 GO enrichment analysis of feature genes in four stages A-D corresponds to the pathway enrichment results of stage I-IV, respectively. The
X-axis is the pathway term, and the Y-axis is the p value of the negative logarithmic transformation. We labeled the number of genes enriched in the
pathway by dark blue and light blue. The brighter the color is, themore genes are enriched in the pathway, and darker color indicates fewer enriched
genes.
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as shown in Figure 9. In some pathways, the score in the four stages
changed linearly, gradually increasing or decreasing. While in other
pathways, the score in one or two groups was significantly different
from that in the others. Therefore, it was fully confirmed that these
functional pathways presented significantly different functional levels
in different stages, and the classification of LUAD samples with
different malignant degrees could be achieved by using these pathways.

The classification model is constructed based on
the pathways
We used 12 pathways as features, the deviation score in each sample
as the feature value, and adopted SVM to contract classification

model. Since the accuracy of SVM for two-category was significantly
higher than that for multi-category label classification, we combined
stage I and stage II into the early benign group and stage III and stage
IV into the advanced malignant group. Model training was divided
into three parts including initialization, feature selection and param-
eter optimization. During initialization, all model parameters were set
as default parameters, and the initial accuracy of the model was tested
in the training set. The RFE algorithm was used to eliminate in-
significant features iteratively. Four features were finally screened,
including B.cell.receptor.signaling.pathway, Fc.epsilon.RI.signaling.-
pathway, Fc.gamma.R.mediated.phagocytosis and Regulation.of.ac-
tin.cytoskeleton. Parameter optimization was realized through the
gridsearch algorithm in combination with iterative algorithm to
search for the optimal parameter combination. Finally, the perfor-
mance of the model was exhibited in Figure 10. The average precision
of the model reached 0.91. The average precision of fivefold cross
validation was close to the optimized precision of the model in the
training set, which indicated that the model had not been overfitted.
The predictive model could be used for prediction of early LUAD and
distinguish between the benign and malignant progression.

DISCUSSION
Early LUAD is limited to local lesions, and some treatments such as
ultrasound or X-ray and other means (Hu et al. 2015) are easy to
cause missed diagnosis. However, in the early stages of cancer,
molecular expression levels have changed (Chalela et al. 2017) and
tumor cells undergo periodic epigenetic reprogramming to acquire

Figure 8 Dynamic change of 12 enriched pathways in 4 stages Stage I- IV are marked in red, green, blue, and purple respectively.

n■ Table 2 Functional significance in ANOVA

Pathway Term P value

Primary.immunodeficiency 1.08E-05
B.cell.receptor.signaling.pathway 5.37E-05
Hematopoietic.cell.lineage 0.000310509
T.cell.receptor.signaling.pathway 0.001363854
Fc.epsilon.RI.signaling.pathway 0.002015294
Regulation.of.actin.cytoskeleton 0.004150605
Non.small.cell.lung.cancer 0.006087547
Leukocyte.transendothelial.migration 0.01039866
Cell.adhesion.molecules 0.01324628
Natural.killer.cell.mediated.cytotoxicity 0.0139198
Fc.gamma.R.mediated.phagocytosis 0.01575172
NF.kappa.B.signaling.pathway 0.01622258
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new characteristics and behaviors (Wang et al. 2017b) . In addition,
the tumor microenvironment of cancer tissue lesions is often ac-
companied by local inflammatory response (Franzolin and Tamag-
none 2019), which activates the body’s stress and immune response.
In the early stage, under the regulation of innate and adaptive
immunity, various genes have compensation function and fight
against cancer by means of differential expression. While in the
middle and advanced stage, tumor cells become dominant and
malignant degree increases due to decompensation. Therefore, dif-
ferential expression of genes is always present in the process of tumor
occurrence and progression. Meanwhile, the expression patterns of
genes are significantly different due to different pathogenesis and
malignancy in different stages. Therefore, specific identification of
gene expression patterns and abnormal functional levels in the four
stages are of great significance for the early diagnosis of LUAD in
clinical practice and the realization of personalized treatment in
different stages.

In this study, we used ANOVA to identify the feature genes in
each stage and the shared genes with different expression in the four
stages. Combined with unsupervised clustering analysis, we found
that 311 shared genes had significantly different expression patterns
between early lung cancer (stage I/ II) and advanced lung cancer
(stage III/ IV). The results revealed that these shared genes had the
ability to distinguish LUAD of different malignant degrees. In order
to further explore the specificity among the four stages, the feature
gene set of each stage was used for subsequent analysis. Pearson
correlation coefficient was used to calculate the similarity between

any two genes in each stage feature gene set. Gene pairs with
significant correlation were used to construct co-expression net-
works, which were then analyzed in the topological properties. By
comparing the specific co-expression networks, it was found that the
network structure changed with the increase of LUAD malignant
degree, which was mentioned in the 5th section of Results. The change
of the network structure suggested that during the progression of lung
cancer, there was dynamical change in interaction between genes
under the regulation of immune system. This interaction reflected the
complex change of biological system from stress compensation to
decompensation in the progression of tumor. Some genes appeared
correlation in the early stage. But in the process of tumor variation,
the innate correlation between genes was missing, suggesting that at
least one of the genes was tumor-related gene, and its expression was
abnormal due to the variation. On the contrary, some genes were
correlated not in the early stage, but in advanced stage, suggesting that
these genes were likely to have consistent functions. However, some
genes were silent in the early stage, and only when the activated genes
were abnormal, the silent genes were promoted, thus creating a new
correlation.

After that, we performed functional enrichment analysis on
feature genes in each stage, and the results suggested that the immune
regulatory mechanism in vivo had been significantly changed during
the progression of LUAD. Abnormal immune system includes innate
immunity, specific adaptive immunity regulated by T/B lymphocytes,
non-specific immunity regulated by natural killer, along with other
infection- and inflammation-related functions. This study further

Figure 9 Boxplot visualizes the functional imbalance scores of 12 pathways in four stages Score boxplots of 12 pathways in stages showed the
median value and confidence intervals, respectively. The four stage groups were also marked in red, green, blue and purple, respectively.
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suggested that abnormal immune system was an important cause of
LUAD progression. The accuracy of the diagnostic prediction model
could reach 91% with the immune-related functions as features.

The innovation of this study lies in the identification of feature
genes and functions of four stages of LUAD, which is of guiding
significance for screening personalized diagnostic markers or ther-
apeutic targets. Meanwhile, the fluctuation of a single gene was
affected by the experimental platform and individual differences,
while the functional term composed of multiple genes was relatively
stable. Therefore, we built a diagnostic classification model based on
gene set as the feature, which overcame the disadvantages of poor
stability and low repeatability of single feature gene.

However, the limitation is that the co-expression relationship of gene
dynamic changes fails to be deeply explored. The deletion and creation of
co-expression relationship among genes also reflect the gene response
in vivo with the progression of LUAD. Thus, the co-expression relation-
ship can also be used to distinguish lung cancer of different risks. But due
to the randomness and noise of gene expression fluctuations, there are
many false positive results in the co-expression relationship. Meanwhile,
the specific mechanism of different stages can be explained more
intuitively with functions as features. Yet the detection will be more
stable with stable gene pairs than using a single gene.
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