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Groupwise image registration tackles biases that can potentially arise from inappropriate

template selection. It typically involves simultaneous registration of a cohort of images to

a common space that is not specified a priori. Existing groupwise registration methods

are computationally complex and are only effective for image populations without

large anatomical variations. In this paper, we propose a deep learning framework to

rapidly estimate large deformations between images to significantly reduce structural

variability. Specifically, we employ a multi-level graph coarsening method to agglomerate

similar images into clusters, each represented by an exemplar image. We then use a

deep learning framework to predict the initial deformations between images. Warping

with the estimated deformations brings the images closer in the image manifold

and their alignment can be further refined using conventional groupwise registration

algorithms. We evaluated the effectiveness of our method in groupwise registration of MR

brain images and compared it against state-of-the-art groupwise registration methods.

Experimental results indicate that deformation initialization enables groupwise registration

to converge significantly faster with competitive accuracy, therefore facilitates large-scale

imaging studies.

Keywords: groupwise registration, graph coarsening, deep learning, convolutional neural network, MRI, brain

templates

1. INTRODUCTION

Deformable image registration plays a crucial role in applications, such as dose planning in
radiation therapy (Castadot et al., 2008; Velec et al., 2011; Gu et al., 2013; Fortin et al., 2014;
Cunliffe et al., 2015; König et al., 2016; Samavati et al., 2016; Brock et al., 2017; Flower et al.,
2017; Oh and Kim, 2017), motion and deformation modeling of organs (Yang et al., 2008; Cammin
and Taguchi, 2010; Schmidt-Richberg et al., 2012; Risser et al., 2013; Li et al., 2016; Meschini
et al., 2016), and automatic delineation of the anatomical structures (Gorthi et al., 2011; Arabi and
Zaidi, 2017; Wang et al., 2017). In addition, medical practitioners rely on deformable registration
for morphometric analysis of anatomical structures (Shi et al., 2009; Matsuda, 2013; Agnello
et al., 2016; Joshi et al., 2016), intra-subject structural changes in longitudinal studies (Wu et al.,
2012; Csapo et al., 2013; Lee et al., 2017) and analysis of inter-subject anatomical variability

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2019.00034
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2019.00034&domain=pdf&date_stamp=2019-05-14
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ptyap@med.unc.edu
mailto:dgshen@med.unc.edu
https://doi.org/10.3389/fninf.2019.00034
https://www.frontiersin.org/articles/10.3389/fninf.2019.00034/full
http://loop.frontiersin.org/people/628683/overview
http://loop.frontiersin.org/people/731429/overview
http://loop.frontiersin.org/people/568140/overview
http://loop.frontiersin.org/people/19570/overview
http://loop.frontiersin.org/people/172970/overview


Ahmad et al. Deformation Initialization for Groupwise Registration

(Chen et al., 2017). To date, numerous techniques have been
developed for pairwise registration of a moving image and a
reference image (Vercauteren et al., 2009; Suh et al., 2011; Hu
et al., 2012; Csapo et al., 2013; Razlighi and Kehtarnavaz, 2014;
Onofrey et al., 2015; Heinrich et al., 2016; Aganj et al., 2017;
Sun et al., 2017; Yang et al., 2017). However, these pairwise
registration methods require selecting a particular image as the
reference, to which subsequent analyses are biased (Toga and
Thompson, 2001).

Groupwise registrationmethods do not require a pre-specified
reference image, but instead automatically determine the hidden
common space in an unbiased manner. Groupwise registration
techniques typically simultaneously align a cohort of images
to a common space (Sabuncu et al., 2009; Spiclin et al., 2012;
Wachinger and Navab, 2013). For example, in Joshi et al. (2004)
an initial group center is defined by the average of all affine-
registered images. The group center is iteratively updated with
the average of images registered to it.While this methodmitigates
bias, it leads to registration inaccuracy as the initial group
center is fuzzy. This limitation was addressed in Wu et al.
(2011) by constructing a “Sharp-Mean” group center by weighted
averaging of the registered images. ABSORB (atlas-building by
self organized registration and bundling) (Jia et al., 2010) is a
groupwise registration algorithm that warps the images based on
their neighboring images. However, ABSORB does not consider
the whole image distribution and takes into account only the
immediate neighbors of an image. HUGS (hierarchical unbiased
graph shrinkage) (Ying et al., 2014)models the image distribution
using a graph and formulates groupwise registration as a dynamic
graph shrinkage problemwhere images, represented as nodes, are
warped along graph edges. Yet another groupwise registration
strategy is by constructing a minimal spanning tree with a root
node that gives a minimum overall edge length to all other
nodes. The image deformation is estimated by composing all the
transformations along the path from a leaf node to the root node
(Hamm et al., 2009).

The aforementioned methods assume a single common space
and are not designed to deal with heterogeneous populations with
large anatomical variations. An inhomogeneous population with
large deformations is better represented using multiple group
centers and directly warping the images to a single group center is
ineffective and inaccurate (Sabuncu et al., 2008; Liao et al., 2012).
As a remedy, the population is typically divided into multiple
homogeneous subgroups with an atlas constructed for each
subgroup for registration (Sabuncu et al., 2009; Ribbens et al.,
2010). For example, Wang et al. (2010) cluster the population
into subgroups and perform groupwise registration within each
subgroup. The center images of the subgroups are then registered
using a pyramidal hierarchy. While effective, these methods are
computationally expensive and not scalable to large datasets.

In this paper, we present a novel deformation initialization
framework to reduce anatomical variations prior to groupwise
registration. This removes large structural variations in
an inhomogeneous image population so that conventional
groupwise registration algorithms can be applied more
effectively and accurately. Our initialization framework is
formulated as a two-step process: (i) graph coarsening and

(ii) deep learning deformation prediction. In the first step, the
images are represented using a graph and are clustered via
iterative graph coarsening. In the second step, deep learning is
employed to estimate the deformations between images in the
population according to the hierarchical structure resulting from
graph coarsening.

2. METHODS

Given a diverse dataset of MR brain images with large inter-
subject variability, our objectives are to (i) reduce the anatomical
variability in a dataset such that the images can be simultaneously
registered to a single latent common space and (ii) speed up
groupwise registration so that it is scalable to large-scale datasets.
To achieve these objectives, we will employ deep learning for
predicting large deformations to reduce structural variations so
that the images are close enough to be registered efficiently and
accurately to a common space.

2.1. Deformation Initialization
2.1.1. Multi-Level Graph Coarsening Based Image

Clustering
We propose to use multi-level graph coarsening for image
clustering. Graph coarsening is used in multi-level graph
partitioning to construct smaller graphs by hierarchically
combining neighboring vertices (Xiao et al., 2013; Safro
et al., 2015). That is, for an h-level coarsening, we have
∣
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graph at level h. Graph coarsening can generally be accomplished
by either (i) contraction or (ii) algebraic multigrid (AMG) (Safro
et al., 2015) scheme. In the current work, we use AMG graph
coarsening (Ruge and Stüben, 1987; Rakai et al., 2012) to split
the dataset into image clusters. Let G0 =

(

V0,E0
)

be the original
graph consisting of a vertex set V0 = {vi | i = 1, . . . ,N0},
representing images I = {Ii | i = 1, . . . ,N0}, and an edge set
E0 =

{

eij | i, j = 1, . . . ,N0

}

, representing the similarity between
the images. Each edge eij is defined for images Ii and Ij and is
calculated via normalized cross correlation (NCC) as

eij = NCC(Ii, Ij) =

∑

x0
(Ii(x0)− Īi)(Ij(x0)− Īj)

√

∑

x0
(Ii(x0)− Īi)2

√

∑

x0
(Ij(x0)− Īj)2

,

(1)
where x0 is a voxel location in the brain region and Īi and
Īj are mean intensity values of images Ii and Ij, respectively.
If registration needs to be performed across modalities,
information theoretic measures, such as mutual information, can
be used. The fine graph G0 is progressively coarsened with the

coarsened graph at level l is denoted as
(

Gl =
(

V l
c,E

l
c

))

. The

coarsening algorithm is detailed below:

Step 1: The connection of vertex j with respect to vertex i is
considered strong if for given ρ ∈ (0, 1]:

∣

∣eij
∣

∣ ≥ ρ ×max
k 6=i
|eik| , k = 1, . . . ,Nl (2)
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where Nl is the total number of vertices at level l. Note that this
criterion is not symmetric with respect to i and j. With ρ = 1, the
connection of the vertex with maximum similarity with vertex i
is considered strong. This results in a large number of clusters,
each with few images. On the other hand, if the value of ρ is
too small, then we get too few clusters. We set ρ = 0.95 so that
connections with above 95% of the maximum similarity value are
considered strong.

Step 2: The desirability ψi of a vertex to be selected as a coarse
vertex is computed as the total number of strong connections
with respect to the vertex. The vertex with the largest desirability
is designated as a coarse vertex and all vertices that are strongly
connected with respect to this coarse vertex are designated as
fine vertices.

Step 3: The desirability values of vertices strongly connected with
respect to fine vertices are increased by 1. The desirability values
of vertices strongly connected with respect to coarse vertices are
decreased by 1.

Step 4: Steps 2 and 3 are repeated until all the vertices are
designated as either coarse or fine.

Step 5: Steps 1 − 4 are repeated with the coarse vertices with
l ← l + 1 until we get stable graphs (i.e., when the size of the

two consecutive graphs is same
∣

∣

∣
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∣

∣

∣
=

∣
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∣
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∣
).

The coarsening process is illustrated in Figure 1. Eventually,
images are hierarchically grouped into clusters, where at each
level the cluster exemplars are represented by coarse vertices
and cluster members are represented by fine vertices. Cluster
exemplars at the highest level will be used for deformation
initialization.

2.1.2. Deep Learning Based Registration
The cluster exemplars obtained at the highest level (h) of graph

coarsening, Ih =
{

Jj | j = 1, . . . ,Nh
c

}

, will be used to deform

all the images in the dataset. Registration is performed using
a convolutional neural network (CNN) (Fan et al., 2018)
with these exemplars regarded as fixed templates. The CNN
is based on U-Net (Ronneberger et al., 2015), with additional
convolutional layers at same levels of contracting and expansive
paths to learn high-level features that are helpful in predicting
the deformation fields (Figure 2). More specifically, the network
consists of (i) 3 × 3 × 3 convolutional layers followed by
ReLU and batch normalization, (ii) 2 × 2 × 2 max pooling
layers, (iii) 2 × 2 × 2 deconvolutional layers, (iv) 1 × 1 × 1
final convolutional layers, and (v) 3 × 3 × 3 convolutional
layers added between the contracting and expansive paths. In
addition, a loss function is added in each layer to ensure that
the parameters of the frontal convolutional layers are updated.
This strategy helps to avoid over-fitting caused by the more
frequent parameter update of the later convolutional layers.
The registration network takes the overlapping 64 × 64 × 64
patches as input, and outputs 24 × 24 × 24 deformation field
patches. In order to obtain a deformation field that is equal in
size to the input image, we extract the predicted deformation

field patches with a step size of 24 without overlap. A CNN is
associated with each template. To train the CNNs, we first select
the template which is most similar to all other templates, based
on the following criterion:

J̃ = arg max
J∈Ih

Nh
c

∑

j=1

NCC
(

Jj, J
)

. (3)

The CNN is trained using dual-guidance: (i) coarse guidance
from deformation fields estimated using an existing registration
method and (ii) fine guidance using image dissimilarity between
J̃ and the warped subject images. The latter ensures that
the training does not completely depend on the guidance
from ground-truth deformation fields estimated from
the existing registration method. We used diffeomorphic
Demons (Vercauteren et al., 2009) to estimate the ground-truth
deformation fields. Our learning model is therefore semi-
supervised with loss function consisting of two components: (i)
the Euclidean distance between the predicted and the ground-
truth deformation fields (lossu) and (ii) the sum of squared
intensity difference between J̃ and the subject image warped using
the predicted deformation field (lossSSD). As shown in Figure 2,
the deformation field is predicted at three different resolution
levels, therefore lossu is comprised of the loss functions computed

at each level i.e., lossu = loss
high
u + lossmid

u + losslowu . The two
components of the total loss function were dynamically balanced
during the training stage (losstotal = α ∗ lossu + β ∗ lossSSD).
Initially the first component is given a higher weight α to
converge quickly and then the prediction is refined by giving
more weight β to the second component of the loss function.
At each epoch, the sum of the weights of the two components
was equal to 1. We trained the network for 10 epochs, which we
found enough for convergence.

We used a 75 : 25 train-test split of the dataset (excluding the
templates) and trained the network using the ADAM optimizer
with a learning rate of 1 × 10−2. Once the network was trained
with respect to J̃, the networks for the other templates were
trained using transfer learning by initializing the weights with
those of the network trained with respect to J̃ and updating the
weights using the ADAM optimizer with an overall learning rate
of 1 × 10−7. We kept a small learning rate as all the CNNs have
a common task domain. Transfer learning allows the training of
the CNNs to be expedited.

Once the networks have been trained, each of them is used
to register the images to the templates, producing a set of

deformation fields U =
{

uij | i = 1, . . . ,N0, j = 1, . . . ,Nh
c

}

. Our

goal is to warp each image to a hidden common space using
the average deformation computed with respect to the templates.
To achieve this, we first invert the deformation fields as U−1 =
{

u−1ij | i = 1, . . . ,N0, j = 1, . . . ,Nh
c

}

. The deformation field for

an image Ii is computed as

ūi =





1

Nh
c

Nh
c

∑

j=1

u−1ij





−1

(4)
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FIGURE 1 | Graph coarsening. (A) The initial graph G0 with vertex set V0 representing the images in I and edge set E0 representing the edges between image pairs,

computed using (1). (B) Coarse vertices (shaded). (C) Coarse vertices at a subsequent level.

FIGURE 2 | Architecture of registration network.

and is used to warp the image Ii via Ii
′ = Ii◦ūi (see Figure 3). This

process is repeated for all the images, producing a set of warped
I
′ =

{

Ii
′ | i = 1, . . . ,N0

}

.
The alignment of the images in I

′ can be improved using
groupwise registration algorithms. Since the differences between
the images are smaller, they can be brought to a common space
more efficiently in a smaller amount of time.

3. RESULTS AND DISCUSSION

3.1. Evaluation of Registration
Performance
The efficacy of our method was evaluated both qualitatively and
quantitatively, in comparison with SharpMean (Wu et al., 2011),

ABSORB (Jia et al., 2010), and GroupMean (Joshi et al., 2004).
With initialization, the methods are denoted as iSharpMean,
iABSORB, and iGroupMean.

The experiments were conducted by combining all the T1
weighted MR images from LONI LPBA40 (Shattuck et al., 2008)
and IXI1 datasets. As LONI LPBA40 has 40 images and IXI
has 30 images, in our dataset we have a total of 70 images
that we registered jointly. All the images have 184 slices of
220 × 220 pixels with isotropic voxel size of 1mm3. The age
range for LPBA40 is 29.20 ± 6.30 years and IXI is 20–54 years.
The union of two datasets ensures that the images exhibit large
inter-subject variability characterized by the presence of different

1Available online at http://brain-development.org/ixi-dataset/
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FIGURE 3 | Deep learning registration. Image Ii is registered to Nhc templates {J1, . . . , JNhc
} using CNNs. The image I

′

i
is warped from Ii using the average deformation

field computed using Equation (4).

FIGURE 4 | Anatomical variations across images.
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FIGURE 5 | Axial-view checkerboard images (A) before and (B) after

initialization.

age groups (young adults and elderly). Figure 4 shows some
typical images from this dataset, indicating significant inter-
subject differences. All the images were histogram matched and
affine registered using ANTs (Avants et al., 2008). The image
which is most similar to the rest of the images in the dataset
is used as template for affine registration. Also, for training
the deep learning based registration network, we had a total
of 69 images (excluding the template), which were divided
using a 75 : 25 train-test split. This means that 52 images were
used for training and the remaining 17 images were used
for testing.

For qualitative assessment, we used checkerboard images
to simultaneously display two images so that structural
boundaries can be compared. In the ideal situation
where two images are perfectly aligned, the checkerboard
image will be seamless. Figure 5A shows the axial-view
checkerboard image of two randomly selected images before
initialization, showing apparent misalignments especially
in the lateral ventricular region. In contrast, Figure 5B

shows that deformation initialization reduces variability
across images.

Figure 6 shows the 3D surface renderings of the group mean
images given by different methods. It can be seen that groupwise
registration with initialization improves sharpness of the group
mean images of SharpMean, ABSORB, and GroupMean.

For quantitative evaluation, we computed the NCCs between
all the warped images with respect to the group mean image
generated by eachmethod. The results, shown inTable 1, indicate
that deformation initialization moves the images closer and
groupwise registration with initialization yields higher mean
NCC values (statistically significant with paired t-tests, p < 0.05),
than without initialization.

Evaluation was also performed based on Dice ratio of
hippocampus and brain tissue segmentation, i.e., cerebrospinal

fluid (CSF), gray matter (GM), and white matter (WM). The Dice
ratio (D) is given by

D =
2|V1 ∩ V2|

|V1| + |V2|
, (5)

where V1 is the volume of a segmented tissue or hippocampus
in the subject image domain and V2 is the volume of a
segmented tissue or hippocampus in the reference image
domain. The reference image for hippocampus and brain tissues
is obtained in the common space, respectively by majority
voting based on the hippocampus and tissue segmentation
of all the warped images. The results for different brain
tissues are summarized in Table 2. The overall Dice ratio
achieved by deformation initialization is 72.92 (±9.16)%.
iSharpMean and SharpMean registration methods achieve
comparable results with overall values of 79.35 (±8.93) and
79.24 (±8.15)%, respectively. The differences are not statistically
significant (p > 0.05). The results for iABSORB and ABSORB
are comparable, i.e., 75.66 (±8.93) and 74.29 (±8.93)%,
respectively, and the differences are not statistically significant.
iGroupMean [78.93 (±9.13)%] yields higher Dice ratios
with statistical significance (p < 0.05) than GroupMean
[71.87 (±8.32)%]. The results are summarized using box
plots in Figure 7A for CSF, GM, and WM. The Dice ratios
for hippocampus are summarized in Table 4. The groupwise
registration methods with initialization show improved Dice
ratio (statistically significant with p < 0.05) as compared to no
initialization.

We computed the 95th percentile of Hausdorff distance for
performance evaluation. TheHausdorff distance (HD) is given by

HD(R, S) = max (max
r∈R

min
s∈S

d(r, s), max
s∈S

min
r∈R

d(r, s)), (6)

where R and S are the 3D point sets of the boundaries of
the tissue segmentations or hippocampus of the reference
image and subject image, respectively. d(r, s) is the Euclidean
distance between two finite point sets. We reported the
95th percentile of HD since it is less sensitive to outliers.
Table 3 summarizes the results for different brain tissue
types. The overall value yielded by deformation initialization
is 1.37 (±0.306)mm thus confirming its usefulness in
the reduction of anatomical variability. In addition,
deformation initialization improves groupwise registration.
Box plots are shown in Figure 7B for evaluation. Table 4

summarizes the 95th percentile of HD for hippocampus.
We can see that the initialized groupwise registration
significantly decreased the Hausdorff distance as compared
to without initialization.

Table 5 summarizes the computational times of all the
methods along with the number of iterations needed for
convergence. Groupwise registration methods with initialization
are faster and converge very quickly, compared with no
initialization. More specifically, SharpMean took around 18 h,
whereas iSharpMean converged within 3 h with comparable
accuracy. iABSORB achieved results comparable to ABSORB
and requires 21 h less. iGroupMean took just half an hour
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FIGURE 6 | 3D surface renderings (bottom row) of the group mean images (top row) generated by (A) deformation initialization, (B) iSharpMean, (C) SharpMean, (D)

iABSORB, (E) ABSORB, (F) iGroupMean, and (G) GroupMean.

TABLE 1 | NCCs (mean ± std) for the various methods.

Initialization iSharpMean SharpMean iABSORB ABSORB iGroupMean GroupMean

0.982 ± 0.004 0.997 ± 0.001 0.985 ± 0.004 0.990 ± 0.002 0.983 ± 0.005 0.996 ± 0.001 0.978 ± 0.006

TABLE 2 | Statistical summary (mean ± std) of Dice ratios (%).

Initialization iSharpMean SharpMean iABSORB ABSORB iGroupMean GroupMean

CSF 61.28 ± 5.30 68.66 ± 7.20 69.86 ± 7.33 64.86 ± 6.36 63.41 ± 6.05 67.98 ± 7.38 61.40 ± 5.62

GM 76.55 ± 2.73 83.51 ± 3.06 83.62 ± 3.00 78.47 ± 2.95 77.11 ± 2.88 83.42 ± 3.09 76.51 ± 2.71

WM 80.92 ± 1.61 85.87 ± 1.98 84.23 ± 2.13 83.65 ± 1.44 82.34 ± 1.76 85.39 ± 1.98 77.68 ± 1.95

Overall 72.92 ± 9.16 79.35 ± 8.93 79.24 ± 8.15 75.66 ± 8.93 74.29 ± 8.93 78.93 ± 9.13 71.87 ± 8.32

Statistically significant improvements (p < 0.05) with or without initialization are marked in bold.

to converge, compared with 13.5 h taken by GroupMean.
These results indicate that initialization improves registration
accuracy by reducing anatomical variability and is hence
important for detection of subtle changes associated with aging
and disorders.

3.2. Significance of Graph Coarsening
To investigate the impact of graph coarsening on template
selection, we performed two experiments.

In the first experiment, instead of utilizing graph coarsening,
we used randomly selected templates for deformation
initialization. The number of selected templates was kept
consistent with that given by graph coarsening. It can be
observed from Table 6 that the accuracy decreases in comparison
with initialization using graph coarsening. This demonstrates the
importance of taking into consideration the image distribution
in template selection.

In the second experiment, we evaluated the effects of
the number of templates. Using a single template (i.e., J̃),
although giving good alignment (Table 6), will affect subsequent

population analysis [e.g., voxel-based morphometry (VBM)]
with bias toward the selected template and neglecting inter-
subject variation. Moreover, if the selected template image is
an outlier, population analysis can be severely affected. Graph
coarsening takes into account inter-subject heterogeneity and
determines multiple images that are representative of image sub-
populations. The higher Dice ratios given by single template case
is partially due to the greater image sharpness when no averaging
is performed.

3.3. Generalizability
To assess generalizability, we conducted two experiments.
In the first experiment, we trained the registration network
with the LONI LPBA40 dataset and tested it with the IXI
dataset. In the second experiment, we trained the registration
network with both LONI LPBA40 and IXI datasets and
tested it on the IXI dataset. Figure 8 shows the Dice
ratios for 78 ROIs (see Table 7) of the IXI dataset. The
overall Dice ratio achieved in first and second experiment
is 73.07 (±9.91) and 74.29 (±9.84)%, respectively

(

p > 0.05
)

,
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FIGURE 7 | (A) Dice ratios (%) and (B) 95th percentile of Hausdorff distances for different tissue types (CSF, GM, WM).
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TABLE 3 | Statistical summary (mean ± std) of 95th percentile of Hausdorff distances (mm).

Initialization iSharpMean SharpMean iABSORB ABSORB iGroupMean GroupMean

CSF 1.14 ± 0.325 0.75 ± 0.266 0.93 ± 0.320 1.02 ± 0.306 1.20 ± 0.367 0.84 ± 0.305 1.45 ± 0.420

GM 1.42 ± 0.074 1.09 ± 0.133 1.19 ± 0.176 1.22 ± 0.989 1.40 ± 0.104 1.22 ± 0.154 1.68 ± 0.108

WM 1.54 ± 0.289 0.99 ± 0.279 0.90 ± 0.283 1.33 ± 0.302 1.55 ± 0.319 1.24 ± 0.298 1.62 ± 0.313

Overall 1.37 ± 0.306 0.94 ± 0.276 1.00 ± 0.297 1.19 ± 0.284 1.38 ± 0.322 1.10 ± 0.319 1.58 ± 0.324

Statistically significant improvements with or without initialization (p < 0.05) are marked in bold.

TABLE 4 | Quantitative evaluation of hippocampus alignment.

Initialization iSharpMean SharpMean iABSORB ABSORB iGroupMean GroupMean

Dice ratio
(

%
)

71.34 ± 4.37 72.35 ± 3.98 71.69 ± 4.71 71.36 ± 4.43 70.46 ± 4.93 71.86 ± 3.98 69.31 ± 4.66

95th percentile
3.58 ± 0.77 3.40 ± 0.66 3.70 ± 0.75 3.57 ± 0.68 3.91 ± 0.89 3.54 ± 0.77 3.77 ± 0.83

HD (mm)

Statistically significant improvements (p < 0.05) with or without initialization are marked in bold.

TABLE 5 | Computational times (h) and iteration counts.

Initialization iSharpMean SharpMean iABSORB ABSORB iGroupMean GroupMean

Time (h) 1 3 18 2 23 0.5 13.5

Iteration (#) 1 3 10 1 9 1 15

TABLE 6 | Statistical summary (mean ± std) of Dice ratios (%) for different tissue types.

CSF GM WM Overall

Graph coarsening 61.28 ± 5.30 76.55 ± 2.73 80.92 ± 1.61 72.92 ± 9.16

Random selection 55.07 ± 4.64 73.75 ± 2.79 78.05 ± 2.15 68.91 ± 10.54

Single template (J̃) 61.51 ± 5.57 76.73 ± 3.10 82.18 ± 1.92 73.47 ± 9.57

Statistically significant improvements (p < 0.05) as compared to graph coarsening are marked in bold.

FIGURE 8 | Dice ratios for different ROIs of IXI dataset. “*” indicates statistically significant improvements (p < 0.05).
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TABLE 7 | List of 78 ROIs of the IXI dataset.

ID ROI ID ROI ID ROI

1 R Hippocampus 27 L Posterior temporal lobe 53 L Inferior frontal gyrus

2 L Hippocampus 28 R Posterior temporal lobe 54 R Inferior frontal gyrus

3 R Amygdala 29 L Remainder of parietal lobe 55 L Superior frontal gyrus

4 L Amygdala 30 R Remainder of parietal lobe 56 R Superior frontal gyrus

5 R Medial anterior temporal lobe 31 L Caudate nucleus 57 L Post-central gyrus

6 L Medial anterior temporal lobe 32 R Caudate nucleus 58 R Post-central gyrus

7 R Lateral anterior temporal lobe 33 L Nucleus accumbens 59 L Superior parietal gyrus

8 L Lateral anterior temporal lobe 34 R Nucleus accumbens 60 R Superior parietal gyrus

9 R Gyri Hippocampalis et ambiens 35 L Putamen 61 L Lingual gyrus

10 L Gyri Hippocampalis et ambiens 36 R Putamen 62 R Lingual gyrus

11 R Central superior temporal gyrus 37 L Thalamus 63 L Cuneus

12 L Central superior temporal gyrus 38 R Thalamus 64 R Cuneus

13 R Medial and inferior temporal gyri 39 L Pallidum 65 L Medial orbital gyrus

14 L Medial and inferior temporal gyri 40 R Pallidum 66 R Medial orbital gyrus

15 R Lateral occipitotemporal gyrus 41 Corpus callosum 67 L Lateral orbital gyrus

16 L Lateral occipitotemporal gyrus 42 R Lateral ventricle, frontal horn 68 R Lateral orbital gyrus

17 L Insula 43 L Lateral ventricle, frontal horn 69 L Posterior orbital gyrus

18 R Insula 44 R Lateral ventricle, temporal horn 70 R Posterior orbital gyrus

19 L Lateral remainder of occipital lobe 45 L Lateral ventricle, temporal horn 71 L Subgenual anterior cingulate gyrus

20 R Lateral remainder of occipital lobe 46 Third ventricle 72 R Subgenual anterior cingulate gyrus

21 L Anterior cingulate gyrus 47 L Precentral gyrus 73 L Subcallosal area

22 R Anterior cingulate gyrus 48 R Precentral gyrus 74 R Subcallosal area

23 L Posterior cingulate gyrus 49 L Straight gyrus 75 L Pre-subgenual anterior cingulate gyrus

24 R Posterior cingulate gyrus 50 R Straight gyrus 76 R Pre-subgenual anterior cingulate gyrus

25 L Middle frontal gyrus 51 L Anterior orbital gyrus 77 L Anterior superior temporal gyrus

26 R Middle frontal gyrus 52 R Anterior orbital gyrus 78 R Anterior superior temporal gyrus

indicating generalizability of our method to the unseen
image datasets.

4. CONCLUSION

In this paper, we presented an effective and efficient
deformation initialization method for groupwise
registration of images with large anatomical differences.
Deformation initialization decreases structural discrepancies
and brings the images closer to the common space.
The results validated that deformation initialization
improves alignment accuracy and significantly reduces
computation times.
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