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Abstract

Background: Prevention of triple-negative breast cancer (TNBC) is hampered by lack of knowledge about the
drivers of tumorigenesis.

Methods: To identify molecular markers and their downstream networks that can potentially be targeted for TNBC
prevention, we analyzed small RNA and RNA sequencing of a cell line model that represent early stages of TNBC
development. We have identified direct gene targets of isomiRNA-140-3p and by using cell-based and in vivo
model systems we have demonstrated the utility of targeting downstream pathways for prevention of TNBC.

Results: These analyses showed that 5'isomiRNA of miR-140-3p (miR-140-3p-1) and its novel direct gene targets, HMG-
CoA reductase (HMGCR) and HMG-CoA synthase 1(HMGCS1), key enzymes in the cholesterol biosynthesis pathway,
were deregulated in the normal-to-preneoplastic transition. Upregulation in the cholesterol pathway creates metabolic
vulnerability that can be targeted. Consistent with this hypothesis, we found direct targeting of miR-140-3p-1 and its
downstream pathway by fluvastatin to inhibit growth of these preneoplastic MCF10.AT1 cells. However, although,
fluvastatin inhibited the growth of MCF10.AT1-derived xenografts, histological progression remained unchanged. The
cholesterol pathway is highly regulated, and HMGCR enzymatic activity inhibition is known to trigger a feedback
response leading to restoration of the pathway. Indeed, we found fluvastatin-induced HMGCR transcript levels to be
directly correlated with the degree of histological progression of lesions, indicating that the extent of cholesterol
pathway suppression directly correlates with abrogation of the tumorigenic process. To block the HMGCR feedback
response to statins, we treated resistant preneoplastic cells with an activator of AMP-activated protein kinase (AMPK), a
brake in the cholesterol feedback pathway. AMPK activation by aspirin and metformin effectively abrogated the statin-
induced aberrant upregulation of HMGCR and sensitized these resistant cells to fluvastatin.

Conclusions: These results suggest the potential use of combined treatment with statin and aspirin for prevention of
TNBC.

Keywords: iso-miRNA, miR-140-3p-1, Statin, Aspirin, Dual targeting, AMPK activation, Repurposing, TNBC, Prevention,
Preneoplastic, Cholesterol biosynthesis, Metabolic vulnerability

* Correspondence: abhardwaj@mdanderson.org; ibedrosian@mdanderson.org
'Department of Breast Surgical Oncology, The University of Texas MD
Anderson Cancer, 1515 Holcombe Blvd, Houston, TX 77030, USA

Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13058-018-1074-z&domain=pdf
http://orcid.org/0000-0003-4234-0241
mailto:abhardwaj@mdanderson.org
mailto:ibedrosian@mdanderson.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Bhardwaj et al. Breast Cancer Research (2018) 20:150

Introduction

Although triple negative breast cancer (TNBC) accounts
for ~ 5% of the 250,000 annual cases of breast cancer,
its more aggressive nature, coupled with its lack of tar-
geted therapy, results in a disproportionate rate of mor-
tality in women with this disease, underscoring the
critical need for prevention-based approaches relevant
for TNBC. Identification of the micro RNA (miRNA)
signatures and their effector pathways that drive early
preneoplastic changes are an important first step to de-
veloping new strategies for targeted prevention.

There are few resources to characterize the early
changes in TNBC tumorigenesis that could be inform-
ative to developing novel prevention approaches. We
therefore turned to a well-characterized model system
generated by outgrowth of mammary epithelial cells ini-
tially established from a patient with fibrocystic disease
[1]. This model system includes the parental normal-like
cell line [MCF10A (P)]; MCF10.AT1, which recapitulates
atypia; MCF10.DCIS, which is similar to ductal carcin-
oma in situ and MCF10.Cald, an invasive cancer line [2,
3]. By performing next-generation small RNA and RNA
sequencing of this model system, we have recently
shown that the majority of miRNA alterations (>50%)
and gene alterations (>80%) occur during preneoplastic
normal to atypia MCF10A(P) to MCF10.AT1 transition
[4]. These results suggest that molecular determination
of cell fate occurs early in the development of breast
cancer, which also creates enormous opportunities for
identifying molecular markers and their downstream
pathways for prevention of breast cancer.

Lately, numerous RNA sequencing studies have con-
sistently reported the presence of variants of canonical
miRNAs called isomiRNAs [5—-8]. These isomiRNAs are
generated by deletion, substitution, insertion, or a 1 nt
shift in the 5'/3" cleavage site of DICER. The biological
and functional relevance of isomiRNAs are only just be-
ginning to be understood. IsomiRNAs have been sug-
gested to share expression characteristics with canonical
miRNAs and are equally associated with the transla-
tional machinery. A couple of studies have suggested
that isomiR-140-3p has functional significance, based on
its expression levels in breast cancer cell lines and the
fact that targeting this isomiRNA inhibited cell prolifera-
tion in breast cancer cell lines [8].

Here, we report that miR-140-3p-1, a variant of
miR-140-3p that is generated from a 1 nt shift in
pre-miRNA processing by DICER [6], was preferentially
expressed during the entire spectrum of preneoplastic
progression in the MCF10A-derived TNBC model. We
also report on the functional significance of this variant
in TNBC tumorigenesis, mediated by regulation of the
cholesterol biosynthesis/mevalonic acid (MVA) pathway,
which creates a metabolic vulnerability that can be
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targeted for breast cancer prevention. We demonstrate
that targeting the MVA pathway with statins alone elicits
a feedback loop that abrogates the potential chemopre-
ventive effect of statin in a TNBC model of breast can-
cer. However, we show that this feedback loop can be
inhibited by activating AMP-activated protein kinase
(AMPK) using either aspirin or metformin. These results
suggest that combined therapy with statin and aspirin
may be needed for effective breast cancer prevention.

Materials and methods

Cell lines

We used an MCF10A-based model, a well-established
model of TNBC progression developed by Dr Fred
Miller (Karmanos Cancer Institute), which recapitulates
four major steps of breast cancer progression and com-
prises normal-like mammary epithelium MCF10A(P),
atypical hyperplasia (MCF10.AT1), ductal carcinoma in
situ (MCF10.DCIS), and invasive  carcinoma
(MCF10.Cald), representing a stepwise progression in
TNBC progression. Normal-like MCF10A (P) is a spon-
taneously immortalized cell like that was developed
using mammary tissue from a women with fibrocystic
breast disease. Premalignant MCF10.AT1 cells were ob-
tained by transfection of MCF10A(P) cells with constitu-
tively active oncogene H-ras, which form simple ducts
in mice xenografts [3] . Two successive passages of a le-
sion formed by the MCF10.AT1 cells in xenografts gave
rise to MCF10.DCIS cells that forms comedo DCIS le-
sions in mice xenografts and resembles human DCIS le-
sions [2]. MCF10.CAld is a highly tumorigenic
derivative of MCF10.AT1 cells [3]. We have tested and
found these cells lines to be estrogen receptor (ER), pro-
gesterone receptor (PR) and human epidermal growth
factor receptor 2 (Her2) negative using the same assays
applied for ascertainment of biomarkers in patients’ tu-
mors (data not shown). Others have similarly reported
on the biomarker profile of this model, which resembles
that of TNBC [9-11]. We purchased MCF10A(P) cells
from American Type Culture Collection (ATCC).
MCF10.DCIS cells were obtained from Wayne State
University, and MCF10.AT1 and MCF10.Cald from Kar-
manos Cancer Institute under a materials transfer agree-
ment. All the cell lines used in the study were
authenticated by the source agency and were used within
the first 10 passages. Cell lines were periodically tested
for mycoplasma and confirmed negative throughout the
course of the work presented.

Generation of MCF10.AT1 (MCF10.AT1-R) cells with
adaptive resistance to fluvastatin

While some cells are inherently resistant to statins,
others are initially sensitive to statins and eventually de-
velop resistance to statins. Here, we recapitulated
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adaptive resistance by exposing otherwise sensitive
MCF10.AT1 cells to 20 uM fluvastatin. After a period of
massive cell death, a cell population that was resistant to
fluvastatin emerged and was expanded. These cells were
then grown in a maintenance dose of fluvastatin
(10 uM). We determined the concentration needed to
induce a 50% reduction in the viability (MTT50) of these
cells and found that 8.5 pM fluvastatin killed 50% of
cells. We designated these resistant cells as
MCF10.AT1-R cells, which are four times more resistant
than regular MCF10.AT1 cells (MTT50 = 2.1 uM).

Mice xenografts

Ten million exponentially growing MCF10.AT1 cells
that were resuspended in 75 ul PBS and mixed with an
equal volume of Matrigel were injected into the mam-
mary fat pads of 5-week-old inbred female BALB/c Nu/
Nu mice (Charles River Laboratories). All the mice were
of the same age and randomly divided in two groups.
We injected MCF10.AT1 cells into both flanks. One
week after the cell injections, fluvastatin treatment
(10 mg/kg body weight/day) was started, and continued
for 16 weeks. Fluvastatin was mixed in the drinking
water of mice (#=30) and changed every other day.
Control mice (n = 25) received plain water. Water intake
was noted on every change of water, and the concentra-
tion of fluvastatin was adjusted to maintain a level of
10 mg/kg body weight/day, if needed. The body weight
of mice was noted once a week, and no change in the
body weight was observed with statin treatment. Lesion
size was measured every week. At the end of 16 weeks,
mice were euthanized, and the tissues were explanted
from the site of injection. Half of the tissue was fixed in
formalin and the other half was saved in TRIzol for
RNA extraction. These formalin-fixed tissues were sub-
sequently embedded in paraffin and stained with
hematoxylin and eosin to determine their histological
grading. Histological grading ranged from simple tubules
with 1-2 cell layers (grade 0); simple tubules with >2
cell layers but no architectural complexity (grade 1);
complex hyperplasia (grade 2); atypical hyperplasia
(grade 3); to ductal carcinoma in situ (grade 4) as de-
scribed [10].

Cloning
The reporter constructs of the 3'UTR of HMG-COA re-
ductase (HMGCR) and HMG-COA synthasel

(HMGCS1) containing the wild-type seed sequence of
the miR-140-3p-1 binding site along with 200 flanking
nucleotides (both upstream and downstream) were gen-
erated from PCR-amplified human genomic DNA that
was subsequently cloned downstream of the firefly lucif-
erase open reading frame at the Pmel and Xbal sites in a
pmiRGlo vector (Promega Corporation). Mutant
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versions of the HMGCR and HMGCS1 3'UTR reporter
plasmids were generated by site-specific mutagenesis, as
described previously [4]. Sequences of all the primers
used are provided in Additional file 1: Table S1.

Transfection

As described previously (17), MCF10.AT1 and
MCF10.DCIS cells were transiently transfected using Li-
pofectamine 2000 (Invitrogen Technologies) following
the manufacturer’s instructions. Cells were plated in
6-well/10-cm culture dishes and then transfected with
miR-140-3p-1 mimic (Thermo Scientific) or scramble
mimic (10 nM) with/without the pmiRGLo vector con-
taining miR-binding sites. After 5-h incubation in
Opti-MEM (Thermo Fisher Scientific), the medium was
replaced with regular cell culture medium supplemented
with 2X horse serum. Cells were lysed or plated for fur-
ther assays at 48 h after the transfection.

RNA extraction and quantitative (q)PCR

Total cellular RNA was extracted from cells using an
miRNeasy mini kit (Qiagen) that also preserves small
RNAs. Complementary DNA (cDNA) was prepared
using an iScript cDNA synthesis kit (Bio-Rad) according
to the manufacturer’s instructions. qPCR was performed
in triplicate on each sample using an SYBR Green-based
PCR assay as described previously [12]. The gene encod-
ing ribosomal protein L19 (RPL19) was used as a control
to ensure equal loading. All primer sequences are pro-
vided in Additional file 1: Table S1. Mature
miR-140-3p-1 and miR-140-3p-2 were quantified by
using TagMan-based miRNA assays from Thermo Scien-
tific according to the manufacturer’s instructions.

Luciferase assay
Luciferase activity was measured in cells that were trans-
fected with empty pmiRGlo vector or 3'UTR-containing
reporter vectors using the dual-luciferase reporter sys-
tem (Promega).

Cell proliferation

Proliferation of MCF10.AT1 and MCF10.DCIS cells
treated with miRNA mimic or drugs was measured ei-
ther by the MTT dye uptake method or Ki67 antibody
based-immunofluorescence assay as described elsewhere
[13]. The intensity of Ki67 staining, representing the
proliferation index of cells, was measured by counting
the cells that expressed high levels (>3 foci) of Ki67
staining (Ki67-positive cells) or low levels (0-2 foci) of
Ki67 staining (Ki67-negative cells).

Clonogenic survival assay
Colony-forming ability of MCF10.AT1 and MCF10.DCIS
cells that were transiently transfected with miRNA
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mimic or scramble mimic was measured by plating 50—
100 cells/well in a regular 6-well culture plate. Cells
were plated in their regular medium for 12 days. While
testing the effect of fluvastatin, aspirin or metformin
drugs were added in the growth medium at indicated
concentrations a day after plating the cells. The drugs
were not replenished again. After 12 days, cells were
stained with 0.5% crystal violet for 5 min. Following
staining, dishes were washed twice by inverting them in
standing water and then air dried for 1 day. Numbers of
colonies were manually counted. A cluster of 40 or more
cells (> 2 mm) was considered a colony.

Western blotting

MCF10.DCIS cells were plated at sub confluent density
in 60 mm or 100 mm dishes for western blotting experi-
ments. The day after plating the cells, the regular growth
medium was removed and cells were treated with the in-
dicated dose of fluvastatin, aspirin and metformin for
48 h in low-glucose growth medium. Total cellular pro-
tein was subjected to SDS-PAGE and transferred to
Hybond ECL nitrocellulose membranes (Sigma Aldrich),
which were probed with AMPK, pAMPK (Thr 172),
HMGCR, or loading control vinculin antibodies. Pro-
teins were detected using an Odyssey Classic infrared
imaging system (Li-Cor Biosciences) as described previ-
ously [14].

Ingenuity pathway analysis (IPA)

Top canonical pathways and their effector molecules were
generated by IPA (QIAGEN Inc., https://www.qiagenbio-
informatics.com/products/ingenuity-pathway-analysis).

Statistics

MTT data were analyzed using the Kruskal-Wallis test
followed by Dunn’s post hoc test. Mice xenograft histo-
logical grading data were analyzed by the Fisher exact
and chi square tests. All other data were analyzed using
Student’s unpaired ¢ test.

Results

miR-140-3p is lost during breast cancer progression

To identify miRNAs that drive normal-to-preneoplastic
transition in TNBC progression, we grouped miRNAs
according to their expression pattern across the con-
tinuum of cell lines in the MCF10A model of TNBC
tumorigenesis. Next-generation small-RNA sequencing
analyses of this breast cancer progression model, which
we have previously published, placed miR-140-3p as one
of the top deregulated miRNAs [4]. In order to validate
the next-generation sequencing results, we performed
qPCR assays using sequence-specific TagMan-based
primers for the canonical miR-140-3p (miR-140-3p-2)
and its isomiR, miR-140-3p-1. miR-140-3p-1 is known
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to be generated by a 1-nucleotide (nt) shift in the cleav-
age of the miRNA processing enzyme DICER during its
processing of pre-miRNA (Fig. 1a). Interestingly, we
found miR-140-3p-1 to be expressed at 13-fold to
17-fold higher levels than canonical miR-140-3p-2
throughout the whole spectrum of breast cancer pro-
gression, from normal-like MCF10A (P) to preneoplastic
MCF10.AT1, DCIS (MCF10.DCIS), and invasive
MCF10.Cald cells (Fig. 1b). Although the ratio of
miR-140-3p-1 relative to miR-140-3p-2 remained con-
sistently  higher, the absolute levels of both
miR-140-3p-1 and miR-140-3p-2 decreased during
TNBC progression, as indicated by qPCR results
(Fig. 1b). We found however that the greatest decrease
in both miR-140-3p-1 and miR-140-3p-2 occurred early
(during the normal (MCF10A.P) -to-atypia
(MCF10.AT1) transition) with 60% drop in the levels of
both isoforms.

Restoration of miR-140-3p-1 inhibits cell growth
Although much is known about a myriad of biological
functions performed by canonical mature miRNAs, un-
derstanding of the relevance of isomiRNAs remains elu-
sive. Therefore, to investigate the role of miR-140-3p-1,
we ectopically expressed this isomiRNA in breast pre-
neoplastic (MCF10.AT1) and MCF10.DCIS cells and
measured its effects on the colonizing ability of cells, as
described in “Materials and methods”. We found ectopic
expression of miR-140-3p-1 to preferentially inhibit the
colonization ability of preneoplastic MCF10.AT1 cells
(62% reduction, p <0.05 compared to control) but did
not have functional effect further down the disease pro-
gression spectrum in MCF10.DCIS cells (Fig. 2). Simi-
larly, ki-67 staining indicated that miR-140-3p-1
restoration modestly inhibited the cell proliferation (by
9.8%, p=0.08) of preneoplastic MCF10.AT1 cells but
not in MCF10.DCIS cells (Additional file 2: Figure S1).
In order to confirm that these changes represented bio-
logically relevant differences across the cell lines rather
than a consequence of variability in transfection effi-
ciency, we transfected both MCF10.AT1 and
MCF10.DCIS cells with miRNA-140-3p-1 or scramble
control mimic. qPCR analysis of these cells suggested
both the cell lines to be expressing more than 3500-fold
expression of miR-140-3p-1 relative to scramble control
(Fig. 2¢), thus confirming that the growth inhibition seen
with miR-140-3p-1 preferentially in MCF10.AT1 repre-
sents important context-specific effects of miR-140-3p-1
treatment.

miR-140-3p-1 directly binds and regulates HMGCR and
HMGCS1

To identify functional gene targets and driver pathways
downstream of miR-140-3p-1, we integrated the
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Fig. 1 miR-140-3p-1 is lost during breast cancer progression. a Sequences of mature miR-140-3p-1 and miR-140-3p-2 isoforms. b gPCR showing
miR-140-3p-1 and miR-140-3p-2 expression in a MCF10A-based breast cancer progression model. miRNA levels were measured by TagMan-based
gPCR probes. Fold change calculated relative to the cell line with the lowest miRNA expression (highest cycle threshold (Ct)), which was set as 1.
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expression pattern of miR-140-3p-1 with the gene
expression data obtained by the next-generation
RNA sequencing that we previously performed [4]
on the MCF10A model system. In particular, we fo-
cused on the TargetScan predicted gene targets of
miR-140-3p-1 that were upregulated significantly
during the progression from the non-cancer parental
line [MCF10A(P)] to MCF10.DCIS. The filters that
we employed to obtain functionally relevant pre-
dicted gene targets of miR-140-3p-1 are listed in
Additional file 3: Figure S2A. From these analyses,
we identified 10 genes that have significant (p < 0.05)
and reverse correlation with miR-140-3p. Ingenuity
pathway analysis showed that the mevalonate/choles-
terol biosynthesis pathway, through its key gene me-
diators HMGCR and HMGCS1, was the top
predicted pathway to be deregulated (Additional
file 3: Figure S2 B). As a first step, we validated the
endogenous levels of HMGCR and HMGCSI tran-
scripts in the MCF10A progression model using
qPCR. These analyses showed a steady increase in
the levels of HMGCR (about 2.5-fold) and HMGCS1
(5.5-fold) in the cell lines from later stages of
tumorigenic ~ progression = compared to  the
normal-like MCF10A(P) cell line (Additional file 3:
Figure S2 C&D). Next, to test whether HMGCR and

HMGCS1 are regulated by miR-140-3p-1, we re-
stored levels of these in the preneoplastic
MCF10.AT1 cell line by transfecting cells with
miR-140-3p-1 mimic. These qPCR-based assays showed
that indeed HMGCR and HMGCSI were repressed (by
37% and 47%) with the addition of miR-140-3p-1 mimic
relative to their expression upon transfection of scramble
control mimic, confirming this predicted miR-gene rela-
tionship to be valid in the context of breast preneoplastic
cells (Fig. 3a). Finally, to test whether miR-140-3p-1 dir-
ectly binds to and regulates HMGCR and HMGCSI, we
cloned a 500-bp fragment of the HMGCR and HMGCS1
3JUTR containing the miR-140-3p-1 binding site in
pmiR-Glo, a luciferase vector. As expected, we found the
miR-140-3p-1 mimic to repress the reporter luciferase ac-
tivity of the wild-type construct (containing the intact
miR-140-3p-1 binding site from the HMGCR and
HMGCSI 3 UTR) by 55% (Fig. 3c). As a control, we also
studied the effect of miR-140-3p-1 mimic on luciferase ac-
tivity of constructs that harbor a mutated miR-140-3p-1
binding site from the 3" UTR of HMGCR and HMGCSI.
As expected, the miR-140-3p-1 mimic failed to repress the
luciferase activity of the mutant constructs (Fig. 3c), indi-
cating that miR-140-3p-1 directly binds to its binding site
in the 3UTR of HMGCR and HMGCSI and represses
their activity.
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Fig. 2 miR-140-3p-1 inhibits the colonization ability of breast preneoplastic cells. a Clonogenic survival assay showing reduction in the number of
colonies formed by preneoplastic MCF10.ATT and MCF10.DCIS cells with the transient transfection of a miR-140-3p-1 mimic relative to a scramble
control mimic. b Quantification of percentage of inhibition in colonizing ability of AT1 and DCIS cells with miR-140-3p-1 transfection normalized
to scramble control mimic transfection. ¢ Transfection followed by gPCR assay showing the transfection efficiency of MCF10.AT1 and DCIS cells.
Both the cell lines express mature miRNA-140-3p-1 more than 3500 times relative to scramble control mimic. Cells were treated with indicated
mimics for 48 h and the total cellular RNA obtained was analyzed for expression of mature miR-140-3p-1 by gPCR. Values represent mean fold
change + SEM. *p < 0.05

MVA pathway targeting inhibits tumorigenic properties in
vitro

Because statins inhibit the activity of HMG-CoA reductase,
we next investigated whether targeting this pathway with
fluvastatin impairs the growth of breast preneoplastic
(MCF10.AT1) and DCIS (MCF10.DCIS) cells. Fluvastatin
(5 M and 10 pM) impaired the cell colonizing ability of
both cell lines but was more effective in preneoplastic AT1
cells (by 72.42% and 93.9% relative inhibition for 5 uM and
10 uM doses, respectively, compared to vehicle control)
than in DCIS cells (by 39.66% and 62.76% relative inhib-
ition for 5 uM and 10 uM doses, respectively, compared to
vehicle control) (p <0.001) (Fig. 4a, b). Similarly, an MTT
assay also revealed that fluvastatin preferentially inhibited
the cell proliferation of MCF10.AT1 cells as indicated by an
IC50 of 2.1 pM in MCF10.AT1 cells relative to half max-
imal inhibitory concentration (IC50) of 18 pM in

MCF10.DCIS cells (p <0.01), values that are derived from
the fluvastatin dose response curves shown in Fig. 4c.

MVA pathway targeting in mice xenografts

To test the efficacy of fluvastatin in inhibiting the progres-
sion of MCF10.AT1-driven lesions in mice xenografts, we
injected MCFI10.AT1 cells in both the Ileft-side and
right-side mammary glands of 55 inbred nude (BALB/c
Nu/Nu homozygous) mice. Thirty mice were given fluvas-
tatin (10 mg/kg body weight/day) in their drinking water.
This dose was selected as the human equivalent of this dose
(48 mg for an adult weighing 60 kg, using the BSA
normalization method [15]) is well within the prescribed
clinical dosing for fluvastatin. As a control group, the
remaining 25 mice were given plain water. After 16 weeks
of treatment, mice were euthanized, and the lesions were
collected from the sites of the implant. Although we found
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a gPCR results showing the effect of transfection of miR-140-3p-1 mimic on its predicted target genes relative to their expression, with scramble
control mimic transfection that was set as 1. MCF10.AT1 cells were treated with scramble mimic and miR-140-3p-1 mimic for 48 h and the total
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fluvastatin-treated lesions to be 25% smaller than vehicle
treated lesions, as indicated by their average weight
(16.05 vs 12.48 mg, p = 0.03) (Fig. 5a), the histological find-
ings were similar between these two groups. Specifically,
using the grading system developed by Visscher et al. and
as described in the “Materials and methods”, we saw no dif-
ference in the distribution of histologic grade between the
treated and control xenografts (Fig. 5b), indicating that sta-
tin treatment did not inhibit the progression of
MCF10.AT1-driven lesions. Given this lack of efficacy, we
next investigated whether statins effectively inhibited the
target mevalonate/cholesterol pathway. Although assess-
ment of HMGCR inhibition is typically performed using
blood assays, earlier studies suggest that in at-risk women,

dysregulation of the MVA pathway occurs in the tissue in-
dependent of blood levels [16]. Therefore, in order to
understand the local tissue effects of fluvastatin treatment,
we chose to measure messenger RNA (mRNA) levels of
HMGCR within the explanted xenografts. Statin inhibition
of HMG-CoA reductase enzymatic activity in normal cells
and statin-sensitive cancer cells [17] is known to activate a
series of feedback responses, including modulation of
AMPK, which in turn fine-tunes the levels and activity of
HMGCR and Sterol regulatory element binding protein
(SREBP)1 and SREBP2, leading to homeostatic levels of the
cholesterol pathway [17-19]. Analyses of HMGCR levels in
the explanted xenografts, to our surprise, revealed that le-
sions from the fluvastatin treatment group of our mouse
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xenografts did not show uniform suppression of HMGCR
mRNA (Fig. 5c). Rather we found a steady increase in
HMGCR with increase in histologic grade of progression;
the least progressed histological grade lesions (grade 0 and
grade 1) expressed lower levels of HMGCR transcript, indi-
cating more effective inhibition of the cholesterol pathway.
Conversely, we found about 200-fold higher levels of
HMGCR in higher-grade lesions (grade 2 and grade 3) in
the fluvastatin-treated group. In contrast, the basal levels of
HMGCR transcript was relatively uniform in the
vehicle-treated xenografts (maximum 16-fold change across
lesions compared to 200-fold in the statin-treated group),
suggesting that the variation in HMGCR mRNA levels in
the fluvastatin group reflects the normal homeostatic cellu-
lar response to inhibition of the cholesterol biosynthesis
pathway.

Aspirin sensitizes resistant cells to fluvastatin through
AMPK activation

If, indeed over activation of the MVA pathway feedback
loop and thus insufficient suppression of HMGCR

contributed to resistance to statins (Fig. 6a), we pre-
dicted, based on the known feedback mechanism that
AMPK-activating drugs, such as aspirin and metformin,
will inhibit this feedback response and potentiate the
ability of statins to inhibit HMGCR (Fig. 6b), leading to
more effective abrogation of cell growth. To test this, we
treated MCF10.DCIS cells, which are relatively resistant
to statins (IC50 of MCF10.DCIS cells was significantly
higher than that of MCF10.AT1 cells, p <0.01, Fig. 4c)
with a combination of fluvastatin and varying concentra-
tions of the AMPK-activating drugs aspirin and metfor-
min for 48 h. Fluvastatin treatment induced HMGCR
protein expression (Fig. 6¢ and d). As postulated, aspirin
and  metformin  substantially = abrogated  the
fluvastatin-induced HMGCR protein expression by 50%
(2.8-fold increase in HMGCR with fluvastatin vs 1.3 to
1.4-fold increase with the combination therapy as com-
pared to vehicle treatment, Fig. 6¢ and d). In tandem, we
found that aspirin and metformin increased levels of
pAMPK. This was confirmed by western blot analyses
that demonstrated a dose-dependent increase in pAMPK
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levels with aspirin (2.77-fold to 5.18-fold) and metformin
(5.83-fold to 7.8-fold) (Fig. 6¢c and d). Compound C
blocked the aspirin-induced pAMPK activation and consist-
ently led to a partial restoration in HMGCR levels (data not
shown). These data are consistent with the model wherein
the homeostatic feedback loop, restoring HMGCR levels,
can be blocked by activation of pAMPK (Fig. 6b).

We next tested the functional significance of dual tar-
geting of the cholesterol pathway. We performed colony
formation assays, treating DCIS cells with aspirin
(0.5 mM and 1 mM) in combination with fluvastatin
(5 pM) and found that such dual treatment completely
inhibited the ability of cells to form colonies at both
0.5 mM and 1 mM dose of aspirin (100% inhibition,
Fig. 7a and b, p < 0.001), compared to single-agent treat-
ments. Similarly, combination treatment with fluvastatin
(5 pM) and metformin (5 mM) also substantially

reduced colony formation more than fluvastatin and
metformin alone (Fig 7a and b, p<0.001). Although
treatment with fluvastatin alone had modest efficacy
(35% inhibition in total colonies), a combination of flu-
vastatin and aspirin or metformin was most effective
(100% inhibition by aspirin and 99% inhibition by met-
formin (5 mM)) to overcome the inherent resistance to
statin seen in DCIS cells. This is consistent with the re-
ported complexities of MVA pathway regulation due to
feedback activation loops, which leads to requirement of
blockage of need to block this pathway at two nodes in
order to completely inhibit this pathway, to inhibit cellu-
lar growth [20].

We next examined whether activating AMPK with as-
pirin was also effective in overcoming adaptive resistance
to fluvastatin, a clinically relevant scenario that may have
led to the ineffectiveness of fluvastatin in preventing the
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histological progression of MCF10.AT1-driven xenografts.
We first generated a model of adaptive resistance to flu-
vastatin by continuously exposing MCF10.AT1 cells to in-
creasing doses of fluvastatin (up to 20 pM) to create an
MCF10.AT1-R line. MCF10.AT1-R cells showed signifi-
cantly higher resistance relative to parental MCF10.AT1
cells with IC50 of 8.5 uM compared to 2.1 pM in the par-
ental AT1 line (Fig. 8a). We next tested whether adaptive
resistance of MCF10.AT1-R cells to fluvastatin can be
overcome with AMPK-activating drugs. Cell proliferation
was assayed by performing the MTT assay with a range of
aspirin alone, metformin alone and finally fluvastatin with
or without simultaneous exposure to aspirin or metfor-
min. Proportions of cell death under each experimental

condition were calculated and entered into Calcusyn, soft-
ware that determines combined drug effects by taking into
account the entire shape of the growth inhibition curve
and performs multiple drug dose-effect calculations as de-
scribed by Chou and Talalay [21]. The output of this assay
is a “combination index (CI)” that is calculated by the me-
dian drug-effect analysis method and suggests whether a
drug combination is synergistic (CI < 1), additive (CI=1)
or antagonistic (CI > 1). Through these analyses, we iden-
tified a range (that included IC25, IC50, IC75) of aspirin
(0.5-10 mM) or metformin (0.5-10 mM) to have CI <1
and thus be clearly synergistic with fluvastatin (5-
100 pM) in MCF10.AT1-R cells (Fig. 8b, and by normal-
ized isobolograms in Additional file 4: Figure S3 A). For
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generating these combination dose-response curves, the
IC50 of aspirin alone, and of metformin alone were also
determined from their drug-response curves (Additional
file 4: Figure S3 B and C).

Last, we tested whether aspirin or metformin in
combination with fluvastatin also inhibits the coloniz-
ing ability of MCF10.AT1-R (adaptive resistant) cells
(Fig. 9). Similar to assays in the inherently resistant
MCF10.DCIS line, and consistent with the synergistic
interaction between fluvastatin and aspirin/metformin,
these assays showed that combination therapy with
fluvastatin/aspirin to completely inhibit colony forma-
tion (100% inhibition by both 0.5 mM and 1 mM) or
fluvastatin/metformin (100% inhibition by 5 mM and
82% inhibition by 1 mM) to be more effective at
overcoming adaptive resistance than each drug alone
(51% inhibition by fluvastatin, 30% by aspirin and
24% by metformin).
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Discussion

IsomiRNAs have been recently discovered and thus an un-
derstanding of their functional relevance in development
and cancer is in its infancy. Here we report miR-140-3p-1,
an isomiRNA, to be expressed more abundantly than its
canonical counterpart (miR-140-3p-2) in a preneoplastic
progression model of TNBC, suggesting this isomiRNA is
involved in normal breast and TNBC tumorigenesis.
While miR-140-3p-1 is expressed relatively more abun-
dantly during the development of TNBC compared to ca-
nonical miR-140-3p-2, expression of both miRNAs
decreased dramatically from the non-cancer parental line
[MCF10A(P)] to the atypia (MCF10.AT1) line, a trend that
persisted through subsequent stages to DCIS and invasive
cancer (Cald). Replacement of miR-140-3p-1 through
strand-specific miRNA mimic preferentially inhibited the
growth of preneoplastic cells, but not DCIS cells, suggest-
ing its biologic relevance lies primarily in the
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normal-to-preneoplastic transition and less so in the later
stages of disease evolution. Therefore, targeting
miR-140-3p-1 and/or its direct gene targets will poten-
tially be most effective in at-risk populations before the
onset of DCIS. We found that miR-140-3p-1 controls the
mevalonate (MVA) pathway, through direct regulation of
HMGCR and HMGCSI, with the loss of miR-140-3p-1
promoting upregulation of HMGCR and HMGCS1 dur-
ing the multi-step tumorigenic process. Of interest, and in
line with our observations, high expression of MVA path-
way genes e.g., HMGCR, has been reported to be associ-
ated with resistance to therapeutic targeting of the MVA
pathway and with poor patient prognosis in breast cancer
[18, 22]. Collectively, these observations would suggest
that the MVA pathway is involved in breast cancer and a
potential target for intervention. Specifically, within the
context of preneoplastic disease, this upregulation of the
MVA pathway through loss of miR-140-3p-1 creates
metabolic vulnerability that may be targeted by repurpos-
ing Food and Drug Administration (FDA)-approved
low-toxicity drugs such as statins.

Interestingly, the in vitro growth-inhibitory effects of
statins were also more prominent in preneoplastic AT1
cells than in DCIS cells, again suggesting that statins are
likely to be more effective if given to at-risk patients
prior to development of DCIS. However, when we tested
whether a statin would inhibit the histological progres-
sion of AT1-driven xenografts in mice, our experiments
showed that the statin inhibited only the size of the le-
sions and did not seem to abrogate histological progres-
sion towards higher-grade lesions. Statins have been
previously shown to inhibit the tumor volume in
MCF10NeuA-, MDA-MB-435- and HepG2-driven xeno-
grafts [18, 23, 24], which is in agreement with the re-
duced growth of MCF10.AT1-driven lesions in the
current study.

Our data show the complexity of the homeostatic
mechanisms that may limit the ability of statins to ex-
ploit metabolic vulnerabilities of the transformed cells
for purposes of prevention. We found statin treatment
alone insufficient to abrogate histologic progression to-
wards cancer, but our data suggest that combination
therapy with statin and aspirin or statin and metformin
may be a more effective strategy in breast cancer preven-
tion. Our findings also offer a potential explanation of
the heterogeneity of the findings noted in epidemiologic
studies of statins and breast cancer risk. These
population-level data show inconsistent association be-
tween statin treatment and breast cancer incidence, with
some showing inverse association and others showing
no impact of statin use on breast cancer events [22, 25—
35]. However, these data do not consider concomitant
use of other medications, such as aspirin and metformin.
Given the ubiquitous availability of aspirin and given
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that patients at cardiovascular risk often take both statin
and aspirin, it is likely that the available literature on sta-
tin use and breast cancer risk is confounded by lack of
adjustment for other medications such as aspirin and
metformin. Indeed, in one analysis where statin use was
found to be associated with reduced risk of breast can-
cer, the statin-treated group comprised a significantly
larger proportion of patients with cardiovascular disease
(70% of the statin-user group versus 21% of the control
group, p<0.001) and diabetes mellitus (18% of the
statin-user group versus 3% of the control group, p<
0.001), who are much more likely to also be prescribed
aspirin or metformin respectively [31].

Aspirin and metformin are commonly prescribed
FDA-approved drugs with acceptable side effects and
thus have remained of interest in the domain of breast
cancer prevention. Indeed, two current trials are explor-
ing the potential of these agents, administered alone, to
reduce breast cancer risk. Alliance A211202 (https://
clinicaltrials.gov/ct2/show/NCT01905046?ter-
m=A211102&rank=1) is examining the efficacy of met-
formin (850 mg twice daily) to reverse atypia in the
breast, whereas Alliance A211601 (https://clinicaltrials.-
gov/ct2/show/NCT03609021?term=A211601&rank=1) is
exploring the effect of aspirin (300 mg daily), on mam-
mographic breast density, a known breast cancer risk
factor. Our data would suggest that although these
agents may have a modest effect in inhibiting cell
growth, combination therapies that also include statins
are likely to have greater efficacy to abrogate growth and
presumably greater benefit in reducing cancer risk. In
addition to defining optimal combinations of agents for
prevention, optimal dosing for these drugs also needs to
be explored to determine whether clinically acceptable
dosing can modulate the MVA pathway as seen in our
preclinical model.

Last, it should also be noted that although our experi-
ments were designed to test the ability of aspirin and met-
formin to regulate the MVA pathway through AMPK,
these drugs (especially at high doses) regulate other path-
ways in addition to activating AMPK, and in addition
AMPK regulates several pathways beyond the MVA path-
way; thus, specificity of action and the pleiotropic effects
of the aspirin and metformin should be kept in mind
while considering their dose and long-term use.

Recently, statin treatments have been suggested to
show anticancer effects on tumors that were derived
from cells possessing mutated p53 [36—38]. P53 mutants
have been shown to aberrantly activate the MVA path-
way, and conversely statin inhibition of the MVA path-
way is also shown to destabilize and degrade mutated
p53, indicating that statins are most likely to work in pa-
tients in whom the MVA pathway is activated through
p53 mutations. In spite of their wild-type p53 status,
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MCF10.AT1 cells, the model system used for our xeno-
graft studies, possess an activated cholesterol/ MVA path-
way status as indicated by high levels of HMGCR and
HMGCS], suggesting that other mechanisms must be at
play that have activated MVA pathway in our system. We
believe that inability of fluvastatin to inhibit the histo-
logical progression was due to insufficient suppression of
the cholesterol pathway and that activating AMPK will
sensitize cells to statins irrespective of p53 status (wild--
type or mutant). In agreement with this notion of
complete inhibition of the pathway, Penn and coworkers
have suggested using dipyridamole, an inhibitor of SREBP
cleavage, to prevent SREBP-mediated cholesterol feedback
response in addition to statins to increase the therapeutic
efficiency of statins alone in mice models [20].

Tumor suppressor gene LKB1, a master protein kinase
that governs in the phosphorylation and activation of
AMPK, is frequently inactivated in human cancers, in-
cluding breast cancer. LKB1 expression negatively corre-
lates with breast cancer stage. Loss of LKB1 disrupts
breast epithelial cell polarity and promotes breast cancer
cell metastasis and invasion [39]. Therefore, this would
suggest that activating AMPK would be appropriate for
breast cancer prevention and treatment.

Conclusions

Our studies suggest that targeting miR-140-3p-1-mediated
cholesterol pathway activation by repurposing the
FDA-approved, low-toxicity drugs, statins and aspirin, has
potential for breast cancer prevention, including TNBC.
Interventional trials of a combination of statin and aspirin
in women at high risk of breast cancer are needed for fur-
ther confirmation.
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Additional file 1: Table S1. gPCR primers. (DOCX 44 kb)

Additional file 2: Figure S1. miR-140-3p-1 modestly inhibits prolifera-
tion of breast preneoplastic cells. (A) Immunofluorescence-based Ki67
staining of preneoplastic MCF10.AT1 or DCIS cells that were transiently
transfected with miR-140-3p-1 mimic or scramble control mimic. (B)
Quantification of percentage of inhibition in Ki67-positive (expressing > 3
Ki67 foci) AT1 and DCIS cells with miR-140-3p-1 transfection relative to
scramble control mimic transfection. Values represent mean fold change
+ SEM. (DOCX 1539 kb)

Additional file 3: Figure S2. Cholesterol pathway mediators HMGCR
and HMGCST increase during breast cancer progression. (A) Filters to
integrate miR-140-3p-1 expression with RNA-seq results of MCF10A breast
cancer progression panel to identify functional gene targets of miR-140-
3p-1. (B) Top deregulated pathways during breast cancer progression
identified using ingenuity pathway analysis. The mevalonate pathway
was identified as the top pathway. (C and D) Endogenous HMGCR and
HMGCST mRNA levels in a MCF10A-based breast cancer progression
model. Levels were determined by qPCR. Values are normalized toRPL19
mRNA levels and represent mean fold change (+ SEM) relative to
MCF10A(P): *p < 0.05. (PPTX 59 kb)

Additional file 4: Figure S3. Aspirin and metformin synergize with
fluvastatin to sensitize MCF10.AT1-R and MCF10.DCIS cells. (A) Normalized
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isobolograms showing a range of fluvastatin and aspirin/metformin to
have a combined drug efficacy index (Cl) < 1 at multiple doses in
MCF10.AT1-R and DCIS cells. Each point within the isobologram
represents a treatment combination and its associated number
represents a data point for that treatment combination. (B and C) Dose-
response curves of aspirin and metformin in MCF10.AT1-R and DCIS cells
showing their IC50s that were derived from the MTT assays.

(DOCX 354 kb)
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