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System for Infectious Disease Information Sharing
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Abstract—Motivated by the importance of infectious disease in-
formatics (IDI) and the challenges to IDI system development and
data sharing, we design and implement BioPortal, a Web-based IDI
system that integrates cross-jurisdictional data to support infor-
mation sharing, analysis, and visualization in public health. In this
paper, we discuss general challenges in IDI, describe BioPortal’s
architecture and functionalities, and highlight encouraging evalua-
tion results obtained from a controlled experiment that focused on
analysis accuracy, task performance efficiency, user information
satisfaction, system usability, usefulness, and ease of use.

Index Terms—Infectious disease informatics, outbreak detec-
tion, public health information systems, system evaluation.

I. INTRODUCTION

INCREASING globalization, combined with accelerating
population mobility and more frequent travel, has made the

prevention and management of infectious disease outbreaks a
growing concern in public health. Emerging infectious disease
and epidemic outbreaks are particularly important and represent
critical challenges facing public health researchers and practi-
tioners [1], [2]. In addition, potential threats of bioterrorism
appear on the horizon [3].

Managing infectious disease outbreaks is intrinsically in-
formation intensive and requires substantial support for data
gathering, integration, analysis, sharing, and visualization [4].
Such support requirements are becoming even more challenging
because of the diverse, heterogeneous, and complex informa-
tion available in enormous volumes and different sources that
span jurisdictional constituencies both horizontally and verti-
cally. Public health professionals such as epidemiologists can
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be better supported by advanced information systems (IS), as
vividly manifested by emerging infectious disease informatics
(IDI)—an interdisciplinary research area that focuses on the
design, implementation, and evaluation of advanced systems,
techniques, and methods for managing infectious disease and
epidemic outbreaks, ranging from prevention to surveillance
and detection [5], [6].

The design and implementation of an effective IDI system
can be complex and challenging. At the data level, an expand-
ing array of data that pertain to particular diseases, population
characteristics, and related health considerations must be col-
lected, organized, and archived, typically by different clinical
institutions and health agencies. These data are heterogeneous
in their semantics, modeling, granularity, aggregation, availabil-
ity frequency, and coding/representation. Data sharing is critical
to the pertinent institutions and agencies, which have to coordi-
nate by explicitly specifying data ownership and access rights,
as well as delineating the responsibilities associated with legal
and privacy considerations. At the system level, these institu-
tions and agencies often vary in their in-house systems, which
adopt proprietary architecture designs and operate on different
platforms. As Kay et al. [7] point out, most existing systems in
public health have been developed in isolation.

The challenge and complexity of designing an IDI system
extends beyond data and system heterogeneity. From the user’s
perspective, all relevant data must be seamlessly integrated to
support his or her surveillance and analysis tasks that are criti-
cal to the prevention of and alert about particular disease events
or devastating outbreaks. To be effective, an IDI system must
encompass sophisticated algorithms for the automatic detection
of emerging disease patterns and the identification of proba-
ble threats or events. An effective IDI system also must have
advanced computational models that overlay health data for
spatial–temporal analysis to support public health profession-
als’ analysis tasks [8].

Several additional issues are crucial for system design and
implementation, including the integration of multiple heteroge-
neous source data or systems, data accessibility and security, in-
terfaces with geographic information systems (GIS), text docu-
ment management support, and data or text mining. In particular,
IDI design requirements include spatial–temporal data analysis
and related visualization support. Typically, public health pro-
fessionals approach the surveillance or detection of a probable
outbreak as an event for which all related data are dotted and ana-
lyzed in spatial and temporal dimensions. Furthermore, the value
of an IDI system is generally determined by the extent to which
the system can present data and analysis results through intu-
itively comprehensible and cognitively efficient visualization.
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Fig. 1. BioPortal system architecture.

Ultimately, an IDI system must facilitate and enhance task per-
formance by enabling public health professionals to use heuris-
tics and preferred analysis methods to generate more accurate
analysis results within a shorter time window.

To support the surveillance and detection of infectious dis-
ease outbreaks by public health professionals, we design and
implement the BioPortal system, a web-based IDI system that
provides convenient access to distributed, cross-jurisdictional
health data pertaining to several major infectious diseases
including West Nile virus (WNV), foot-and-mouth disease
(FMD), and botulism. Our system development team is interdis-
ciplinary, consisting of researchers in both IS and public health,
practitioners, and officials from several state health departments.
BioPortal supports sophisticated spatial–temporal data analy-
sis methods, and has effective data/information visualization
capabilities.

The rest of this paper is structured as follows. In Section II,
we describe the architecture design of BioPortal and highlight
its main technical components and functionalities. Next, in Sec-
tion III, we discuss the value of BioPortal for infectious disease
surveillance and management, derive hypotheses regarding its
advantages and effects, and empirically test these hypotheses us-
ing a controlled experiment with 33 subjects. To assess BioPortal
as a whole, we focus our evaluation on users rather than specific
algorithms implemented as part of BioPortal and examine its
effects on their task performances as well as subjective assess-

ments of the system. In Section IV, we summarize our findings
and note that our data support most of the hypotheses tested. Our
results suggest that Bio Portal can better support public health
professionals’ analysis tasks, and is generally considered more
usable, useful, and easier to use than the benchmark technol-
ogy. Section V concludes with a summary, discussions of the
paper’s contributions and limitations, and some future research
directions.

II. BIOPORTAL ARCHITECTURAL DESIGN AND FUNCTIONALITY

BioPortal is an integrated, cross-jurisdictional IDI infrastruc-
ture that has been running for testing and research purposes since
early 2004 (see www.bioportal.org). Although it has not yet been
adopted for operational use, it contains more than a dozen real-
world data sets contributed by public health partners and other
agencies. In this section, we summarize BioPortal’s architec-
tural design, its main components, data set availability, system
functionality, and related outbreak detection research. The in-
formation that we present herein establishes the background for
the evaluation study reported in the subsequent sections of this
paper.

A. BioPortal System Architecture

Fig. 1 illustrates the architecture of the BioPortal system, in-
cluding the data flows between/among the main components
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of BioPortal as well as between BioPortal and external data
sources. From a system’s perspective, BioPortal is loosely cou-
pled with state public health information systems in California
and New York. It does not change the way these state systems
operate. As needed, these systems transmit WNV/botulism in-
formation through secure links to the BioPortal using mutually
agreed protocols. Such information is then stored in an internal
data store maintained by the BioPortal. The system also auto-
matically retrieves data items from sources, such as those from
the USGS, and stores them in this internal data store.

All the system functions provided by BioPortal, including
infectious disease data search and query, spatial–temporal vi-
sualization, outbreak detection analysis and related modeling,
and automatic alert generation based on the results of outbreak
detection analysis, are solely based on the data stored in the
BioPortal internal data store, without further interactions with
the contributing data sources. Technically speaking, we adopt a
data warehousing approach, rather than alternative approaches
such as query translation, information linkage, or terminology
mapping [9] to address the distributed data integration chal-
lenges in IDI. This choice of approach is primarily based on the
following characteristics of infectious disease data sources and
associated analysis needs. First, unlike many other biomedical
applications for which it has become increasingly easy to query
data sources automatically from remote locations, most infec-
tious disease data sets have been developed primarily for internal
use. Although accessing the underlying databases through re-
mote queries is technologically feasible, in practice, most IDI
data providers are unwilling to “open up” their databases. In-
stead, they prefer pushing preprocessed data to (or preprocess-
ing data waiting to be pulled by) a data warehousing system
such as BioPortal while retaining full control over data fields
to be shared (directly at the data level as opposed to at the data
access control level). Second, the types of queries performed
on IDI data sources typically are confined to data aggregation
requests over particular geographical regions and time periods.
Therefore, there is no need to strategize complex distributed
queries. However, processing speed of the data aggregation is
important because such operations must be carried out in large
numbers for some outbreak detection analysis approaches (see
Section II-C). Third, the amount of IDI data is relatively small
in terms of storage volume because epidemiological informa-
tion tends to contain a few short data fields, which makes a data
warehousing approach feasible. Furthermore, overlaps between
epidemiological data coverage are rare; therefore, the data ware-
housing effort becomes relatively manageable.

Internally, BioPortal consists of three main components: a
web portal, a data store, and a communication backbone. In
Section II-B, we provide the details of each component in more
detail; here, we summarize BioPortal’s implementation envi-
ronment and the assumptions made on the user’s end. BioPortal
follows a standard three-tier web architecture. The data store
component, developed using SQL Server, provides a data ware-
house with information pulled from or pushed by contribut-
ing data sources. The communication backbone uses standard-
compliant XML formats, and is built as multiple standalone
Java applications that interface with various data sources using

different messaging protocols. Most system functions are devel-
oped in Java using JSP pages to interact with the user. As such,
all except one major component of BioPortal can be accessed
by users through a standard Web browser. The exception is the
visualization module, which is developed as a standalone Java
application for improved performance, enhanced interactivity,
and greater user interface control and is deployable through the
Web Start technology (assuming that the Sun JRE environment
is installed on the client machine).

B. BioPortal System Components and System Functionality

Because the Web portal component of BioPortal imple-
ments the user interface and provides access to all main user
functionalities—including: 1) searching and querying avail-
able infectious disease-related data sets; 2) visualizing the data
sets using spatial–temporal visualization; 3) accessing analysis
and outbreak detection functions; and 4) accessing the alerting
mechanism—we do not discuss this component as one unit.
Instead, we briefly summarize our work on 1) and 4) in this
section, and then present the BioPortal visualization environ-
ment. Because data analysis and outbreak detection involve in-
novative spatial–temporal data mining research beyond system
implementation, we defer their discussion to Section II-C.

1) Portal Data Store: A main objective of BioPortal is to
enable users from partnering states and organizations to share
data. Typically, data from different organizations have different
designs and are stored in different formats. To enable data inter-
operability, we use HL7 standards internally as the main storage
format. Some data providers (e.g., New York state’s HIN) have
already adopted HL7 and can, thus, send HL7-compliant data
to BioPortal directly. Additional steps are needed to ensure data
interoperability for those data providers that do not yet have
HL7-compliant data. First, we reach an agreement with them
regarding the format (typically a simple home-grown XML for-
mat) for their data. Second, the data providers modify their
data export module to implement this mutually agreed format.
Third, when data from these providers reach BioPortal, a data
normalization module maps the customized XML format on to
HL7 using predetermined mapping rules implemented by the
BioPortal team. In effect, the data from the HL7-compliant data
providers also are processed by this module, because it removes
from them unneeded data attributes, duplications, and common
misspellings (based on a customized home-grown dictionary).
This normalization module is not intended to resolve structural
or semantic incompatibilities in an automated fashion; rather, it
converts data to a predetermined format and performs shallow
syntactic checking.

After being processed by the data normalization module, data
are stored directly in BioPortal’s main data store. This HL7
XML-based design provides a key advantage over an alterna-
tive design based on a consolidated database for which the portal
data store must consolidate and maintain the data fields for all
data sets. When an underlying data set changes its data structure,
a portal data store based on the consolidated database must be
redesigned and reloaded to reflect the changes, which severely
limits system scalability and extensibility. To alleviate potential
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computational performance problems with our XML-based de-
sign, we identify a core set of data fields based on the queries that
are likely to be performed frequently. These fields are extracted
from all XML messages and stored in a separate database table
to enable fast retrieval.

2) Communication Backbone: The communication back-
bone component enables data exchanges between BioPortal and
the underlying data sources. Several federal programs have been
recently created to promote data sharing and system interoper-
ability in the healthcare domain; the CDC’s National Electronic
Disease Surveillance System (NEDSS) initiative is particularly
relevant for our research. It builds on a set of recognized national
standards such as HL7 for its data format and messaging proto-
cols, and provides basic modeling and ontological support for
data models and vocabularies. The NEDSS and HL7 standards
have had major impacts on the development of IDI systems.
Although these standards have not yet been tested in cross-state
sharing scenarios, they provide an appropriate foundation for
data exchange standards in national and international contexts.
BioPortal relies heavily on NEDSS/HL7 standards.

The communication backbone component uses a collection of
source-specific “connectors” to communicate with contributing
sources. We use the connector linking New York’s HIN system
and BioPortal to illustrate a typical design. The data from HIN
to the portal system are transmitted in a “push” manner, i.e.,
HIN send through secure public health information network
messaging system (PHIN MS) messages to the portal at pre-
specified time intervals. The connector on the portal side runs
a data receiver daemon to listen for incoming messages. After
a message is received, the connector checks for data integrity
syntactically and normalizes the data. The connector then stores
the verified message in the portal’s internal data store through
its data ingest control module. Other data sources (e.g., USGS)
may have “pull”-type connectors that periodically download in-
formation from source Web sites, and examine and store those
data in the portal’s internal data store. In general, the com-
munication backbone component provides data receiving and
sending functionalities, source-specific data normalization, and
data-encryption capabilities.

3) Data Confidentiality and Access Control: Data confiden-
tiality, security, and access control are among the key research
and development issues for the BioPortal project. With regard
to system development, programming and rules already devel-
oped for New York’s HIN system constitute the main sources
of our design and implementation decisions. Because there was
no precedent for extending access to a data system across state
lines, we needed to develop new access rules for BioPortal.
We have created new security and user agreement forms for
organizations with proposed access as well as individual users
within those organizations. In addition, the agencies involved in
developing BioPortal formally signed a memorandum of under-
standing prior to sharing any real data. The responsibilities of
participating organizations and individuals with access include:

1) the establishment and definition of roles within the agency
for access, and the determination of those individuals
who fill those roles, including systems for termination of
access;

TABLE I
INFECTIOUS DISEASE DATA SETS IN BIOPORTAL

2) security of data physically located on, or transported over
the organization’s network;

3) protection for the confidentiality of all data accessed, with
prohibitions against disclosure of personal or health in-
formation to any other agency, person, or public media
outlet; and

4) recognition of ownership rights of parties that have pro-
vided data.

The types of data that must be addressed separately with re-
gard to access are data from humans or owned animals that
require the highest levels of confidentiality, data from free-
ranging wildlife, and data from other systems such as vectors
(e.g., mosquitoes for WNV), land use, and so forth. The need
for maximum access to track diseases must be balanced against
the confidentiality concerns and risks of jeopardizing data re-
porting to the system. We summarize BioPortal’s data coverage
in Table I.

4) Data Search and Alerting: BioPortal provides limited
data search functions to regular IDI users. Instead of devel-
oping a generic data search interface with a full range of search
criteria, after extensive discussions with potential end users (i.e.,
state and county epidemiologists and public health researchers),
we decided to concentrate on search criteria based primarily on
location and time. A specialized tabular interface allows users
to quickly identify infectious disease cases that occurred at cer-
tain locations within a specified period of time. Through this
interface, the user can also get summary case counts across
locations and times with different levels of granularity. An ad-
vanced search module is also available to power users. Using this
module, a power user can build a personalized search interface
that includes additional data-set-specific search criteria.

Because BioPortal can perform IDI data analysis automati-
cally without user intervention, if potentially interesting events
are detected, the concerned individuals (e.g., epidemiologists
in charge) should be alerted. We are currently implementing
three types of alerting mechanisms. The first one is by e-mail.
The second is through the BioPortal Web interface, so when a
user authorizes himself or herself on the BioPortal site and an
alert message exists, a flashing icon will notify the user of the
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Fig. 2. Spatial–temporal visualization in bioportal.

pending message. The third mechanism is cellular phone no-
tification through an automated Web-based short text message
interface for urgent alerts.

5) Data Visualization: An important role of visualization in
the context of large and complex data set exploration is to or-
ganize and characterize the data visually to assist users in over-
coming information overload problems [10]. BioPortal makes
available an advanced visualization module, called the spatial
temporal visualizer (STV), to facilitate the exploration of infec-
tious disease case data and summarize query results. Developed
as a generic visualization environment, STV can be used to
visualize various spatial–temporal data sets simultaneously.

The STV has three integrated and synchronized views: pe-
riodic, timeline, and GIS. The periodic view provides the user
with an intuitive display to identify periodic temporal patterns.
The timeline view provides a two-dimensional timeline, along
with a hierarchical display of the data elements organized as a
tree. The GIS view displays cases and sightings on a map. Fig. 2
illustrates how these three views can be used to explore infec-
tious disease data sets; the top left panel shows the GIS view.
The user can select multiple data sets to be shown on the map
in a layered manner using the checkboxes (e.g., disease cases,
natural land features, land-use elements). The top-right panel
corresponds to the timeline view and displays the occurrences
of various cases using a Gantt chart-like display. The user can
also access case details easily using the tree display located to
the left of the timeline display. Below the timeline view is the
periodic view with which the user can identify periodic temporal
patterns (e.g., months with an unusually high number of cases).
The bottom portion of the interface allows the user to specify
subsets of data to be displayed and analyzed.

As discussed in Section II-A, to achieve fine-graded inter-
face control and high interactivity, STV has been developed
as a standalone Java application, which can be deployed trans-
parently across the Web. The essential data elements (location,
time, and event type) displayed by STV are all captured in the
relational tables in the BioPortal internal data store. The auxil-
iary data elements (e.g., case details, needed only when a user
wants to learn more about a particular data point) may be re-

trieved from the HL7 XML messages stored in the BioPortal
internal data store. Because STV is executed on the client ma-
chine, real-time data transmissions between the client machine
and BioPortal server are necessary. For better performance and
shorter response time, STV caches much of the data needed on
the client side.

C. Outbreak Detection and Spatial–Temporal Data Analysis

In addition to data access, query, and visualization, BioPor-
tal provides data analysis capabilities, particularly in the area
of spatial–temporal data analysis. In IDI applications, measure-
ments of interest such as disease cases are often made at various
locations in both space and time. In recent years, interest has
increased in answering several central questions, which have
great practical importance in outbreak detection and arise from
spatial–temporal data analysis and related predictive modeling:
How can areas with exceptionally high or low measures be iden-
tified? How can observers determine whether unusual measures
can be attributed to known random variations or are statistically
significant? In the latter case, how should the explanatory fac-
tors be assessed? How can statistically significant changes be
identified in a timely manner in specific geographic areas? For
instance, unusual clustering of dead birds has been proven to be
highly indicative of WNV outbreaks.

From a modeling and computational perspective, two distinct
types of spatial–temporal clustering or hotspot analysis tech-
niques have been developed. The first type is based on various
kinds of scan statistics, and has been used with increasing fre-
quency in public health and infectious disease studies [11]. The
second type is based on data clustering and its variations, and
has found successful application in crime analysis [12]. Bio-
Portal makes both types of methods available through its Web
interface. In addition, it allows the user to interactively invoke
these methods and visually inspect their results through STV.

One major computational problem faced by existing methods
is that the shapes of potential hotspots are limited to simple, fixed
symmetrical shapes for analytical and search efficiency reasons.
As a result, when the real underlying clusters do not conform
to such shapes, the identified regions are often poorly local-
ized. To overcome this major computational limitation, as part
of the BioPortal technical research effort, we have developed an
alternative and complementary modeling approach called risk-
adjusted support vector clustering (RSVC). Hotspot analysis
differs from standard clustering in that clustering must be per-
formed relative to baseline data points (representing a “normal”
situation). In RSVC, we apply the “risk adjustment” concept
from a crime hotspot analysis approach [12] to incorporate base-
line information in the clustering process. The basic intuition
behind RSVC is as follows: A robust, SVM-based clustering
mechanism called support vector clustering allows detection of
clusters with arbitrary shapes based on the distances defined over
pairs of data points. By adjusting distance measures proportion-
ally to the estimated density of the baseline factor, areas with
high baseline density make it more difficult to group data points
together as clusters, because the distances between these data
points have been adjusted upward. We have also extended our
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RSVC approach to perform prospective hotspot analysis aimed
at monitoring data sources on a continuous basis. For technical
details of this BioPortal spatial–temporal data analysis work,
interested readers are referred to [13] and [14].

III. HYPOTHESES AND EVALUATION DESIGN

We conducted a controlled experiment to evaluate BioPor-
tal holistically. Our foci were objective user task performance
and subjective self-reported system assessments. Our evaluation
did not involve algorithmic assessments or examine individual
components of BioPortal (e.g., hotspot analysis and outbreak
detection), which have been studied previously [14]. In this sec-
tion, we discuss the hypotheses tested and detail our evaluation
design.

A. Hypotheses

We followed the system success evaluation framework by
DeLone and McLean [15], and focused on evaluating the es-
sential system characteristics of BioPortal and its impacts on
user task performance measured objectively by analysis accu-
racy and task completion efficiency. We also examined users’
self-reported assessments of BioPortal in terms of satisfaction,
usability, usefulness, and ease of use, all of which are critical in
system evaluations [16]. For benchmark purposes, we included a
computer-based spreadsheet program commonly used by public
health professionals in their analysis tasks.

1) Analysis Accuracy: By integrating interrelated data ex-
tracted from different sources and presenting them in a visually
intuitive and comprehensible way, BioPortal can be expected
to better support various analysis tasks by public health profes-
sionals. Therefore, we tested the following hypotheses.
H1A : The analysis accuracy that results from the use of BioPor-
tal is higher than that associated with the benchmark spreadsheet
program.
H1B : The accuracy improvement that results from the use of
BioPortal, as compared with the benchmark spreadsheet pro-
gram, increases with task complexity.

2) Task Completion Efficiency: By providing convenient ac-
cess to integrated data extracted from difference sources, to-
gether with easy-to-use analytical algorithms and effective vi-
sualization, BioPortal can be expected to make public health
professionals increasingly efficient in their task performance.
We, therefore, tested the following hypothesis.
H2 : The task completion efficiency associated with BioPortal
is higher than that observed with the benchmark spreadsheet
program.

3) User Satisfaction: User satisfaction is a fundamental as-
pect of system evaluation and embraces user information satis-
faction that emphasizes information requirements [17]. Because
of the critical importance of information support in an IDI sys-
tem, we explicitly focused on user information satisfaction and
tested the following hypothesis.
H3 : The user information satisfaction that results from the use
of BioPortal is significantly higher than that observed with the
benchmark spreadsheet program.

4) System Usability: System usability has been shown to af-
fect user adoption, system usage, and satisfaction [18]. Several
usability instruments have been developed and validated [19],
[20]. Of particular importance is the user interaction satisfaction
(QUIS) scale [19] capable of assessing a system in five funda-
mental usability dimensions—overall reactions to the system,
screen layout and sequence, terminology and system informa-
tion, system learnability, and system capabilities. We tested the
following hypothesis.
H4 : BioPortal is more usable than the benchmark spreadsheet
program and shows favorable usability scores in overall reaction
to the system, screen layout and sequence, terminology and sys-
tem information, system learnability, and system capabilities.

5) Perceived Usefulness: System usefulness is critical to
voluntary use of a new system [21], [22], and generally refers to
the extent to which an individual considers a system useful in his
or her work role. BioPortal offers effective data integration sup-
port, and has sophisticated built-in functionalities and intuitive
visualization designs; as a result, it can be expected to better
support the demanding information processing often required
in an analysis task. Hence, we tested the following hypothesis.
H5 : The usefulness of BioPortal, as perceived by an individual,
is significantly greater than that of the benchmark spreadsheet
program.

6) Perceived Ease of Use: Perceived ease of use refers to the
degree to which an individual considers his or her use of a system
to be free of effort [21]. Ease of use represents an essential
motivation for individuals’ voluntary use of a system [23], and
can affect their adoption decisions significantly [22]. Hence, we
tested the following hypothesis.
H6 : The ease of use of BioPortal, as perceived by an individual,
is significantly greater than that of the benchmark spreadsheet
program.

B. Evaluation Design

We adopted a randomized, between-groups design. Our sub-
jects were graduate students attending the management school
or the public health school of a major university located in the
southwestern United States. All subjects were knowledgeable
about computer-based spreadsheets but varied substantially in
general public health knowledge. Each subject was randomly
assigned to use one particular system (BioPortal or the spread-
sheet program), though we remained mindful of maintaining a
balance in the subject-technology assignment.

With the assistance of several experienced public health re-
searchers and professionals, we created six analysis scenarios
common in public health and then developed a total of 11 ex-
periment tasks accordingly. The assisting experts classified the
experiment tasks on the basis of complexity: low, medium, or
high. A complete listing of the scenarios and analysis tasks used
in the experiment is available upon request. We provide two
examples as follows.

Scenario 1: Examine data related to WNV.
Task 1: In 2002, which county in New York had the highest

dead bird count? (complexity = low)
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Task 2: Of the three listed bird species, Bluejay, Crow, and
House Sparrow, which had the highest number of positive cases
of WNV? (complexity = low)

Scenario 6: Determine correlations between the incidence of
WNV and dead bird occurrences and mosquito pool counts.

Task 10: Using the BioPortal system or the spreadsheets,
as assigned, to investigate WNV disease, can you determine
whether, during 2002, there is a correlation between the dead
bird occurrences and mosquito pool counts? (complexity =
high)

Task 11: (Continued with Task 10) If so, what correlation
do you observe? (complexity = high) To assess an individual
subject’s accuracy in each task, we consolidated the analyses
by the assisting experts to establish a “gold-standard” solution
for that task. We measured analysis accuracy using a ten-point
scale, with one being completely incorrect and ten being com-
pletely correct. We measured task completion efficiency by us-
ing the amount of time that a subject needed to complete a task.
We evaluated user information satisfaction [17] using a seven-
point Likert scale, with one indicating extreme disagreement and
seven indicating extreme agreement. We adapted question items
from previous research [21] to measure system usefulness and
ease of use, using a seven-point Likert scale with one indicating
extreme disagreement and seven indicating extreme agreement.
We adopted the QUIS instrument [19] with a nine-point Likert
scale to evaluate system usability.1

Before the experiment, we used a script to inform the subjects
explicitly of our objective and data analysis plan while ensuring
them of the necessary information privacy. Subjects were asked
to provide some demographic information, and self-assessments
of their general computer self-efficacy and knowledge about
computer-based spreadsheets and public health. We provided
each subject with an overview of his or her assigned system
and a training session based on sample tasks to illustrate how
to use that system. In the experiment, each subject was asked
to complete all analysis tasks grouped by analysis scenario and
sequenced in increasing complexity, i.e., tasks progressing from
low to high complexity. After completing all the tasks, each
subject had to complete a questionnaire survey to provide his
or her assessment of the system’s usability, usefulness, and ease
of use, as well as his or her satisfaction with the information
support by the system. We imposed a 50-min time limit in the
experiment, which was appropriate according to the results of a
pilot study [24].

IV. RESULTS AND DISCUSSION

A total of 33 subjects voluntarily participated in the experi-
ment. Among them, 17 subjects used BioPortal, and the remain-
der used the spreadsheet program. Of those using BioPortal, 9
subjects had high domain knowledge and the others were low in
domain knowledge. A similar distribution was observed in the
spreadsheet group. According to our analysis, the subjects in the

1Details of the scale used in QUIS are available in [19]. In general, lower
scores represent more favorable usability assessments (e.g., easy, wonderful,
clear) than higher scores (e.g., difficult, terrible, confusing), with one being
most favorable and nine being the most unfavorable.

TABLE II
SUMMARY OF DESCRIPTIVE STATISTICS AND CONSTRUCT

RELIABILITY ANALYSIS

BioPortal and spreadsheet groups are comparable demographi-
cally, and reported similar self-assessments in general computer
efficacy and computer-based spreadsheets.

We reexamined the reliability of our instrument by assessing
its internal consistency [25]. As summarized in Table II, the
subjects’ evaluative responses showed that almost all constructs
exhibited a Cronbach’s alpha value exceeding the commonly
suggested threshold of 0.8 [26], thus, suggesting adequate reli-
ability of our instrument.

We tested the main effect of system (BioPortal versus the
spreadsheet program) and domain knowledge (low versus high
general public health knowledge) as well as their combined
effects by performing an analysis of variance (ANOVA) with
each dependent variable on the basis of subjects’ responses. We
also performed a paired t-test to assess the difference in each
dependent variable obtained from the subjects using BioPortal
versus the spreadsheet program.

A. Effects on Analysis Accuracy

We used the gold-standard result to evaluate the accuracy of
each task performed by subjects. For each subject, we aggre-
gated his or her analysis accuracy across all the tasks performed
in the experiment and used the overall accuracy to test the hy-
pothesized main effect of system. According to our analysis,
the system had a significant effect on analysis accuracy (p-value
< 0.01). We further investigated the effect of system on the
basis of task complexity, and found that the system’s effect on
analysis accuracy was insignificant for low-complexity tasks but
significant for tasks of medium and high complexity. BioPor-
tal’s accuracy was greater (mean = 81.94, SD = 21.23) than
that of the spreadsheet program (mean = 61.19, SD = 17.92),
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and the difference was significant at the 0.01 level. Thus, our
data supported H1A and H1B.

B. Effects on Task Completion Efficiency

Based on our analysis, the system showed a significant main
effect on task completion efficiency (p-value <0.01). We com-
pared the amount of time required to complete a task using the
respective systems and found that, on average, subjects using
BioPortal could complete an analysis task considerably faster
(mean = 36.28 min, SD = 11.33 min) than their counterparts
supported by the spreadsheet program (mean = 48.23 min, SD =
5.07 min); the difference was significant at the 0.01 level. Thus,
our data supported H2.

C. Effects on User Information Satisfaction

According to our analysis, the main effect of the system
on user information satisfaction was significant statistically (p-
value <0.01). Overall, subjects using BioPortal exhibited higher
satisfaction with the information support (mean = 2.34, SD =
1.02) than their counterparts supported by the spreadsheet pro-
gram (mean = 3.68, SD = 1.23); the difference was significant
at the 0.01 level. Thus, our data supported H3.

D. Comparative Analysis of System Usability

According to our analysis, the system had a significant main
effect on both overall reactions to the system (p-value <0.01)
and system capabilities (p-value <0.05) but not on screen layout
and sequence or terminology and system information. The effect
on system learnability was somewhat significant statistically.
Overall, our subjects considered BioPortal generally usable and
recognized its utilities for supporting their analysis tasks. Our
evaluation results indicated that the design of BioPortal may
need to improve in screen layout and sequence, as well as in
language (e.g., clarity and user friendliness). Our subjects con-
sidered their learning to use BioPortal not particularly difficult,
but its learnability could be enhanced further. According to our
comparative analysis of subjects’ self-reported assessments of
the respective systems, BioPortal arguably was more usable than
the spreadsheet program in most, but not all, fundamental us-
ability dimensions, though the between-groups differences are
not statistically significant. Thus, our data partially supported
H4.

E. Effects on Perceived Usefulness

Our analysis shows that the system had a significant effect
on perceived usefulness (p-value <0.05). Overall, our subjects
considered BioPortal more useful for supporting their analysis
tasks (mean = 2.13, SD = 1.06) than the spreadsheet program
(mean = 3.47, SD = 1.88). The observed between-groups dif-
ference was statistically significant at the 0.05 level. Thus, our
data supported H5.

F. Effects on Perceived Ease of Use

According to our analysis, the effect of system on perceived
ease of use was significant statistically (p-value <0.05). Our

subjects considered BioPortal easier to use (mean = 2.31, SD =
1.06) than the spreadsheet program (mean = 3.24, SD = 0.88).
The between-groups difference in perceived ease of use was
significant at the 0.01 level. Therefore, our data supported H6.

V. CONCLUSION

The development of advanced IDI systems and their routine
use by public health professionals are becoming increasingly
critical. We report here a significant IDI effort, i.e., BioPor-
tal that supports cross-jurisdictional data integration with ad-
vanced data query, analysis, and visualization capabilities. We
conducted a controlled experiment to evaluate BioPortal along
some fundamental system evaluation dimensions and investi-
gated its effects on user task performance, with particular focus
on analysis accuracy, task completion efficiency, and user in-
formation satisfaction, system, usability, usefulness, and ease
of use. Our study generated encouraging findings that suggest
desirable effectiveness, usefulness, and ease of use of BioPortal.

We make several contributions to IDI research and practice.
First, we designed and implemented an advanced IDI system by
addressing essential system development challenges pertinent
to data/system integration, analysis support, and visualization.
Second, we conducted a controlled experiment to evaluate Bio-
Portal and its impacts on user task performance. Our evaluation
had methodological rigor and involved analysis scenarios and
tasks common to public health professionals. Third, we are
contributing to general practices in public health by providing
practitioners with a conveniently accessible, easy-to-use system
that enables them to generate better analysis results in less time.

Our future research includes further system enhancements
and expanded system evaluations. Both system functionalities
and usability need further improvement, including hotspot anal-
ysis and such usability dimensions as screen layout and sequence
and system information. On the evaluation front, the reported
evaluation only considers WNV, botulism, and foot-and-mouth
disease and emphasizes frequency- and pattern-related analysis
tasks. To better mimic real-world challenges in public health,
additional and preferably more diverse analysis scenarios and
tasks must be considered in future evaluation studies. While our
subject choice is appropriate for the intended evaluation pur-
pose and hypothesis testing, future investigations should also
involve public health researchers and practitioners, preferably
from different institutions and regions.
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