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ABSTRACT

Achilles’ heel relationships arise when the status of
one gene exposes a cell’s vulnerability to perturba-
tion of a second gene, such as chemical inhibition,
providing therapeutic opportunities for precision
oncology. SynLeGG (www.overton-lab.uk/synlegg)
identifies and visualizes mutually exclusive loss sig-
natures in ‘omics data to enable discovery of ge-
netic dependency relationships (GDRs) across 783
cancer cell lines and 30 tissues. While there is sig-
nificant focus on genetic approaches, transcriptome
data has advantages for investigation of GDRs and
remains relatively underexplored. SynLeGG depends
upon the MultiSEp algorithm for unsupervised as-
signment of cell lines into gene expression clus-
ters, which provide the basis for analysis of CRISPR
scores and mutational status in order to propose
candidate GDRs. Benchmarking against SynLethDB
demonstrates favourable performance for MultiSEp
against competing approaches, finding significantly
higher area under the Receiver Operator Character-
istic curve and between 2.8-fold to 8.5-fold greater
coverage. In addition to pan-cancer analysis, Syn-
LeGG offers investigation of tissue-specific GDRs
and recovers established relationships, including
synthetic lethality for SMARCA2 with SMARCA4. Pro-
teomics, Gene Ontology, protein-protein interactions
and paralogue information are provided to assist
interpretation and candidate drug target prioritiza-
tion. SynLeGG predictions are significantly enriched
in dependencies validated by a recently published
CRISPR screen.

GRAPHICAL ABSTRACT

INTRODUCTION

Synthetic lethality arises when loss of function (LOF)
events in two or more genes results in cell death, and if
cells remain viable where any one of these events occurs
in isolation (1,2). Gene dependency relationships, includ-
ing synthetic lethality, may produce cancer ‘Achilles heels’;
indeed, cancer cells typically accumulate large numbers of
genetic aberrations and therefore are vulnerable to ther-
apeutic strategies that exploit gene dependencies (1,3,4).
A striking example is where LOF mutations of homolo-
gous recombination genes BRCA1 or BRCA2, results in
a dependency on DNA repair by the PARP genes and so
make cells exquisitely sensitive to pharmacological inhibi-
tion of PARP1/2 (5–7). A burgeoning number of synthetic
lethal relationships are well established, including within
complexes such as SWI/SNF (SMARCA2/SMARCA4;
ARID1A/ARID1B) (8,9); and as a collateral consequence
of deletions associated with loss of tumour suppressors, for
example ENO1/ENO2 (10). Other classes of genetic de-
pendencies have been reported where gene expression plays
an important role, one example is where cells ‘addicted’ to
one gene (ERBB2) have decreased viability when the expres-
sion of a second gene (TFAP2C) is reduced (11). SynLeGG
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predicts several types of negative genetic dependencies, in-
cluding synthetic lethality, in order to propose candidate
Achilles’ heel vulnerabilities in cancers.

Public genome-wide RNAi and CRISPR screen data
gives significant impetus to the discovery of candidate ge-
netic dependency relationships (1,12,13). Existing web re-
sources facilitate exploration of these screens alongside
other large datasets; notably the Cancer Dependency Map
(DepMap) portal, PICKLES, the Open Targets Platform
and cBioPortal (1,13–16). The DepMap Data Explorer al-
lows visualization of pairwise relationships between gene
essentiality estimates and many other features including
compounds, miRNA, gene expression, drug sensitivity, his-
tone marks, metabolomics and copy number (1). A selected
pairwise relationship may be analysed within the DepMap
Data Explorer by linear regression or Pearson correla-
tion; two-class comparison is also available for user-defined
groups of cell lines, for example allowing exploration of
tissue-specific gene essentiality. PICKLES provides visual-
ization of gene essentiality profiles by tissue, including pair-
wise comparisons with orthogonal data, such as essential-
ity with gene expression; Pearson correlation is reported for
a Bayesian gene essentiality estimate with data selected for
the second gene, for example expression values (14). Ad-
ditionally, PICKLES examines tissue-specific effects with
a Mann-Whitney test of the difference in essentiality esti-
mate values for individual tissue types against values cal-
culated across all tissues. The Open Targets Platform pro-
vides a functional summary of queried genes, underpinned
by multiomics data, with druggability scoring information
to help prioritize targets and candidate synthetic lethal re-
lationships (15). Overall, current web resources offer rela-
tively simple metrics to explore potential gene dependencies.
More sophisticated integrative approaches for comprehen-
sive prediction of dependency relationships in multiomics
data include DAISY, BiSEp and collective matrix factoriza-
tion techniques (gCMF) (10,17,18); interaction with these
approaches currently requires skills in computer program-
ming and data handling, alongside appropriate comput-
ing resources. We developed SynLeGG (Synthetic Lethal-
ity using Gene expression and Genomics; www.overton-
lab.uk/synlegg) for discovery and visualization of cancer
‘Achilles heel’ relationships with integrated, matched RNA-
Seq, CRISPR, exome sequencing and mass spectrometry
proteomics data (1,13,19,20). Transcriptome data is very in-
formative for identification of pairwise gene dependencies
(2,12) and is taken as a central axis in SynLeGG, across 783
cell lines and 30 tissues.

METHODS

Predicting gene dependency relationships from CRISPR and
mutational data with MultiSEp

SynLeGG incorporates the MultiSEp algorithm for analy-
sis of RNA-Seq data from the Cancer Cell Line Encyclo-
pedia (CCLE) (19). MultiSEp is a refinement of the BiSEp
approach (2) which partitions gene expression to discover
mutually exclusive loss signatures that are characteristic
of synthetic lethality. MultiSEp applies Gaussian mixture
modelling (GMM) with Expectation-Maximization to dis-
cover gene expression clusters with cardinality determined

Figure 1. Overview of SynLeGG. CRISPR essentiality scores from
CERES (12) and mutations from whole exome sequencing are analysed
in separate workflows, partitioned using MultiSEp gene expression clus-
ters. Results are returned as a table where each row describes a gene pair
and the columns summarise dependency data, including q-values for the
difference between CRISPR or mutation values across the MultiSEp clus-
ters. Application of optional filters enables prioritization of gene pairs with
orthogonal evidence of similar function according to common Gene On-
tology terms, evolutionary information and protein interactions. Multiple
visualizations and download of data are available to facilitate exploration
of candidate gene dependency relationships.

by Bayesian Information Criterion regularization (21), pro-
ducing from two up to five clusters of cell lines per gene.
Unimodal models are not evaluated because a single clus-
ter would be incompatible with the partitioning required in
the downstream analysis. The MultiSEp results for CCLE
are available for download within SynLeGG and are sum-
marized in Supplementary Figure S1. The GMM analysis
overcomes limitations in the BiSEp approach which splits
cell lines into only two groups per gene and only makes
comparisons where bimodality is statistically identified (2).
MultiSEp predicts pairwise genetic dependencies by parti-
tioning gene effect scores from CRISPR screens or muta-
tional classes using the clusters derived from GMM. For
CRISPR dependency relationships, fold-change and two-
tailed t-test q-values (22) are calculated between CERES
(13) scores for cell lines in neighbouring clusters (Figure 1).
Dependencies for mutational data are assessed using a chi-
squared test for the enrichment of mutation classes across
the MultiSEp clusters (Figure 1).

Evaluation of MultiSEp performance

We compared the performance of MultiSEp, BiSEp (2) and
DAISY (17) on synthetic lethal gene pairs from the Syn-
LethDB database (downloaded November 2020, currently
available from http://synlethdb.sist.shanghaitech.edu.cn/)
(23). SynLethDB score thresholds were taken to define high
confidence (>0.7, n = 121) or low confidence (>0.1, n =
16916) gold standard synthetic lethal interactions. Resam-
pled gene pairs with no evidence for a synthetic lethal re-
lationship in SynLethDB were taken as the gold standard
negatives. The negative pairs might suffer from contamina-
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tion due to unannotated genetic dependency relationships;
however these are rare and so any contamination will be
a tiny proportion of the resampled pairs. Predictions from
BiSEp and MultiSEp were produced for DepMap RNA-
seq, CRISPR data (783 cell lines, version Q3 2020) (1).
DAISY predictions were derived from our implementation
of the published protocol (17) in R (Supplementary Data
File S1) using the DepMap (Q3 2020) copy number and
RNA-seq data. We were unable to generate DAISY predic-
tions for genes that did not have copy number losses in at
least 2 cell lines across the full panel. Intersecting the gold
standard data with predictions from MultiSEp, BiSEp and
DAISY produced three separate, balanced, benchmarking
datasets (respectively n = 8678, n = 1022, n = 3132). An
intersection of predictions from the three methods was un-
feasible because of the small number of overlapping gene
pairs (n = 3, n = 22 at SynLethDB thresholds of 0.7, 0.1
respectively). Additionally, overlapping with BiSEp scores
would bias results for the other methods due to BiSEp only
giving predictions for bimodal data. Therefore, results for
each method took every positive gold standard pair from
SynLethDB where a prediction was available plus an equal
number of negative pairs. Scores for DAISY, MultiSEp were
taken as -log P-values, fold-change was used for BiSEp. Per-
formance statistics were calculated using the ROCR pack-
age (24). For False Discovery Rate estimation, we took the
balanced datasets described above, as well as ‘real-world’
datasets with 3.75% SynLethDB gene pairs and 96.25% re-
sampled pairs. These proportions correspond to the fre-
quency of negative genetic dependencies observed in the
5416 genes tested by Costanzo et al. (25).

Implementation

SynLeGG is implemented in a Model-View-Controller ar-
chitecture (Supplementary Figure S2) respectively consist-
ing of a SQLite database, Shiny user interface and R func-
tions to analyse the DepMap Q3 2020 data (1,13,19). Each
user session is deployed in a separate Docker container
managed by Shinyproxy behind an NGINX reverse proxy,
enabling strong performance at scale. The database consists
of 8 tables (Supplementary Figure S3), and is designed for
read speed to enhance the user experience.

USAGE

Figure 1 gives an overview of the steps involved in using
SynLeGG. Tabs for analysis of CRISPR or mutation data
are accessed from links in the navigation bar that appears on
every page, which also links to extensive help documenta-
tion. Context-sensitive help is available from tooltips and as
pop-ups that provide focussed extracts from the user guide,
accessed by clicking green information icons at the top
right of each subsection of the website. The documentation
includes a tutorial and quick start guide. Demonstration
mode is activated from a checkbox within the ‘CRISPR’
or ‘Mutation’ tabs, and walks users through the key fea-
tures of SynLeGG. After navigating to www.overton-lab.
uk/synlegg, the first step is to click the ‘Launch’ button
which loads a unique Docker container for the SynLeGG
session; then select either ‘CRISPR’ or ‘Mutation’ in the
navigation bar.

Analysis of CRISPR scores and gene expression to propose
gene dependency relationships

The ‘CRISPR’ tab, located in the navigation bar, provides
a results table with integrated MultiSEp analysis of gene
expression and CRISPR scores for investigation of candi-
date ‘Achilles Heel’ relationships. The default ‘All Tissue’
mode offers pan-cancer analysis across 783 cell lines and the
‘Tissue Type’ section provides analysis within a selected tis-
sue. Checkboxes allow optional filtering of results accord-
ing to evidence of functional similarity from overlapping
Gene Ontology (GO) annotations (26,27), BioGRID phys-
ical protein-protein interactions (PPIs) (28) and Ensembl
human paralogues (29,30). A total of 169 172 gene pairs
are available within the CRISPR tab, passing the thresh-
olds of log2 fold-change >0.1, P-value <0.1. Of these, 115
095 have at least one shared GO term, 1503 have at least
one PPI and 193 are paralogous (Figure 2A). Selecting a
gene pair in the ‘Results’ table displays information in the
‘Details’ table and visualizes results in the ‘Plot’ section.
For example, searching for SMARCA2 in the ‘mRNA gene’
column and for SMARCA4 in the ‘crispr gene’ column re-
turns an established synthetic lethal interaction within the
SWI/SNF complex (8,9). SynLeGG affirms that knock-
out of SMARCA4 by CRISPR is more damaging for cell
lines with low SMARCA2 gene expression (Figure 2B).
Mass spectrometry proteomics (20) is present for a subset
of the cell lines and genes analysed by MultiSEp; where
available, SynLeGG enables exploration of the concordance
between protein concentrations and mRNA expression to
help inform candidate drug target prioritization (Figure
2C). Tissue-specific analysis shows that the dependency be-
tween SMARCA4 and SMARCA2 is particularly robust in
oesophageal cancer cell lines (Figure 2D), consistent with
previous findings (31).

Interrogating mutations and gene expression data to reveal
candidate gene dependencies

Analysis of integrated mutations and gene expression data
is available within SynLeGG from the ‘Mutation’ tab in
the navigation bar. Results are obtained by typing one or
more gene symbols into the ‘Mutation Gene(s)’ box at the
top left; if the entered text is not recognized, a dictionary
lookup of synonyms may be activated with the ‘Check Sym-
bol(s)’ button. SynLeGG includes 3 692 429 candidate de-
pendency relationships with P <0.05 and ≥5 mutations in
the ‘Mutation Gene’ across all tissue types, of which 1 889
642 have a common GO Term, 9968 have PPIs and 3827
are paralogues (Figure 3A). The ‘Mutation Results’ table
shows candidate gene expression dependency relationships
predicted by MultiSEp for the ‘Mutation Genes’ and re-
solved by tissue; selecting a gene pair visualizes results in
the ‘Plot’ section and populates the ‘Mutation Details’ table
with information about shared GO terms, PPIs and paral-
ogy. The results can be filtered on all columns and sorted
by tissue type, q-value or number of mutations. The well
known synthetic lethal relationship between BRCA2 and
PARP1 (6,7) is visualized for oesophageal cancer cell lines in
Figure 3B, which shows that BRCA2 mutations are absent
when PARP1 has low expression. We note that SynLeGG
analyses somatic mutation calls, however synthetic lethality
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Figure 2. Dependencies between CRISPR essentiality scores and MultiSEp clusters. (A) Venn diagram showing 115,184 gene pairs that pass the SynLeGG
inclusion thresholds (P < 0.1, log2 fold-change > 0.1) and have overlapping Gene Ontology (GO) annotations, protein–protein interactions (PPIs) or are
Ensembl human paralogues. As might be expected, all 193 paralogue pairs have a common GO term. (B) SMARCA4 CRISPR scores are visualized
within MultiSEp clusters for SMARCA2 across 783 cell lines, coloured by thirty tissue groupings (see key). Essential and non-essential genes have median
CRISPR scores of -1 and 0, respectively. As expected, SMARCA2 gene expression correlates with SMARCA4 CRISPR score; cell viability or growth is
most damaged by loss of SMARCA4 in cell lines within low SMARCA2 expression clusters. (C) SynLeGG provides visualization of mass spectrometry
proteomics data, where available. The figure shows SMARCA2 protein concentrations for the MultSEp gene expression clusters. The distribution of protein
concentrations within each cluster follows the same trend as the mRNA measurements in matched cell lines, for example cluster 1 left) has low expression,
providing evidence for chemical inhibition of SMARCA2 as a viable therapeutic strategy in cancers with low SMARCA4 activity. (D) The synthetic lethal
relationship between SMARCA2 and SMARCA4 is shown for oesophageal cancer cell lines, accessed using the ‘Tissue Type’ mode in SynLeGG.

may involve germline changes; indeed inherited BRCA mu-
tations occur at an appreciable frequency (5). Therefore, the
exclusion of germline mutations is a current limitation for
the exploration of genetic dependencies with SynLeGG and
could explain why cell lines annotated as wild-type may ap-
pear in expression clusters enriched for deleterious somatic
mutations; the ‘wild-type’ allele might represent a deleteri-
ous germline mutation (1). In addition to synthetic lethal-
ity, other relationships that may represent Achilles heels can
be identified using SynLeGG, including candidate induced
dependency. For example, TP53 mutations are depleted in
brain cancer cell lines with high MDM2 expression (Figure
3C, D). MDM2 is a negative regulator of TP53 and so ele-
vated MDM2 relieves the selection pressure for inactivat-
ing mutations in TP53 (32). Therefore, inhibitors against
MDM2 may be effective in cancers with high MDM2 ex-
pression and wild-type TP53 (32).

Benchmarking MultiSEp

MultiSEp, BiSEp and DAISY respectively had Area un-
der the Receiver Operator characteristic Curve (AROC) val-
ues of 0.71, 0.59, 0.39 for SynLethDB gene pairs scoring
>0.7 (28); and AROC of 0.57, 0.53, 0.5 respectively at Syn-
LethDB threshold >0.1 (Supplementary Figure S4, Sup-
plementary Table S1). MultiSEp had significantly higher
AROC values than DAISY at both SynLethDB thresholds

examined (>0.7, P < 0.019; >0.1, P < 5.4 × 10−9) and sig-
nificantly (33) outperformed BiSEp at the lower threshold
(P < 0.036). Few predictions were available from DAISY
(n = 10) and BiSEp (n = 11) at the high-confidence Syn-
LethDB threshold, making statistical comparisons more
difficult. MultiSEp coverage is respectively 5.8-fold, 6.4-
fold higher than BiSEP and DAISY at SynLethDB thresh-
old >0.7 and 8.5-fold, 2.8-fold higher for SynLethDB gene
pairs scoring >0.1. Therefore, MultiSEp provides better
performance over a much larger number of candidate gene
pairs. We also assessed the effect of optional filtering upon
MultiSEp performance (Supplementary Figure S4). Filter-
ing by common GO terms did not significantly affect Multi-
SEp performance, which may be expected due to the inclu-
sion of high level terms; however, GO information within
SynLeGG provides useful context. Filtering by PPIs sig-
nificantly increased performance relative to unfiltered Mul-
tiSEp analysis at the lower SynLethDB threshold value,
although with 9.7-fold lower coverage (449 pairs, AROC
0.66, P < 2.3 × 10−6). Taking only paralogue pairs dra-
matically reduced coverage, by 98.7-fold, with a trend to-
wards better performance relative to no filtering at the lower
SynLethDB threshold (44 pairs, AROC 0.68, P < 0.0547).
We also assessed false discovery rate (FDR) using Syn-
LethDB, on both the balanced datasets and taking a ‘real-
world’ proportion of genetic dependencies (Supplementary
Figure S5). MultiSEp performed best and, reassuringly,
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Figure 3. SynLeGG enables exploration of relationships between gene expression clusters and mutational status. (A) Venn diagram showing 1 891 368
gene pairs with candidate dependencies between mutations and MultiSEp clusters (P < 0.05, ≥5 mutations), which also have overlapping Gene Ontology
(GO) annotations, protein-protein interactions (PPIs) or are Ensembl human paralogues. (B–D) visualize established dependency relationships between
gene expression and mutational status. Gene expression values are given on the y-axis and MultiSEp clusters are indicated on the x-axis. Each cell line is
coloured by mutational status according to the key. (B) shows an established synthetic lethal relationship between BRCA2 and PARP1 in oesophageal cancer
cell lines. As expected, cell lines with low PARP1 expression are BRCA2 wild-type (blue), while the majority of cell lines with high PARP1 expression have
BRCA2 mutations. (C) and (D) identify an ‘induced dependency’ relationship between TP53 mutations and MDM2 expression in brain cancer cell lines.
MDM2 is a negative regulator of TP53 and all of the cell lines with high MDM2 expression are TP53 wild-type (blue); conversely the greatest proportion of
TP53 mutations are found in the lowest MDM2 expression cluster. These data underline the attractiveness of MDM2 inhibitors in TP53 wild-type cancers.
Separate plots for different mutation types are shown in (D); six plots appear in the Figure, however up to nine may be shown in SynLeGG.

stricter thresholds result in better FDR values. A total of
24 CRISPR predictions from SynLeGG overlapped with
a recently published screen (34), where 18/24 (75%) had
Bonferroni-corrected T-test P-value <10−5; corresponding
to FDR = 0.25 (Supplementary Table S2).

CONCLUDING REMARKS

Large CRISPR screens, exome sequencing and RNA-seq
datasets provide unprecedented opportunities for cancer
drug target prioritization and to discover new gene func-
tions (1,13,19). We integrate these resources for nomination
of candidate Achilles’ heel relationships, where the status of
one gene exposes a cell’s vulnerability to the perturbation of
a second gene. Our approach is validated at scale on data
from SynLethDB (23), compared against BiSEp (2) and
DAISY (17), and exemplified with gold-standard published
synthetic lethal relationships. A recent pairwise screen fo-
cussed on paralogues validated 18 of 24 (75%) overlapping
pairs (34), representing significant enrichment of validated
pairs in the SynLeGG predictions (two-tailed FET P < 2.8
× 10−10). Pairwise genetic dependencies are highly sensi-
tive to biological context and are frequently modified by a
third gene (35); therefore the genetic dependency relation-
ships that did not validate in the Thompson et al. study but
are predicted by SynLeGG might manifest in cell lines other
than the three examined in (34). SynLeGG provides access
to our integrated approach for the wider scientific commu-
nity, enabling analysis and visualization of genetic depen-

dency relationships across 783 cell lines and 30 tissues. Key
features are the partitioning of essentiality scores (13) or
mutational classes within MultiSEp gene expression clus-
ters, and the investigation of tissue-specific gene dependen-
cies. Relationships identified with the RNA-based clusters
may be explored in available mass spectrometry proteomics
data, a useful component of drug target prioritization. Re-
sults are integrated with complementary information to in-
form gene functional similarities from the Gene Ontology
(26,27), protein-protein interactions (28) and evolutionary
information (29,30). SynLeGG has been successfully tested
on multiple web browsers (Firefox, Chrome, Edge, Safari)
and major operating systems (Linux, MacOS, Windows).
We very much appreciate feedback on any issues relating to
SynLeGG, ideally sent using the form accessible from the
‘Contact’ tab in www.overton-lab.uk/synlegg and we wel-
come requests for new functionality.

DATA AVAILABILITY

SynLeGG is available at www.overton-lab.uk/synlegg. It is
a free web-based service open to all users and there is no
login requirement. Our implementation of DAISY (17) is
available in Supplementary Data S1.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkab338#supplementary-data
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