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Background: Due to heterogeneity of hepatocellular carcinoma (HCC), outcome assessment of HCC with
transarterial chemoembolization (TACE) is challenging.
Methods: We built histologic-related scores to determine microvascular invasion (MVI) and Edmondson-
Steiner grade by training CT radiomics features using machine learning classifiers in a cohort of 494 HCCs
with hepatic resection. Meanwhile, we developed a deep learning (DL)-score for disease-specific survival by
training CT imaging using DL networks in a cohort of 243 HCCs with TACE. Then, three newly built imaging
hallmarks with clinicoradiologic factors were analyzed with a Cox-Proportional Hazard (Cox-PH) model.
Findings: In HCCs with hepatic resection, two imaging hallmarks resulted in areas under the curve (AUCs) of
0.79 (95% confidence interval [CI]: 0.71�0.85) and 0.72 (95% CI: 0.64�0.79) for predicting MVI and Edmond-
son-Steiner grade, respectively, using test data. In HCCs with TACE, higher DL-score (hazard ratio [HR]: 3.01;
95% CI: 2.02�4.50), American Joint Committee on Cancer (AJCC) stage III+IV (HR: 1.71; 95% CI: 1.12�2.61),
Response Evaluation Criteria in Solid Tumors (RECIST) with stable disease + progressive disease (HR: 2.72;
95% CI: 1.84�4.01), and TACE-course > 3 (HR: 0.65; 95% CI: 0.45�0.76) were independent prognostic factors.
Using these factors via a Cox-PH model resulted in a concordance index of 0.73 (95% CI: 0.71�0.76) for pre-
dicting overall survival and AUCs of 0.85 (95% CI: 0.81�0.89), 0.90 (95% CI: 0.86�0.94), and 0.89 (95% CI:
0.84�0.92), respectively, for predicting 3-year, 5-year, and 10-year survival.
Interpretation: Our study offers a DL-based, noninvasive imaging hallmark to predict outcome of HCCs with
TACE.
Funding: This work was supported by the key research and development program of Jiangsu Province (Grant
number: BE2017756).
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1. INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most common cancer
and the second leading cause of cancer-related death globally [1].
Unfortunately, patients with HCC often present beyond curable eligi-
bility, and transarterial chemoembolization (TACE) has been used
widely in these individuals [2,3]. Barcelona Clinic Liver Cancer (BCLC)
score and American Joint Committee on Cancer (AJCC) stage are the
most widely accepted stage systems for HCC and also make
treatment allocation and prognostic prediction [1,4]. However, the
high level of heterogeneity in HCC, along with the complex etiologic
factors such as liver function and tumor burden, and along with the
absence of postoperative histopathologic factors, make the prognosis
prediction very challenging [5,6].

The prognostic variability for HCC patients treated with TACE
highlights the need to better define patients and disease factors that
are associated with outcome. Studies investigated that vascular endo-
thelial growth factor (VEGF) and basic fibroblast growth factor (b-
FGF) are sensitive hallmarks of HCC invasiveness, postoperative
recurrence, and prognosis [7,8]. A few works have studied these fac-
tors in the TACE setting, but none provided accurate results [9].
Moreover, the histopathologic findings, such as microvascular inva-
sion (MVI), Edmondson-Steiner grade, and peritumoral opacities can
be prognostic factors that reliably predict both postoperative recur-
rence and prognosis [10�12]. For now, nothing is known about the
relationship between these histopathologic factors and TACE,
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Research in context

Evidence before this study

Due to etiological heterogeneity and lack of histopathological
factors, there is still a challenge to preoperatively assess sur-
vival outcome of hepatocellular carcinoma (HCC) with transar-
terial chemoembolization (TACE). Although there are many
studies for subtype identification of HCC patients, embedding
survival outcome of HCC with TACE as part of the procedure of
identified subtypes has been rarely reported before. Most
reported stratification models have either no or very few deep
imaging-based integrations, leading to inadequate predictive
accuracy.

Added value of this study

We integrated multi-modal data from clinical, laboratory, imag-
ing and histopathologic indicators, especially large-scale radio-
mics features from CT imaging, giving an edge by exploiting the
improved signal-to-noise ratio. The propelled deep learning
(DL)-based risk-stratification, showing its robust prediction
ability, performed accurately in predicting survival with an
accuracy (concordance index) of 0.73 and areas under the curve
(AUCs) of 0.85 to 0.90 in predicting 3-year to 10-year survival.

Implications of the available evidence

The newly developed DL risk-stratification signature, is not only
for prognostication, but also instrumental for improving risk-
adapted therapy in HCC, which is an important step targeting
for personalized prognostication.
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because all these factors are inaccessible in patients receiving TACE as
first-line treatment due to lack of surgical specimen.

Imaging setting could be a promising tool for the detection,
stage, and risk assessment of HCC [13,14]. Imaging findings such
as tumor size, capsule appearance, and contrast enhancement are
prognostic biomarkers of HCC after surgical resection [15,16]. And
recently, studies showed that HCCs presented with MVI or
advanced Edmondson-Steiner grade were described with signifi-
cant different gray-level imaging patterns, which might be tracked
by radiomic machine learning (ML) or deep learning (DL) analysis
[17�19]. ML and DL are newly emerging form of data analysis that
use a series of data-mining algorithms or statistical tools to obtain
predictive or prognostic information [20�22]. By building appro-
priate model with refined features, ML and DL algorithms can pro-
vide a great alternative to conventional approach for such medical
image interpretation and triage in various challenging clinical
tasks [23,24]. But despite its strong potential, clearly, prospective
clinical application of this technology remains stymied. Task chal-
lenge remains about how to preferably integrate multi-modal data
such as clinical, laboratory, imaging, and genomic indicators into a
clinically available tool that enables patient’s outlook to be pre-
dicted accurately. The Cox-Proportional Hazard (Cox-PH) is the
most commonly used regression analysis approach for survival
data among semi-parametric survival models. The assumption of
Cox-PH is referred to the linear proportional hazards condition
[25]. However, the Cox analysis may provide unsatisfactory results
under conditions of high-dimensional survival data [26]. There-
fore, new application areas of survival analysis urgently call for
novel tools that able to handle high-dimensional data.

To fill this gap, we aimed to develop multi-task DL algorithms for
prognostic risk factors in HCC with TACE by a concept of integrating
multi-modal large-scale data from clinical, laboratory, imaging, and
histopathologic indicators.
2. METHODS

2.1. Patients

Ethics committee approval was granted by the local institutional
ethics review board, and the requirement of written informed con-
sent was waived. All procedures involving human participants were
performed in accordance with the 1975 Helsinki declaration and its
later amendments.

In this retrospective study, we used a total of two cohorts at a sin-
gle tertiary medical institution (The First Affiliated Hospital of Nanj-
ing Medical University). One cohort consisted of 494 HCCs who
received hepatic resection as first-line therapy between Jan. 2009
and Aug. 2017. All patients in this cohort underwent standard preop-
erative contrast-enhanced CT examination (Supplemental data;
S-text-1) within 1 month before surgery; they also did not have his-
tory of previous surgical or TACE therapies. The histologic examina-
tion of surgical specimens was performed by two pathologists
through serially examining multiple pathologic specimens. The histo-
logic parameters ordinarily included the Edmondson-Steiner grade
(I-II vs III-IV) [27], size, number, surgical margin, and MVI (absent vs
present) of the resected tumor. MVI was defined as the presence of
tumor in a portal vein, hepatic vein, or a large capsular vessel of the
surrounding hepatic tissue lined by endothelium that was visible
only on microscopy.

Another cohort consisted of 243 HCCs who received TACE as first-
line therapy between Jan. 2010 and Mar. 2019. Patients in this cohort
were diagnosed as HCCs via biopsy or denoted liver imaging settings
according to the European Association for the Study of the Liver
(EASL) criteria [1]. All they underwent standard preoperative con-
trast-enhanced CT examination within 1 month before their first
course of TACE, and did not have history of previous surgical or TACE
therapies before CT examination. Patients undergoing TACE had mul-
tifocal disease or single node that was not eligible for surgery or per-
cutaneous treatments. The pre-TACE CT images were interpreted
retrospectively, blindly, and independently by two board-certified
radiologists (Z.F.P. and Z.Y.D.) with more than 10 years of experience
in liver imaging. Any disagreement between the readers was dis-
cussed until a final consensus was generated to minimize any inter-
pretation bias. The pre-TACE investigations were used to stage the
hepatic disease. TACE was performed as routinely done, with a first
angiographic phase aimed at identifying abnormal neovasculariza-
tion. Then the emulsion of lipiodol (5�20mL) plus epirubicin (10mg)
was injected and the procedure was completed by gelfoam emboliza-
tion. Finally, functional exclusion of the hypervascular areas was con-
firmed by a final angiographic study.

For patients with TACE, follow-up CT scan was obtained 1 month
after the treatment. Tumor response was classified into four catego-
ries according to the modified Response Evaluation Criteria in Solid
Tumors (mRECIST) as follows: complete response (CR), partial
response (PR), progressive disease (PD), and stable disease (SD) [28].
Patients whose assessment was either CR or PR were classified as res-
ponders, and those whose assessment was either PD or SD were clas-
sified as non-responders. Patients after the first course of TACE were
followed-up according to institutional practice, based on serum
alpha-fetoprotein (AFP) 3-monthly and CT or MRI every 1 to 3
months. Patients with PR, PD or SD made the choice to receive
repeated TACE or additional radiofrequency ablation (RFA), chemo-
therapy, and radiation therapy, and the time of disease-specific pro-
gression or death was recorded. Patients were censored at the time
of emigration, or 30 June 2019, whichever came first.

We used the data of two cohorts in two steps: The first step was to
develop a histologic-related scoring model, respectively, for predict-
ing MVI status (designated MVI-score) and Edmondson-Steiner grade
(designated Edmondson-score) by training dual-phase contrast-
enhanced CT radiomics features using a ML classifier in 494 surgical
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datasets. In the next step, we built a prognostic biomarker (desig-
nated DL-score) of HCC treated with TACE for disease-specific sur-
vival using a multi-task deep learning algorithm in 243 datasets. The
predicted MVI-score, Edmondson-score, DL-score and clinical factors
were then integrated into a new Cox-PH model to obtain a precise
estimation of the survival time of an individual patient with TACE.
The entire architecture of our networks for multi-task prognostic
models is shown in Fig. 1.

2.2. Histologic-related score

First, we built a histologic-related ML scoring model for predicting
MVI and Edmondson-Steiner grade, respectively, in 494 surgical
datasets. Tumor segmentation was performed separately by a radiol-
ogy resident (L.Q.P.) and a fellow (X.X.) using an in-house software
(ONCO IMAG ANLY v 2.0; Shanghai Key Laboratory of MRI, ECNU,
Shanghai, China) written with Python 3.6.1 (https://www.python.
org) on 1.5-mm late arterial phase and 1.5-mm portal-venous phase
contrast-enhanced CT images. The software allows the semiauto-
matic identification of the volume of interest (VOI) of the tumor with
a combination of automatic segmentation algorithm and a manual
approach. Radiomics features were analyzed from target VOIs using
an open-source python package (https://pyradiomics.readthedocs.io/
en/latest/#). Image normalization was performed using a method
that remapped the histogram to fit within m § 3s (m: mean gray-
level within the VOI and s: gray-level standard deviation). Total
1210 radiomics features were computed for target volume based on
the texture analysis methods available in the software package (Sup-
plemental data; S-text-2). To evaluate intra-observer reliability,
reader L.Q.P. performed the segmentations on the same CT study
twice in a 1-week period. Reader X.X. completed the remaining
image segmentations, and the readout sessions were conducted over
a period of two months. The reliability was calculated by using intra-
Fig. 1. Overall workflow of (A) a RF feature selection and a SVM predictor used to develop M
networks to build a prognostic score for HCC survival after TACE. First, a DAE is used to reduce
from the bottleneck hidden layer of the networks; then six time-varying DL algorithms we
used to build a prognostic score to compute the survival probabilities on the time grid. Fin
coradiologic score were integrated into a Cox-PH model to obtain a precise estimation of t
vector machine; MVI, microvascular invasion; HCC, hepatocellular carcinoma; DL, deep
Cox-Proportional Hazard.
class correlation coefficient (ICC). Radiomics features with both intra-
observer and inter-observer ICC values greater than 0.9 (indicating
excellent stability) were selected for subsequent investigation.

To obtain a predictive score connecting to the histologic MVI and
Edmondson-Steiner grade of HCC, we designed a novel ML algorithm
as shown in Fig. 1A that combines the concepts of a random forest
(RF) feature selection and a support vector machine (SVM) prediction
[29,30]. We first assessed the radiomics features using a mean
decrease Gini index (MDGI) calculated by RF algorithm in R package
(http://cran.r-project.org/). The MDGI represents the importance of
individual features for correctly classifying a residue into linker and
non-linker regions. The MDGI was calculated by classifying 200 ran-
domly selected linker features and 200 non-linker features, and the
mean MDGI was calculated as the averaged MDGI over 100 trials.
Vectors with mean MDGI larger than 3.0 were selected as optimal
feature candidates.

Next, these RF-ranked features were trained using a stepwise SVM
classifier for predicting MVI and Edmondson-Steiner grade. The data-
sets were split into training, validation and held-out testing data
(6:1:3) in a randomized fashion to avoid overfitting. We performed a
random search over the SVM parameter (g , C and E) configuration
with a range of 0.01 to 10 and a stepping interval of 0.1, and chose
the optimal parameters with the best score on the training, validation
and test set. Best score was based on the evaluation of area under the
curve (AUC). The outputs calculated from SVM predictor indicated
the relative risk that the patient had MVI or poor Edmondson-Steiner
grade. By this way, two new imaging hallmarks of HCC, i.e., MVI-score
and Edmondson-score, were built from pretreatment CT imaging.

2.3. Prognostic score for survival

To build an imaging biomarker of survival, we first preprocessed
145 training data from a total of 243 HCC samples with TACE
VI-score and Edmondson’s score in 494 HCCs with surgical resection. (B) multi-task DL
and transform 2420 radiomics features from 243 HCCs with TACE into 70 new features

re used to train the obtained DAE-transformed features and the one perform best was
ally, MVI-sore, Edmondson’s score, DL-based survival score and evidence-based clini-
he survival time of an individual patient with TACE. RF, random forest; SVM, support
learning; DAE, deep auto-encoder; TACE, transarterial chemoembolization; Cox-PH,
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treatment and obtained 2420 radiomics features from dual-phase
contrast-enhanced CT images. These radiomics features were used as
input features to build a prognostic score related to patients’ survival
status using a novel time-varying DL algorithm. One challenge is that
the Cox analysis may provide unsatisfactory results under conditions
of high-dimensional survival data. To fill this gap, we designed a
novel DL framework as shown in Fig. 1B that combined the concepts
of deep auto-encoder (DAE) for dimension reduction [31] and time-
varying DL algorithms for survival data analysis. Our DL architecture
consists of two separate coactivated networks. One is a DAE to reduce
and transform 2420 radiomics features into 70 new features from the
bottleneck hidden layer of the networks; another is time-varying DL-
based algorithms to train the obtained DAE-transformed features
into a DL-score that computes the survival probabilities on the time
grid.

DAE is an unsupervised DL algorithm used for dimension reduc-
tion [31,32]. In its simplest representation, DAE is formed by two
components: an encoder that maps the input vectors to some hidden
representations, and a decoder which maps the hidden representa-
tions back to a reconstructed version of the input (Supplemental
data; S-text-3). In the present work, 5 hidden layers composed by
2420, 500, 70, 500, and 2420 units, respectively, were used to con-
struct a DAE-based deep network. The processing was first pre-
trained in an unsupervised layer-wise manner and then fine-tuned
by a back propagation. We used the bottleneck layer (70 units) of the
DAE to produce new features. By this way, an imaging sequence con-
taining 2420 radiomics features was reduced to 70 new components
that matched to observations for time-varying DL-based survival
modeling.

In contrast to most common regression problems, survival data
analysis is much more complex because it examines the relationships
between survival distributions and features; and models the time it
takes for events to occur; and sometimes, the event we want to pre-
dict (such as time of death) is not always observed (censored). There-
fore, it is difficult in practice to determine which algorithm, the
linear-based, the nonlinear-based or the recently proposed DL algo-
rithm, is optimal to obtain a precise estimation of the survival time of
an individual patient. To fill this gap, the second part of our DL archi-
tecture consisted of 6 DL-based algorithms as shown in Fig. 1B for
survival analysis. The presented DL algorithms are: 1) a non-propor-
tional Cox model referred to as Cox-Time [33]; 2) a proportional ver-
sion of the Cox-Time model referred to as Cox-CC [33]; 3) a linear
Cox regression model referred to as Deep-Hit [34]; 4) a neural multi-
task logistic regression model referred to as N-MTLR [35]; 5) a model
parametrizing the probability mass function and optimizing the sur-
vival likelihood referred to as PMF [36]; 6) a piecewise constant haz-
ard model assuming the continuous-time hazard function is constant
in predefined intervals referred to as PC��Hazard [36].

We performed the referred DL algorithms using an open-source
Python package for survival analysis and time-to-event prediction
with PyTorch (https://github.com/havakv/pycox/). The DL networks
were standard multi-layer perceptrons with the same number of
nodes in every layer. We used rectified linear unit (ReLU) as activa-
tion function and batch normalization between layers. We used drop-
out, normalized decoupled weight decay [37], and early stopping for
regularization to prevent overfitting. Learning rates were found using
the methods proposed by Smith [38]. For all the neural networks, we
performed a random search for hyper-parameter optimization over
400 parameter configurations. Finally, we chose the model per-
formed best in survival prediction on the training and test set. Model
performance was evaluated based on the Harrell’s concordance index
(C-index), brier score (BS) and binomial log-likelihood (BLL). And the
desired model was selected to be the one resulting in the best C-
index, the least integrated BS and the least integrated BLL over the
training/test data. A list of the hyper-parameter search spaces can be
found in supplemental data (Table s1).
2.4. Clinical evaluation and statistical analysis

Clinical and laboratory parameters including age, sex, history of
hepatic virus infection, Child-Pugh class, AFP, serum aspartate amino-
transferase (AST), albumin-bilirubin (ALBI) score [39], treatment his-
tories, and tumor response (CR, PR, PD, and SD) after TACE were
collected and reviewed from patients’ records. Radiologist’s interpre-
tations were performed by the two referring radiologists (Z.F.P. and
Z.Y.D.). The following imaging features were independently evalu-
ated: 1) number of tumors detected (solitary vs multiple); 2) the size
of leading lesion; 3) satellite lesions (absent vs present); 4) peritu-
moral arterial contrast enhancement (absent vs present); 5) a two-
trait predictor of venous invasion (TTPVI) (absent vs present) which
was based on independent estimations from internal arteries and
hypodense halos [13,40]; 6) margin appearance (smooth vs non-
smooth); 7) capsule appearance (complete vs incomplete); 8) typical
wash-in/wash-out feature (absent vs present), according to EASL cri-
teria for nodules > 1 cm (hypervascularity in the arterial phase and
wash-out of contrast media in the portal-venous/delayed phases) [1];
9) growth pattern (intrahepatic vs extrahepatic).

We evaluated the patients’ specific survival using a standard Cox-
PH algorithm with censored regression by combining the concepts of
DL survival score, ML-based MVI score and Edmondson-score, as well
as clinical laboratory indicators and radiographic-interpretation
scores. The overall survival (OS) was computed from the date of first
course of TACE to date of death or censored at the date of last follow-
up. The discriminatory performance of Cox-PH model was test using
Harrell’s C-index and calibration curve analysis. Survival curves were
generated with the Kaplan-Meier method and compared by two-
sided log-rank tests. Statistical analysis was performed using the R
software (version 3.4.4, R Project for Statistical Computing, http://
www.r-project.org). Two-sided p-values less than 0.05 were consid-
ered statistically significant.

2.5. Role of funding source

The funding source had no involvement in study design, data col-
lection, data analysis, or manuscript preparation or approval.

3. RESULTS

3.1. Patient characteristics

Of total 737 patients, 478 patients (64.9%) underwent surgical
resection; 16 patients (2.2%) underwent liver transplantation and
243 patients (32.9%) underwent nonsurgical TACE treatment. Pres-
ence of histologic MVI was diagnosed in the explanted tissues of 149
patients (30.2%) among the surgical group. Well-differentiated
(Edmondson-Steiner grade I), moderate-differentiated (Edmondson-
Steiner grade II) and poor differentiated HCC (Edmondson-Steiner
grade III-IV) were diagnosed in the explanted tissues of 54 (10.9%),
391 (79.1%) and 49 (9.9%) patients, respectively, among the surgical
group. In 243 HCCs treated with TACE, the CR, PR, SD and PD after the
first course of TACE were identified in 30 (12.3%), 73 (30.0%), 96
(39.5%) and 44 (18.1%) patients, respectively. The repeated TACE, RFA
and radiation therapy/chemotherapy were determined in 58/243
(23.9%), 37/243 (15.2%), 13/243 (5.3%) patients, respectively. The
details of clinicoradiologic characteristics in two cohorts are summa-
rized in Table 1.

3.2. MVI-score and Edmondson-score

From 494 samples, we preprocessed the training data as described
in the "Methods" section and obtained 2420 radiomics features as
input features. The RF algorithm first selected 28 relevant features for
histologic MVI status and 42 relevant features for Edmondson-Steiner
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Table 1
The clinicoradiologic characteristics of HCC in two cohorts.

Characteristics Surgery n = 494 TACE n = 243

Age
� 60 yrs 323 (65.4) 139 (57.2)
> 60 yrs 171 (34.6) 104 (42.8)

Sex
male 417 (84.4) 192 (79.0)
female 77 (15.6) 51 (21.0)

ALBI grade y
grade 1 � �2.60 293 (59.3) 75 (30.9)
grade 2�3 >�2.60 201 (40.7) 168 (69.1)

AFP
< 20 ng/ml 160 (32.4) 63 (25.9)
20�400 ng/ml 145 (29.4) 74 (30.5)
> 400 ng/ml 189 (38.2) 106 (43.6)

8th AJCC stage
stage I 277 (56.1) 55 (22.6)
stage II 97 (19.6) 21 (8.6)
stage III 115 (23.3) 93 (38.3)
stage IV 5 (1.0) 74 (30.5)

Child-Pugh class
Child A 458 (92.7) 186 (76.5)
Child B + C 36 (7.3) 57 (23.5)

Imaging detected No. of tumors
solitary 401 (81.2) 164 (67.5)
multiple 93 (18.8) 79 (32.5)

Imaging detected tumor size
< 2 cm 42 (8.5) 13 (5.3)
2�5 cm 205 (41.5) 51 (21.0)
> 5 cm 247 (50.0) 179 (73.7)

Imaging margin appearance
smooth 257 (52.0) 70 (28.8)
non-smooth 237 (48.0) 173 (71.2)

Imaging tumor growth pattern
intrahepatic 289 (58.5) 90 (37.0)
extrahepatic 205 (41.5) 153 (63.0)

Imaging capsule appearance
complete 164 (33.2) 62 (25.5)
incomplete 330 (66.8) 181 (74.5)

Imaging wash-in/wash-out
absent 68 (13.8) 38 (15.6)
present 426 (86.2) 205 (84.4)

Imaging peritumoral enhancement
absent 464 (93.9) 129 (53.1)
present 30 (6.1) 114 (46.9)

Imaging TTPVI
absent 248 (50.2) 95 (39.1)
present 246 (49.8) 148 (60.9)

Imaging detected star nodule
absent 421 (85.2) 145 (59.7)
present 73 (14.8) 98 (40.3)

Note. -Unless indicated otherwise, data are number of tumors, with percen-
tages in parentheses.
y, The albumin-bilirubin (ALBI) score was computed by the formula,
�0.085£ (albumin g/l) + 0.66£ log (bilirubin umol/l) [39]. ALBI grade 1
(��2.60), grade 2 (>�2.60 to �1.39) and grade 3 (>�1.39). HCC, hepatocellu-
lar carcinoma; TACE, transarterial chemoembolization; AFP, serum a-fetopro-
tein; AJCC, American Joint Committee on Cancer; TTPVI, two-trait predictor of
venous invasion.
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grade (supplemental data; Figure s1, Table s2 and Table s3). The
SVM predictors trained with the RF-selected features resulted in AUCs
of 0.84 (95% CI: 0.79�0.87) and 0.79 (95% CI: 0.71�0.85) in training
and test for predicting MVI, respectively; and resulted in AUCs of 0.79
(95% CI: 0.74�0.83) and 0.72 (95% CI: 0.64�0.79) in training and
test for predicting Edmondson-Steiner grade (well/moderate- vs
poor-differentiation), respectively. The details of development and
test for scoring scheme of MVI and Edmondson-Steiner grade are
summarized in Fig. 2 and Table 2.

3.3. DL-score

We preprocessed the data as described in the "Methods" section.
The 2420 radiomics features were first stacked using DAE framework
as shown in Fig. 1B. We then used the activity of 70 nodes from the
bottleneck hidden layer (third layer) as new input features. The
survival data were trained using the proposed DL algorithms,
such as Cox-Time, Cox-CC, PMF, N-MTLR, Deep-Hit, and PC-hazard
model, respectively. The results of dynamic performance tuning of
models are summarized in Table 3 and Fig. 3, wherein the Cox-
Time model with sets of 3 hidden layers and 32 nodes outper-
formed all the other DL models regarding the best C-index (0.93),
the least BS (0.02) and the least BLL (0.07) over the training and
test data. The output of optimal Cox-Time model was obtained as
a new hallmark of HCC for the estimation of the survival time of
an individual patient.

3.4. Clinical evaluation

As of Dec. 2019, of total 243 patients with TACE treatment, the
disease-specific recurrence was determined in 124/243 (51.0%)
patients, with median disease-free survival of 13.0 (95% CI: 10.3 to
15.7) months. The disease-specific mortality was determined in 137/
243 (56.4%) patients, with median OS of 23.4 (95% CI: 19.0 to 29.3)
months.

Among all clinicoradiologic factors, 11 significant variables such as
tumor size, TTPVI, tumor extrahepatic extension, imaging features of
tumor wash-in, wash-out, tumor margin, AJCC stage, RECIST status,
TACE course, predicted DL-score and predicted MVI-score were iden-
tified by a univariate Mantel-Cox analysis (Table s4). The 11 univari-
ate variables were then analyzed by a stepwise multivariate Cox-PH
regression analysis. The Cox-PH model showed that AJCC stage III
+IV, RECIST score of SD or PD, TACE course of 1�3 and predicted
DL-score (+) were independent prognostic predictors of OS of HCC
after TACE (Table 4). The OS of patients stratified by AJCC stage (I+II
vs III+IV), RECIST status (CR+PR vs SD+PD), TACE treatment (1�3
courses vs > 3 courses), and predicted DL-score (negative vs posi-
tive) reflected significant difference using log-rank test (Fig. 4).These
four independent associated factors were used to form a Cox-score
for HCC with TACE described by the formula (Supplemental data;
S-text-4): Cox-score = 0.536£AJCC stage (0: stage I+II; 1: stage III
+IV) + 0.999£ RECIST status (0: CR+PR; 1: SD+PD) + 1.103£DL-score
(0: negative; 1: positive) - 0.427£ TACE course (0: 1�3 courses; 1:
> 3 courses) (Fig. 5) [25]. The resulting TACE Cox-score demon-
strated good accuracy in estimating the OS with a C-index of 0.733
(95% CI: 0.705�0.756) (Fig. 6A). The survival receiver operating
characteristic curves (ROCs) analysis demonstrated that the TACE
Cox-score predicted 3-year, 5-year, and 10-year survival with AUCs
of 0.85 (95% CI: 0.81�0.89), 0.90 (95% CI: 0.86�0.94) and 0.89 (95%
CI: 0.84�0.92), respectively (Fig. 6B).

4. DISCUSSION

The current study investigated the potential value of a novel DL-
score deriving from pre-therapeutic dynamic CT for survival predic-
tion in HCC patients treated with TACE. We concluded that dual-
phase contrast-enhanced CT images quantitated by multi-task deep
learning radiomics analysis could provide prognostic aspect to HCC
patients treated by TACE. A risk assessment model integrating clinical
factors and DL-based imaging hallmark allows marked improvement
in the prediction of patients’ long-term outcome, which makes us
believe our findings can play an important role in prognostication
and improving risk-adapted therapy.

DL is a newly emerging form of data analysis that can handle high-
throughput features to obtain predictive or prognostic information
[21,22]. In current study, we combined a DAE and time-varying DL
algorithms to establish a prognostic score for HCC survival. There are
several ways for dimension reduction of large data sets to ensure
computational efficiency [41]. Principal components analysis (PCA) is
the most widely used conventional dimension reduction approach.



Fig. 2. Receiver operating characteristic curve (ROC) of prediction model and corresponding predicted MVI and Edmondson’s grade distribution. (A) ROCs of predicted MVI in
training and test data with areas under the curve (AUCs) of 0.837 and 0.788, respectively. (B) Risk stratification of MVI in predicted and actual proportion in each group. The error bar
represents the 95% confidence intervals of the median probability. (C) ROCs for prediction of Edmondson’s grade I, II, III with AUCs of 0.65, 0.63 and 0.79, respectively. (D) Risk strat-
ification of Edmondson’s grade in predicted and actual proportion in each group. The error bar represents the 95% confidence intervals of the median probability.
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PCA reduces the data frame by identifying a set of new variables
using a linear combination of the original variables [26]. DAE is a rela-
tive newmethod and is quite similar to PCA, but it is much more flex-
ible. DAE can represent both linear and non-linear transformation in
Table 2
DL-based prediction performance of histological sta

Histologic MVI

(+) (-)

Surgical group (n = 494)
Predict (+) 94 (19.0) 37 (7.5) Predict
Predict (-) 55 (11.1) 308 (62.3) Predict

Predict
TACE group (n = 243)
Predict (+) 119 (51.0) Predict
Predict (-) 124 (49.0) Predict

Predict

Note. -Unless indicated otherwise, data are numbe
DL, deep learning.
encoding while PCA can only perform linear transformation. DAE can
also be layered to form deep learning network and has been success-
fully used in several clinical tasks [42,43]. We also tested combination
of DAE and state-of-the-art time-varying DL-based algorithms for
tus in two cohorts with HCC.

Histologic Edmondson-Steiner grade

I II III

I 3 (0.6) 0 (0) 0 (0)
II 51 (10.3) 391 (79.1) 30 (6.1)
III 0 (0) 0 (0) 19 (3.8)

I 0 (0)
II 237 (97.5)
III 6 (2.5)

r of tumors, with percentages in parentheses.



Table 3
The performance of six DL algorithms for survival analysis of DAE-derived imaging
features.

Model Layer Node Batch PLL C-index BS BLL

Cox-Time 3 32 256 �1.26 0.93 0.02 0.07
Cox-CC 1 32 256 �1.53 0.92 0.03 0.23
PMF 3 64 256 � 0.87 0.11 0.41
N-MTLR 3 32 256 � 0.88 0.05 0.16
Deep-Hit 4 16 256 � 0.93 0.04 0.16
PC-Hazard 4 32 256 � 0.90 0.04 0.13

Note. Cox-Time, a relative risk model that extends Cox regression beyond the pro-
portional hazards. Cox-CC, a proportional version of the Cox-Time model. PMF, a
model parametrizing the probability mass function (PMF) and optimizing the sur-
vival likelihood. Deep-Hit, a PMF method with a loss for improved ranking that
can handle competing risks. N-MTLR, the neural multi-task logistic regression. PC-
hazard, a piecewise constant hazard (PC��Hazard) model assuming that the con-
tinuous-time hazard function is constant in predefined intervals. C-index, Harrell’s
concordance index; PLL, partial log-likelihood; BS, brier score; BLL, binomial log-
likelihood.

Table 4
Multivariate Cox-PH regression analysis of overall survival of
patients with HCC after TACE.

Variable Multivariate Cox analysis

b HR (95% CI) p

AJCC stage
I+II Ref Ref
III+IV 0.536 1.709 (1.118�2.612) 0.013

RECIST
CR or PR Ref Ref
SD or PD 0.999 2.717 (1.842�4.008) < 0.001

TACE course
� 3 Ref Ref
> 3 �0.427 0.653 (0.445�0.757) 0.029

Predicted DLS
Low-risk Ref Ref
High-risk 1.103 3.014 (2.017�4.504) < 0.001

Note. HR, hazard ratio; CI, confidence interval; RECIST, Response
Evaluation Criteria in Solid Tumors; b, regression coefficient.
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survival analysis. The Cox-Time algorithm, a novel DL-derived exten-
sion of Cox-PH model, outperformed the others in terms of prediction
accuracy. It provided an advance in modeling rich relationships
between the covariates and event times by parameterizing the rela-
tive risk function of Cox-PH model with neural networks [33]. It per-
formed well in 5 real-world data sets and was further invalided in
our study. The current study provided a preliminary application of
the novel multi-task DL algorithms and acquired a survival-sensitive
risk stratification model.

Several studies tried to connect gene expression profiling or histo-
logical slices with the patients’ survival status using DL. Chaudhary
et al. built a DL model on 360 HCC patients' data using RNA sequenc-
ing, miRNA sequencing, and methylation data [42]. The model pro-
vided two optimal subgroups of patients with significant survival
differences [42]. Saillard et al. used DL algorithms based on whole-
slide digitized histological slides to build models for predicting
Fig. 3. Comparison of the loss functions in the six proposed DL algorithms. Loss funct
model; (C) PMF model; (D) N-MTLR model; (E) Deep-Hit model; (F) PC��Hazard model. Cox
the least BS (0.02) and the least BLL (0.07) over the training and test datasets. C-index, Harrel
lihood; DL, deep learning.
survival of HCC patients treated by surgical resection [44]. The C-
index for survival prediction can reach 0.78 [44]. Both of the methods
are characterized with invasiveness and retrospectiveness. Further-
more, the implementation of gene expression profiling technologies
may be hampered in clinical work by their cost and the histological
slices can hardly be acquired in patients receiving TACE as first-line
treatment. Imaging examination, especially radiomics analysis, is a
state-of-the-art quantitation of HCC in a non-invasive manner, which
can provide invisible features such as texture, shape and heterogene-
ity [19,20]. The performance of our new hallmark derived from DL
radiomics analysis was comparable to that of genetic biomarkers in
previous studies but in a non-invasive and cost-effective manner,
which can be an alternative tool in clinical application. To the best of
knowledge, our study was the first to investigate the survival predic-
tion with multi-task DL methods in HCC patients receiving TACE as
first-line treatment.
ions in training and validation datasets according to (A) Cox-Time model; (B) Cox-CC
-Time model outperformed all the other DL models regarding the best C-index (0.93),
l’s concordance index; PLL, partial log-likelihood; BS, brier score; BLL, binomial log-like-



Fig. 4. Kaplan-Meier survival curves of OS according to the four independent prognostic factors in multivariate regression model. (A) OS stratified by AJCC stage. (B) OS strati-
fied by TACE treatment. (C) OS stratified by RECIST status. (D) OS stratified by predicted DLS. OS, overall survival; AJCC, American Joint Committee on Cancer; TACE, transarterial che-
moembolization; RECIST, Response Evaluation Criteria in Solid Tumors; DLS, deep learning score.
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Given the high level of heterogeneity of HCC, there is no single
reliable factor that can predict survival accurately. Computational-
assisted models combining different factors associated with survival
may be a viable alternative. Xu et al. developed a nomogram includ-
ing portal vein invasion, tumor number, tumor capsule, AFP, AST, and
indocyanine green retention at 15 min for survival prediction in HCC
patients after TACE and achieved a C-index of 0.755 [45]. Ni et al. pro-
posed a nomogram including Eastern Cooperative Oncology Group
performance status score, liver cirrhosis, AFP, tumor size, tumor
number, ALBI grade, and treatment sessions of TACE or microwave
ablation (MWA) to predict survival of patients with intermediate-
stage HCC after TACE combined with MWA and achieved a C-index of
0.770 [46]. However, none of these models takes pathological factors
into consideration due to lack of histological findings in patients
treated with TACE. We attempted to build two new imaging hall-
marks based on histologic-imaging correlation, using machine learn-
ing of volumetric CT radiomics features for predicting MVI and
Edmondson-Steiner grade of HCC. And then, the two hallmarks were
used to prospectively assess the prognostic risk of HCCs with TACE.
In univariate analysis, MVI-score was a significant prognostic factor,
but was not selected in the stepwise multivariate analysis. This may
be explained by the collinearity between MVI-score and the DL-
score; both of which are derived from CT radiomics features.

Our final Cox-PH model comprising of DL-score, AJCC stage,
RECIST status and TACE course achieved a C-index of 0.733. AJCC
stage is a commonly used staging system in many tumors and is
associated with prognosis [4,45]. Treatment response is also an
important prognostic factor and the survival rate is higher in res-
ponders compared with non-responders [47,48]. Repetition of
TACE maximizes tumor response and may prolong survival in well
selected patients [49]. However, repeated TACE cycles are also
associated with increased side effects and liver damage, poten-
tially preventing an even greater survival advantage. TACE course
more than 3 was a favorable factor in our study, which was in
agreement with Ni’s nomogram [46]. However, results from a
study in a cohort of patients treated with TACE as an initial onco-
logic therapy demonstrated that the median survival did not offer
significant difference between patients who receive single or mul-
tiple TACE courses [50]. The prognostic role of TACE course needs
further validation. Interestingly, unlike many other models, factors
associated with liver function such as Child-Pugh class and ALBI
grade were not selected in our Cox-PH model. Difference in the
degree of heterogeneity regarding these factors within the current
population may lead to the result. It should be acknowledged that
our model did not devalue liver function as a prognostic factor,
meanwhile, our model needs to be validated in a wider popula-
tion, but still, it appears to be an alternative tool to help clinical
decision support.

Our study had several limitations. First, our study was conducted
in a retrospective manner in a single center. Potential selection bias



Fig. 5. Survival nomogram for HCC with TACE. The variables in the nomogram are independent survival predictors with a univariate Mantel-Cox analysis. *, independent predic-
tors with a stepwise multivariate Cox-Proportional Hazard regression analysis. HCC, hepatocellular carcinoma; TACE, transarterial chemoembolization; TTPVI, two-trait predictor of
venous invasion; AJCC, American Joint Committee on Cancer; RECIST, Response Evaluation Criteria in Solid Tumors; DLS, deep learning score; MVI, microvascular invasion.
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may hamper the reliability of the results. Second, we did not include
other possible prognostic factors, such as VEGF, b-FGF and genomic
information. The model may be more accurate if combined with
these factors. Third, multi-parametric MRI has been widely used in
HCC patients in recently years, which may contain more tumor
Fig. 6. Calibration and ROC curves of Cox-PHmodel developed from new prognostic risk
ROCs for predicting survival at 3-year, 5-year, and 10-year, respectively. TP, true positive; FP,
information, so further studies are needed about prognostic value of
information extracted from MRI.

In conclusion, the DL-score from CT images could be a new prog-
nostic hallmark of HCC in patients with TACE. The prognostic model
based on DL-score may accurately predict the long-term survival.
factors. (A) Calibration curve for predicting overall survival with a C-index of 0.733. (B)
false positive. C-index, Harrell’s concordance index; AUC, area under the curve.
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Therefore, our results may improve the assessment of patients’ prog-
nosis and individualized precision medicine.
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