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TECHNICAL BRIEF
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Contemporary protein microarrays such as the ProtoArray R© are used for autoimmune anti-
body screening studies to discover biomarker panels. For ProtoArray data analysis, the software
Prospector and a default workflow are suggested by the manufacturer. While analyzing a large
data set of a discovery study for diagnostic biomarkers of the Parkinson’s disease (ParkCHIP),
we have revealed the need for distinct improvements of the suggested workflow concerning
raw data acquisition, normalization and preselection method availability, batch effects, fea-
ture selection, and feature validation. In this work, appropriate improvements of the default
workflow are proposed. It is shown that completely automatic data acquisition as a batch, a re-
implementation of Prospector’s pre-selection method, multivariate or hybrid feature selection,
and validation of the selected protein panel using an independent test set define in combination
an improved workflow for large studies.
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Contemporary protein microarrays are used for autoimmune
profiling studies that aim to discover biomarker panels for
potential autoimmune disorders by discriminating between
persons who are categorized by disease status, severity of dis-
ease, or other factors. The ProtoArray R© v5.0 provided by Life
Technologies (Carlsbad, CA, USA) with about 9500 protein
features spotted on each array is the leading platform in this
area of research.
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The vendor provides some recommendations (default
workflow) and the free software Prospector (current version
5.2.1) for the analysis of ProtoArray autoimmune profiling
data in gpr (GenePix results) file format. On the one hand,
Prospector features an advantageous (subgroup-sensitive)
univariate feature selection method for two-group discrim-
ination (minimum M Statistic, “M Score” [1]) as well as
a ProtoArray-specific normalization approach (robust linear
model [2]). On the other hand, Prospector and the default
workflow show some shortcomings that are fatal especially
for studies that are large with regard to the technical workflow
(e.g. group sizes >30 each). In this work, these shortcomings
are discussed and solutions to improve the default workflow
are proposed with reference to an exemplary large data set.
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In the exemplary Parkinson’s disease (PD) study
(“ParkCHIP,” a ProtoArray study that we have conducted
at the Medizinisches Proteom-Center, to be published), 216
ProtoArrays have been incubated with sera from three clinical
groups (72 PD cases, 72 healthy controls (HC), and 72 dis-
ease controls (DC), i.e. cases of other neurodegenerative and
autoimmune diseases) to find evidence that PD is associated
with a specific panel of autoimmune antibodies that can be
used as diagnostic biomarkers (hypothesis corroborated by lit-
erature, especially [3]). All samples have been collected at the
Neurological Clinic of the St. Josef Hospital in Bochum and
were 1:1:1 frequency-matched by age and gender. ProtoArrays
are produced in lots (production lots) consisting of up to about
160 arrays each. Thus, this study was too large for a single lot
and it had to be distributed among two lots (“lot1” and “lot2”).

First improvement – The recommended raw data acquisi-
tion with the semiautomatic workflow provided by the Soft-
ware GenePix Pro 6 (Molecular Devices, Sunnyvale, CA, USA)
is very time consuming and not reliable. Due to the manual
steps of grid positioning (stored in gal files, i.e. GenePix Ar-
ray Lists) and grid alignment correction, additional variance
comprises the variation between and within subjects. Because
one single person needs up to 30 min per slide, the process-
ing of arrays is limited to 20 arrays per day (approximately 11
days/216 arrays), which makes the semiautomatic approach
not feasible for large studies. Thus, reliable and fully au-
tomatic batch workflows should be used. Unfortunately, the
automatic raw data acquisition workflow provided by GenePix
Pro mostly fails to find all spots correctly. As a solution, the
reliable batch mode of the alternative software StrixAluco 3.0
(Strix Diagnostics, Berlin, Germany) can be used to acquire
all raw data in 1 day automatically without additional variance.

Second improvement – There is only a 32-bit version of
Prospector available that does not run on 64-bit machines and
cannot process a two-group comparison with more than 30 ar-
rays per group (“out-of-memory” errors). This is fatal because
Prospector is the only software providing the advantageous
M Score. After manufacturer contact, we had a preliminary
beta version of the 64-bit implementation for the ParkCHIP
study. Alternatively, M Score can be reimplemented in R ( [4]
http://www.r-project.org/) and raw data preprocessing can
be performed using a convenient R package (e.g. limma [5],
http://www.bioconductor.org/).

Third improvement – There is no solution for batch ef-
fects (i.e. systematic error caused by microarray processing
in batches [6, 7]) concerning production lots (here, “batch
effects”) that can arise due to concentration differences in
protein spots and other different spotting conditions. Batch
effects are a severe methodological shortcoming in large
biomarker studies using more than one lot, also when in-
corporating data from different labs or when pooling data
from other studies.

Some ProtoArray studies ignore the lot problem
and may thus report false-positive findings [8, 9]. We
were able to reanalyze those original data (Gene Ex-
pression Omnibus records “GSE29654” and “GSE29676,”

http://www.ncbi.nlm.nih.gov/geo/) regarding this assump-
tion. For example, in [8] there is a serious bias concerning
the unequal distribution of clinical classes between the lots,
because all their PD cases were processed with one lot and
all controls with another. Therefore, the ten biomarker candi-
dates proposed in [8] may be primary differential concerning
their lots. In [9], there is a similar bias.

To solve the batch-effect problem, two approaches have
been adopted for the ParkCHIP study. First, the study has
been set up with the guideline to distribute the three groups
equally among the production lots. Moreover, the arrays have
been distributed equally among all processing steps and days
in the lab to minimize sources of bias such as weather, time,
technical and physicochemical factors, and the variation be-
tween or within subjects. Second, all lots discriminating pro-
tein features have been discarded (see the paragraph below).
Alternatively, a computational adjustment for batch effects
can be performed [6, 7].

Fourth improvement – Prospector provides only a univari-
ate biomarker candidate selection approach (M Score) and has
no multivariate selection capabilities [10]. This is problematic
because M Scores do not represent p-values, they are not ad-
justed for multiple testing, and there is no hint where to set
an objective M Score threshold. Furthermore, this method
ignores multivariate feature relations (two features having
poorer scores may be superior in combination to the best
two features [11]). For the ParkCHIP study, the advantages
of automatic univariate (fast) and multivariate wrapper (mul-
tivariate feature evaluation, interaction with classifier) meth-
ods have been combined with manual selection in a “hybrid
feature selection” approach. Moreover, this approach solves
the batch-effect and the multiclass problem (simultaneous
discrimination of three or more clinical groups).

After raw data quality management and preprocessing
(quantile and loess normalizations, respectively, performed
with the R package limma), several two-group comparisons
have been performed using Prospector. These comparisons
were as follows: HC versus PD, DC versus PD, HC versus
DC, and lot1 versus lot2 (each comparison with quantile
and loess normalized data). For biomarker candidate selec-
tion, an ensemble selection scheme composed of “score vot-
ing,” “manual voting,” “manual selection,” and “automatic
selection” has been conducted. Score votes were, for exam-
ple, “1” for M Score <0.05 concerning HC versus PD and DC
versus PD as well as for M Score ≥0.05 concerning HC versus
DC and M score ≥0.00001 concerning lot1 versus lot2 or “0”
otherwise. Manual voting was based on fluorescence inten-
sity plots (one for each protein). Five persons have inspected
these plots and rated the corresponding proteins as differen-
tial (by voting with “1” or “0”). Proteins fulfilling vote sum
thresholds for certain subsets of manual or score votes, re-
spectively, have been preselected. These “preselection rules”
as a whole basically ensured the inclusion of proteins discrim-
inating HC and PD as well as DC and PD and the exclusion
of proteins discriminating HC and DC or lot1 and lot2 (tack-
ling multiclass and lot problem). The resulting list containing
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Figure 1. The basic idea of the hybrid procedure for the selection
of candidate proteins, which has been performed in the ParkCHIP
study, is shown. As first step, several two-group comparisons (HC
vs. PD, DC vs. PD, HC vs. DC sera and lot1 vs. lot2) have been per-
formed using the software Prospector. After rating all proteins by
manual and score voting, preselection rules have been applied to
them, and resulted in 215 preliminary biomarker candidates. This
set has been further narrowed down by manual and automatic
selection. Finally, the resulting lists containing 22 and 18 pro-
teins, respectively, have been assembled to the final biomarker
candidate list containing 36 distinct candidate proteins.

215 preselected proteins has been further narrowed down to
22 proteins by manual selection, that is, by setting an over-
all voting sum threshold (score voting sum + manual voting
sum). Additionally, an automatic selection has been applied to
the 215 preselected proteins. A multivariate feature selection
wrapper approach [10, 12] has been implemented providing
an evolutionary algorithm [13] as wrapping procedure and
the random forest (“RF,” R package: randomForest) [14, 15]
as wrapped classifier. After six runs with 100 000 iterations
each, 14 additional proteins (distinct to the 22 obtained from
final manual selection, actually there were 18) have been re-
turned. The results of manual and automatic selection have
been combined to a final biomarker panel containing 36 can-
didate proteins that discriminate the three groups DC, HC,
and PD. The basic idea of the whole biomarker candidate se-
lection procedure is outlined in Fig. 1 and the superiority of
this method compared to the default workflow is shown in
the Fifth improvement section.

Fifth improvement – With the proposed default workflow,
there is no reliable and bias-free strategy to validate the se-
lected biomarkers with independent data (i.e. independent

Figure 2. To validate the “M Score only” selection, ten new test
and training set pairs have been resampled for the discrimination
of PD cases and nonaffected subjects (PD and “HC + DC”). For
each training set, the best 36 proteins (concerning M Score) have
been selected and an RF classifier has been trained using the re-
spective 36 features to classify the corresponding test set. Finally,
the average accuracy for these ten subruns has been computed.

test set classification). To validate the 36 ParkCHIP candi-
dates computationally, all samples of the reduced data set
(containing 36 candidates only) PD versus “HC + DC” (com-
bined group consisting of HC and DC) have been split ran-
domly into a classifier training (2/3) and test set (1/3) con-
serving the respective experimental group proportions. Then,
an RF has been trained using the training set. Subsequently,
this RF has been applied to the test set to estimate the clas-
sification accuracy. The whole procedure including random
splitting has been repeated ten times. Finally, the average of
the ten subrun accuracies has been computed to assess the
overall performance of the 36 biomarker candidates. To com-
pare the results of the hybrid selection with the default work-
flow, additionally, ten new test and training set pairs have
been resampled, for each training set 36 proteins with the
best M Scores have been selected (“M Score only” selection)
and an RF has been trained using the respective 36 features
to classify the corresponding test set (see Fig. 2). The average
accuracy has been computed also for these ten subruns.

As a result (see Table 1) of the hybrid selection validation,
the average classification accuracy values were 74.5% for the
training set and 73.5% for the test set. Moreover, the variation
in accuracy values of subruns was small, ranging from 74.0 to
74.8% for the training set and from 69.5 to 77.2% for the test
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Table 1. For Parkinson’s (ParkCHIP) and Alzheimer’s disease data (GEO record GSE29676), particular test and training set classification
accuracies for ten subruns of “M score only” selection and “hybrid” selection as well as on average are shown

Parkinson’s disease Alzheimer’s disease

M Score only Hybrid M Score only Hybrid

Subrun Train Test Train Test Train Test Train Test

1 100 60.1 74.5 74.9 100 75.6 83.9 84.8
2 100 55.3 74.6 77.2 100 79.6 82.6 83.9
3 100 54.9 74.5 71.2 100 81.6 83.9 78.9
4 100 51.4 74 72.4 100 77.6 83.9 79.9
5 100 55.7 74.5 73.5 100 75.5 83.9 75.7
6 100 56.7 74.8 73.2 100 87.6 83.2 77.3
7 100 58.2 74.5 73.8 100 80.8 83.2 91.1
8 100 62.1 74.4 69.5 100 79.2 83.9 83.8
9 100 65.3 74.7 74.5 100 74.4 83.9 83.4

10 100 62.8 74.7 74.5 100 81.0 83.9 87.2

Average 100 58.25 74.5 73.5 100 79.3 83.6 82.6

set. In contrast, the validation results of the “M Score only”
selection were very divergent. On the one hand, perfect train-
ing set classification in all subruns has been performed (all
accuracies: 100%). On the other hand, the test set accuracies
(ranging from 51.4 to 65.3%, average: 58.25%) amount to a
classification slightly better than chance (see Table 1). Thus,
there is obvious evidence for overfitting that has been caused
by a fallacious univariate feature selection of the default work-
flow (perfect feature panel for the training set—poor panel
for new data). The hybrid feature selection approach finds
a more general feature panel. Hence, it is an improvement
of the default workflow. Additionally, corresponding results
for a large Alzheimer’s disease data set (50 Alzheimer’s dis-
ease vs. 40 HC vs. 59 DC, “GSE29676” [9]) are outlined in
Table 1. This study has been conducted using three lots with-
out distributing the groups equally among the production
lots. Hence, there are probably more serious batch effects
than in the ParkCHIP data.

These exemplary results show that feature validation is
indispensable. The default workflow with Prospector provides
no feature validation. Thus, incorporating training and test set
splits is a crucial improvement to obtain reliable biomarker
panels. Alternatively, other validation methods such as k-fold
cross-validation or bootstrapping can be used.

To sum up, it has been shown that the default workflow
proposed by the ProtoArray manufacturer needs to be im-
proved. The suggested raw data acquisition is time consum-
ing and not reliable, the officially released version of Prospec-
tor cannot process large studies, there is no solution for the
batch-effect problem, Prospector’s univariate feature selec-
tion strategy fails to select a generally suitable feature subset,
and there are no capabilities to validate the selected biomarker
candidate panel. In this work, straightforward solutions for
these issues have been proposed. For raw data acquisition, an
automatic and reliable batch mode should be used; to use the
advantageous M Score, the 64-bit Prospector should be re-
quested or M Score should be reimplemented. A multivariate

or hybrid feature selection should be applied and the selected
feature panel should be validated using an independent test
set. In combination, these solutions define an improved work-
flow for the biomarker discovery with ProtoArrays.
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