
fnins-13-01333 December 13, 2019 Time: 16:7 # 1

ORIGINAL RESEARCH
published: 17 December 2019

doi: 10.3389/fnins.2019.01333

Edited by:
Jiehui Jiang,

Shanghai University, China

Reviewed by:
Zaixu Cui,

University of Pennsylvania,
United States

Drozdstoy Stoyanov Stoyanov,
Plovdiv Medical University, Bulgaria

*Correspondence:
Benyan Luo

luobenyan@zju.edu.cn
Xize Jia

jiaxize@foxmail.com

Specialty section:
This article was submitted to

Neurodegeneration,
a section of the journal

Frontiers in Neuroscience

Received: 01 October 2019
Accepted: 27 November 2019
Published: 17 December 2019

Citation:
Yu Y, Li Z, Lin Y, Yu J, Peng G,

Zhang K, Jia X and Luo B (2019)
Depression Affects Intrinsic Brain

Activity in Patients With Mild Cognitive
Impairment.

Front. Neurosci. 13:1333.
doi: 10.3389/fnins.2019.01333

Depression Affects Intrinsic Brain
Activity in Patients With Mild
Cognitive Impairment
Yang Yu1, Ziqi Li2, Yajie Lin1, Jie Yu1, Guoping Peng1, Kan Zhang1, Xize Jia3,4* and
Benyan Luo1*

1 Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 2 School
of Information and Electronics Technology, Jiamusi University, Jiamusi, China, 3 Center for Cognition and Brain Disorders,
Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China, 4 Zhejiang Key Laboratory for Research
in Assessment of Cognitive Impairments, Hangzhou, China

Numerous observational studies have shown that depressive symptoms are common in
individuals with mild cognitive impairment (MCI) who have a higher rate of progress to
dementia. However, it is still uncertain whether there are any differences between MCI
patients with and without depression symptom in their brain function activities. Here we
have identified the brain function activity differences in two groups of MCI patients (with
depression or without depression) using the resting state MRI (rsfMRI) measurements.
76 right-handed MCI subjects have been recruited in this study, including 27 MCI
patients with depression symptom (MCID), 49 MCI patients without depression
symptom (MCIND). Analyses based on 7 rsfMRI measurements, including four static
measurements (ALFF, fALFF, PerAF, and ReHo) and three dynamic measurements
(dALFF, dfALFF, and dReHo) have been used to explore the temporal variability of
intrinsic brain activity. No significant differences in ALFF and dALFF between the two
group were found. In the MCID group, fALFF decreased in temporal gyrus, frontal gyrus,
inferior occipital gyrus, middle frontal gyrus and cerebellum, but increased in cuneus,
calcarine, lingual; while PerAF increased in left parahippocampus. The differences of
ReHo in the two groups was only found in cerebellum. Compared to MCIND group,
dfALFF in MCID decreased in cuneus, occipital gyrus and calcarine, while dReHo in
MCID increased in bilateral temporal gyrus, frontal gyrus, superior parietal gyrus, inferior
parietal gyrus and precuneus. Our results may provide a better understanding in the
relationship between the depressive symptoms and memory deficits.

Keywords: Alzheimer’s disease, aging, cognition, depression, brain function

INTRODUCTION

Mild cognitive impairment (MCI) is the clinical status of an individual with memory impairment
who had memory defect but is otherwise functioning properly and does not meet clinical diagnosis
criteria for dementia (Petersen et al., 1999, 2001). Cognitive deficits can be a single symptom, they
also coexist with other non-cognitive features, of all the non-cognitive features, the prevalence of
depression is the highest (Chi et al., 2015). Further, evidence suggests that MCI patients combined
with depression symptoms (MCID) progress more rapidly from MCI to Alzheimer’s disease (AD)
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along the neurodegenerative spectrum, with a reported
prevalence of 32% (Gao et al., 2013; Chi et al., 2015; Ismail
et al., 2017). Thus, for early diagnosis and treatment purposes,
an appropriate screening strategy to define the probable risk
factors in those cognitive impaired individuals is meaningful
(Ismail et al., 2017).

In recent years, based on the development of neuroimaging
technology, magnetic resonance imaging, as a tool for detecting
brain structure and function has been provided. Blood
oxygenation level-dependent (BOLD) resting-state functional
MRI (rsfMRI), has attracted enormous research interest in
studying the neural mechanisms of cognitive dysfunction in
individuals with psychiatric disorders (Biswal, 2012). Various
rsfMRI measures such as functional connectivity (FC) (Biswal
et al., 1995), amplitude of low-frequency fluctuation (ALFF)
(Zang et al., 2007) fractional ALFF (fALFF) (Zou et al., 2008),
percent amplitude of fluctuation (PerAF) (Jia et al., 2017, 2019)
regional homogeneity (ReHo) (Zang et al., 2004) and degree
centrality (DC) (Zuo et al., 2012) have been used to describe
the intrinsic brain activity (IBA). IBA involves dynamic neural
and metabolic activities, it is activity and plays a pivotal role in
brain function (Dai and He, 2014; Raichle, 2015). These methods
have been widely used to evaluate the IBA of neurological
disorders or neuropsychiatric disorders, such as AD, depression,
and MCI (Yao et al., 2009; Zhang et al., 2012; Guo et al., 2016;
Wee et al., 2016; Li et al., 2017; Stoyanov et al., 2017; Zhang
et al., 2017; Kandilarova et al., 2018; Yang et al., 2018; Liu et al.,
2019). Furthermore, evidence indicated that once brain got
an internal or external stimuli, it could respond by dynamic
integration or adjustment over multiple time scales (Hutchison
et al., 2013; Bassett and Sporns, 2017; Yan et al., 2017). However,
the aforementioned measures are static, which ignoring the
characteristics of dynamic changes of IBA over time, they
assumed that during the entire rsfMRI scan, the BOLD signal
is stationary (Liao et al., 2014, 2015). Compared with the static
rsfMRI measures, the dynamic sliding window approaches are
effective for capturing the dynamic characteristics of regional
brain activity over different times which could be used to examine
abnormal brain function (Yan et al., 2017; Tang et al., 2018).
These evidence all indicated that rsfMRI is a proper approach to
compare the differences between MCID and MCIND.

Studies have identified regions in MCI compared with the
NC, with a decreased or increased ALFF/fALFF/ReHo (Han
et al., 2011; Zhang et al., 2012; Dai and He, 2014; Li et al.,
2017; Liu et al., 2018, 2019; Yang et al., 2018). Previous study
found that changes from ALFF/fALFF measurements of IBA
may be worthwhile to characterize the early and gradual changes
in physiological alterations throughout AD progression (Yang
et al., 2018). Moreover, in MCID group the FC density values
were higher in the left MTG than those in the MCI without
depression patients (MCIND) (Liu et al., 2018). Another study
found that abnormal ALFF values in MCID group could serve
as markers to effectively differentiate MCID from MCI patients
(Li et al., 2017). As for ReHo, it can be used to classify the
depression subtypes and MCI, also changes in ReHo could be
a biomarker for the pathophysiology and therapeutic response
of depression (Guo et al., 2013; Liu et al., 2019). Previously,
by combining dynamic FC with static FC, some studies found

that the diagnostic accuracy for MCI could be significantly
improved (Wee et al., 2016; Zhang et al., 2017). So far, no
study explored the dynamic characteristics of local brain activity
indexes in MCID patients.

We employed 7 resting state measurements, including four
static measurements (ALFF, fALFF, PerAF, and ReHo) and
three dynamic measurements (dALFF, dfALFF, and dReHo) to
investigate the temporal variability of voxel-wise brain activity.
These combinations were designed to explore the variability
of IBA and to enhance our understanding of brain function
by recognizing specific pathophysiological features and further
deepen our understanding of cognitive behavior. We assumed
that MCID patients would exhibit abnormal spontaneous brain
activity compared with those MCIND. These would enhance
understanding of the relationship between depressive symptoms
and memory deficits.

MATERIALS AND METHODS

Participants
The study was endorsed by the Research Ethics Review Board
of the First Affiliated Hospital of Medical School of Zhejiang
University (FAHZU). A total of 76 right-handed MCI subjects
were recruited in the study, including 27 patients combined
with depression symptoms (MCID), 49 MCI without depression
patients (MCIND). All MCI patients were recruited at the clinic
of the Department of Neurology, FAHZU. Diagnoses of MCI
were made by experienced neurologists according to Petersen’s
criteria (Petersen, 2004). Depressive symptoms were identified
by qualified psychiatrists according to the Diagnostic and
Statistical Manual of Mental Disorders, fifth edition (DSM-V)
and the Geriatric Depression Scale (GDS) (Yesavage et al.,
1982; Chau et al., 2006) [we also recruited 50 right-handed
normal controls, who were matched for age and gender from the
local communities (Supplementary Methods in Supplementary
Material)].

The diagnosis of MCID and MCIND both fulfilled the
published MCI diagnostic criteria (Petersen, 2004). The inclusion
criteria for the MCID group included an acute episode of mild
depression with DSM-V for the diagnosis of depression symptom
who were first suffered from MCI and the 30-item GDS was > 10
scores (Yesavage et al., 1982; Chau et al., 2006). The MCIND
subjects were excluded if they had been diagnosed with major
depression, recurrent depression, or other psychiatric disorders
as described in DSM-V.

Imaging Data Acquisition
MRI data were obtained using a 3.0 Tesla GE Discovery MR750
scanner (HD, General Electric Healthcare, Waukesha, WI,
United States). 3D T1-weighted structural images were acquired
using the following parameters: 128 slices, TR of 8,100 ms, TE of
3.1 ms, slice thickness of 1 mm, FA of 8◦, matrix size of 256 × 256,
FOV of 256 × 256 mm2. Functional images were acquired using
the following parameters: 43 contiguous axial slices, repetition
time (TR) of 2,000 ms, echo time (TE) of 30 ms, slice thickness of
3.2 mm, flip angle (FA) of 90◦, matrix size of 64 × 64, field of view
(FOV) of 200 × 200 mm2, total scan time of 8’00”. During the
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rsfMRI scan, the patients were given no task but were instructed
to simply rest with eyes closed.

rsfMRI Preprocessing
The rsfMRI data were processed using SPM121 and RESTplus
(Jia et al., 2019)2. The first 10 time points were discarded as
adaptation of the participant to the scanner noise. The data
preprocessing steps included slice timing, realignment, and
spatial normalization. First, an individual T1-weighted image
was co-registered to the mean functional image and then the
T1-weighted image was segmented into gray matter (GM),
white matter (WM) signal, and cerebrospinal fluid (CSF) signal.
The EPI images were spatially normalized to the Montreal
Neurological Institute (MNI) space and voxel size was resampled
to 3 mm × 3 mm × 3 mm using the normalization parameters
estimated during segmentation. Smoothing was performed with
a 6 mm full width - half maximum (FWHM) Gaussian kernel.
After removing the linear trend, we regressed out of covariates,
which consisted of Friston-24 head motion parameters (Friston
et al., 1996; Yan et al., 2013), WM signal, and CSF signal. The
time courses were filtered by a (0.01–0.08 Hz) band to reduce
high-frequency noise and low-frequency drifts.

Static ALFF, Fractional ALFF (fALFF),
Percent Amplitude of Fluctuation (PerAF)
and Regional Homogeneity (ReHo)
Calculation
We performed ALFF, fALFF, PerAF and ReHo analysis for
each scan. The calculation of ALFF was based on fast Fourier
transform (FFT). Using FFT, each time course was converted
to the frequency domain. Then, the square root of the power
spectrum at each frequency was averaged across the filtered band
(0.01–0.08 Hz). The ALFF of each voxel was then normalized by
the global mean of the ALFF values (mALFF) for standardization.
For each given voxel, mALFF reflected the degree of its raw ALFF
value relative to the average ALFF value of the whole brain (Zang
et al., 2007). Then we calculated fALFF by obtaining the ratio
of the power spectrum of low frequency (0.01–0.08 Hz) to that
of the entire frequency range. Then, the resulting spatial fALFF
maps were then divided with each voxel divided by the whole-
brain fALFF mean (mfALFF), providing mfALFF spatial maps
(Zou et al., 2008). PerAF designated the percentage amplitude
of BOLD fluctuation relative to the mean BOLD signal intensity
of a given time series (Jia et al., 2017) with RESTplus (Jia
et al., 2019). PerAF is standardized at the single voxel level, the
resulting spatial PerAF maps were then normalized with each
voxel divided by the global mean PerAF (mPerAF). Both PerAF
and mPerAF can be used for group-level statistical analysis,
here we used mPerAF for further statistical analyses (Jia et al.,
2019; Yu et al., 2019). For ReHo, the Kendall’s coefficient of
concordance (KCC) of the time course of every 27 nearest
neighboring voxels was calculated (Zang et al., 2004). To reduce
the influence of individual variations in the KCC value, ReHo

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.restfmri.net/forum/

map normalizations were performed by dividing the KCC among
each voxel by the averaged KCC of the whole brain.

Dynamic ALFF, fALFF and ReHo
Calculation
Dynamic parameters were performed using Temporal Dynamic
Analysis (TDA) toolkits based on DPABI (Yan et al., 2016) Sliding
window-based analysis, which is sensitive in detecting time-
dependent variations, was applied to examine three dynamic
measurements (dALFF, dfALFF or dReHo) variability over the
whole brain (Hindriks et al., 2016; Liu et al., 2017; Yan et al., 2017;
Yip et al., 2017; Tang et al., 2018; Vergara et al., 2019).

In the sliding window analysis, a temporal window of certain
size and shape is chosen, and ALFF, fALFF and ReHo within
that window are calculated. Theoretically, the window size
should be designed feasibly. It should be small enough to
monitor potentially transient signals, and yet large enough to
describe the lowest frequencies of interest in the signals (Sakoglu
et al., 2010). Previous studies of sliding window connectivity
have applied a sliding window length from to 10 to 180 s
(Thompson et al., 2013; Gonzalez-Castillo et al., 2015; Chen
et al., 2018). Here we applied a sliding window length of 32
TR (64 s) and a shifting step size of two TR (4 s) (Chen
et al., 2018). The remaining 230 time points after removing
the first 10 time points for each individual were segmented
into 100 windows in total. In each sliding window, ALFF,
fALFF and ReHo were calculated. After calculating ALFF of
all voxel in time windows, each participant will get several
window-based ALFF maps (similar as fALFF and ReHo). Then,
we computed the mean and standard deviation of each voxel
in all window-based ALFF maps for each subject and further
got the corresponding coefficient of variation (CV) which was
acquired by dividing the standard deviation by the mean. To
better measure the dynamic variation of regional brain activity
between different individuals, we used CV as dALFF (similar as
dfALFF), which represented the temporal variability of absolute
energy consumption in low-frequency regional brain activity
(Tang et al., 2018).

Statistical Analyses
Scales Analysis
To examine the between-group differences in the seven
measurements, two-sample t-test was held between the MCID
and MCIND groups using DPABI (Yan et al., 2016). The figure
was drawn by both DPABI and BrainNet Viewer (Xia et al.,
2013; Yan et al., 2016). To reduce the effect of confounding
variables in the statistical analysis, we performed two-sample
t-tests with the mean relative displacements of age, sex, and
education as covariance. Multiple comparison correction was
performed based on Gaussian random field theory (GRF, voxel-
wise p < 0.05, cluster-wise p < 0.05, two-tailed).

Correlation Analysis
With the peak voxels of abnormal regions as spherical centers,
spherical ROIs were constructed around these abnormal regions
(with a 6 mm radius). To assess the relationship between the
behavioral scores (include MMSE, MoCA and GDS scores) and
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metrics in these abnormal regions, we used Partial correlation
analysis that controlled for age, sex and education by SPSS
software (version 20.0; IBM, Chicago, IL, United States).
Statistical significance was defined as p < 0.05. To control for false
positives from multiple comparisons, we used the false discovery
rate (FDR) correction in which the p-values were multiplied by
the number of comparisons.

RESULTS

Neuropsychological Results
Demographic and clinical characteristics of 76 patients with MCI,
49 MCIND (19 men; mean age, 65.88 ± 9.762 years) and 27
MCID (11 men; mean age, 63.44 ± 10.58 years) are listed in
Table 1. No significant differences were found (p > 0.05) in
gender, age, education level, and MMSE, MoCA scores between
the MCID group and MCIND group. Detailed demographics
and the psychological characteristics of the two groups are
shown in Table 1.

Alterations of Region IBA Changes
Between MCID and MCIND
The Comparison of ALFF
There were no significant differences in ALFF between the MCID
group and MCIND group.

The Comparison of fALFF
As shown in the Figure 1, for fALFF, MCID decreased in
inferior temporal gyrus (ITG), middle temporal gyrus (MTG),
middle frontal gyrus, inferior occipital gyrus, and cerebellum, but
increased in cuneus, calcarine, lingual. The significant differences
in fALFF between the two groups are shown in Table 2
and Figure 1A.

The Comparison of PerAF
We found that in MCID group, PerAF increased in left
parahippocampus gyrus and temporal gyrus. The significant
differences in PerAF between the MCID and MCIND group are
shown in Table 2 and Figure 1B.

TABLE 1 | Demographic and neuropsychological data.

MCIND (n = 49) MCID (n = 27) p

Age (y, mean ± SD) 65.88 ± 9.762 63.44 ± 10.58 0.2766t

Gender (M/F) 19/30 11/16 0.053χ

Education (y, mean ± SD) 9.8 ± 3.563 9.444 ± 3.105 0.5412t

MMSE (mean of all points ± SD) 25.43 ± 3.506 25.04 ± 4.052 0.6492t

MoCA (mean of all points ± SD) 19.92 ± 3.416 19.78 ± 4.917 0.8166t

GDS (mean of all points ± SD) 5.66 ± 2.847 15.44 ± 4.635 <0.0001t

MCID, mild cognitive impairment with the symptom of depression; MCIND, non-
depressed mild cognitive impairment; MMSE, Mini Mental State Examination;
MoCA, Montreal Cognitive Assessment; GDS, Geriatric Depression Scale; SD,
standard deviation. χ, the p-value was obtained by the chi-square test; t, The
p-value was obtained by the two-sample t-test.

The Comparison of ReHo
Using ReHo, there were only a small amount of group differences
between MCID and MCIND group in cerebellum. More details
were shown in the Table 2 and Figure 1C.

The Comparison of dALFF
There were no significant differences in dALFF between the
MCID group and MCIND group.

The Comparison of dfALFF
As shown in the Figure 1, for dALFF, compared to MCIND
group, MCID group showed decreased dALFF in the bilateral
cuneus, middle occipital gyrus, right superior occipital gyrus
and calcarine. The significant differences in dfALFF between
the MCID group and MCIND group are shown in Table 2
and Figure 1D.

The Comparison of dReHo
Using dReHo, compared to MCIND group, MCID group
exhibited obvious increase in bilateral MTG, ITG, superior
temporal gyrus (STG), superior parietal lobule, inferior parietal
gyrus (IPG), precuneus, superior frontal gyrus (SFG), middle
frontal gyrus (MFG), opercular part of inferior frontal gyrus
(IFG) and right cerebellum. More details were shown in the
Table 2 and Figure 1E.

Correlational Analysis
There was no significant correlation between clinical behavioral
scores and any rsfMRI metrics.

DISCUSSION

Most previous studies have focused on the depression-related
or MCI-related brain functional changes. However, the brain
function in MCI patients combined with depression is still
uncertain. In the current study, we observed alterations in IBA
during the resting state in 7 resting state parameters, including
four static measurements and three dynamic characteristics in
MCID and MCIND patients. We found several brain regions
especially in frontal gyrus, temporal gyrus and parahippocampus
gyrus, showed significant differences in fALFF, PerAF, ReHo,
dfALFF and dReHo between the MCID and MCIND groups.
These findings may develop a better understanding of the
relationship between depressive symptoms and memory deficits.

As we supposed, the differences of abnormal spontaneous
brain activity between MCID and MCIND patients could
be distinguished by rsfMRI. We found significant differences
between MCID and MCIND group in frontal gyrus [included
superior frontal gyrus (SFG), middle frontal gyrus (MFG)
and inferior frontal gyrus (IFG)], temporal gyrus (included
MTG, ITG and STG), hippocampus, parahippocampus gyrus,
IPG and cuneus. The robustness of the results was tested to
prove the regions we found was stability and repeatability
(Supplementary Figures S2, S3). In the studies pretend to
explore the neural mechanism about MCI, AD or depression,
these regions also have been mentioned (Langenecker et al., 2007;
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TABLE 2 | Brain regions with significantly differences rsfMRI values in the MCID group compared with the MCIND group.

Measurements Brain regions MNI coordinates Voxles T-value

x y z

fALFF Cerebellum Posterior Lobe −15 −54 −57 339 −3.9226

Middle Temporal Gyrus_L −57 −57 0 241 −3.8508

Precuneus_R 24 −48 3 459 4.3631

Middle Frontal Gyrus_R 36 57 18 230 −3.6827

PerAF Parahippocampus_L −24 −30 −18 287 4.2358

ReHo Left Cerebellum −9 −60 −48 571 −4.2962

Opercular part of inferior frontal gyrus_R 48 21 33 93 4.019

Superior Frontal Gyrus_R 3 42 36 79 3.3601

Inferior Parietal Lobule_R 42 −54 48 176 3.7523

dfALFF Middle Occipital Gyrus, Cuneus, Calcarine, right Superior occipital gyrus 18 −81 21 218 −4.1399

dReHo Left Cerebellum Posterior Lobe −36 −63 −39 92 4.4288

Middle Temporal Gyrus, Inferior Temporal Gyrus −54 −45 −12 87 4.2681

Medial Frontal Gyrus, Superior Frontal Gyrus 15 69 3 175 3.501

Superior Temporal Gyrus, Middle Temporal Gyrus 63 −39 6 84 3.7049

Middle Frontal Gyrus, opercular part of inferior frontal gyrus, Right Cerebrum 48 21 33 93 4.019

Medial Frontal Gyrus, Superior Frontal Gyrus 3 42 36 79 3.3601

Inferior Parietal Lobule, Superior Parietal Lobule, Precuneus 42 −54 48 176 3.7523

Middle Temporal Gyrus_L −57 −57 0 241 −3.8508

Precuneus_R 24 −48 3 459 4.3631

Middle Frontal Gyrus_R 36 57 18 230 −3.6827

Alexopoulos et al., 2008; Yao et al., 2009; Lee et al., 2012; Xie et al.,
2012; Zhang et al., 2012; Rizio and Dennis, 2014; Guo et al.,
2016; Stoyanov et al., 2017; Kandilarova et al., 2018; Yang et al.,
2018; Kandilarova et al., 2019). These brain regions may be the
proof of a possible shared pathophysiology in both depression
and MCI (Yao et al., 2009; Zhang et al., 2012). Other studies found
that depressive symptoms in AD had biochemical manifestations
similar to depression, suggesting that they might share a common
pathway at the biochemical level, this phenomenon may be
same in those MCI (Langenecker et al., 2007; Alexopoulos et al.,
2008; Lee et al., 2012; Xie et al., 2012; Taylor et al., 2013; Rizio
and Dennis, 2014). In studies focused on brain structure found
that depression may cause structural changes in frontal and
temporal regions (Koolschijn et al., 2009; Kandilarova et al.,
2019). These findings suggested that a circuit may be involved in
the frontal cortex is associated with the functional neuroanatomy
of depression (Langenecker et al., 2007; Yang et al., 2016).

Meanwhile, regions we found the IBA changes mostly
related to default mode network (DMN) and executive
control network (ECN). Executive functions are control
mechanisms that adjust aspects of emotion and cognition,
and disruption to these processes is related to worse clinical
prognosis of depression (Morimoto et al., 2015). According
to previous neuroimaging studies, the DMN s linked to
self-referential thought, and the episodic memory retrieval
and scene construction (Lei et al., 2013). It is supported by
results from previous studies about late-life depression (LLD).
LLD usually has a hyperactive DMN (increased rumination,
defected cognition) and a hypoactive ECN (low cognitive
control associated with emotional response), which may reflect

clinical features of depressive symptoms (Aizenstein et al., 2014;
Karim et al., 2017).

Above all the parameters we estimated, we didn’t find
significant differences in ALFF or dALFF. It has been pointed
out that the ALFF could be influenced by the physiological
noise irrelevant to brain activity, and dALFF has a temporal
variability related to specific topographic (Zou et al., 2008; Liao
et al., 2019). As for fALFF, it could effectively suppress the
physiological noise, but is not as stable as ALFF in gray matter
regions (Zou et al., 2008; Zuo et al., 2010). We firstly used PerAF
to estimate IBA of MCID patients, in parahippocampus, MCID
had an increased PerAF. Previous study by using both ALFF and
PerAF found that the ALFF was similar to PerAF, but PerAF was
better than ALFF in inter-scanner reliability (Zhao et al., 2018).
Although it is still unclear what causes the difference between
those parameters and the potential physiological significance
might be, with the limitation of each parameters, it is still
necessary to take into consideration all these metrics (Zuo et al.,
2010). We found ReHo only decreased in cerebellum, while
another study found that MCID patients showed significantly
higher coherence ReHo (cReHo) than MCIND patients in the left
Heschl’s gyrus and thalamus, lower cReHo in the left postcentral
gyrus (Liu et al., 2019). These differences may be influenced
by different calculation of ReHo. Also, the recruit criteria of
MCID group could be another factor. Depression is a highly
heterogeneous disease, and there are no clear gold biomarkers
for diagnosis (Ismail et al., 2017). In addition, the diagnose
of depression syndrome is based on clinical symptoms and a
rating scale, which is inevitably subjective. Further, evidence
suggests that evaluating depressive symptoms comprehensively
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FIGURE 1 | Brain regions showing different rsfMRI values between the MCID
and MCIND groups. (A) Brain regions with significant differences in fALFF
between the MCID group and MCIND group. (B) Brain regions with significant
differences in PerAF between the MCID group and MCIND group. (C) Brain
regions with significant differences in ReHo between the MCID group and
MCIND. (D) Brain regions with significant differences in dfALFF between the
MCID group and MCIND group. (E) Brain regions with significant differences in
dReHo between the MCID group and MCIND group (after GRF correction;
voxel-wise p < 0.05, cluster-wise p < 0.05, two-tailed). The color bar
indicates the T-value.

and accurately in those with neurocognitive disorders is difficult
because of atypical symptoms in elders, and the interaction
between depression and cognitive impairment in older adults

makes it further complicated (Ting et al., 2010; Ismail et al.,
2017). In our study, we selected the GDS to evaluate depressive
symptoms in MCI, while other studies have used different scales,
such as HAMD and the NPI (Liu et al., 2019).

Interestingly, we found that the results of dynamic measures
differ from the static measures, this had also been found
in other studies of diseases (Sourty et al., 2016; Cordova-
Palomera et al., 2017). We found that fALFF in MCID
decreased in temporal gyrus (ITG, MTG), MFG and inferior
occipital gyrus, but increased in cuneus, calcarine, lingual,
while in d fALFF, we found an increase in the cuneus,
middle occipital gyrus. Also, the ReHo doesn’t change in line
with dReHo. As for dReHo, compared to MCIND group,
MCID group exhibited an obvious increase in temporal gyrus
(MTG, ITG, STG), frontal gyrus (MFG, SFG, IFG) and right
cerebellum. However, using ReHo, we only found differences
in cerebellum. Sourty et al. (2016) implied that some brain
function alterations in Lewy body dementia can be detected
utilizing dynamic FC but not static FC by sliding-window
analysis (Sourty et al., 2016). The concept of dynamic neuroimage
characteristics may provide a proper way to summarize changes
in spatial patterns over time and to track differences in disease
(Calhoun et al., 2014).

This study had several potential limitations. Firstly, this is
a cross-sectional study, we did not investigate the conversion
of MCID/MCIND to AD. These two sub-types of MCI
patients may have different disease progress into AD. We will
focus on not only the different clinical symptoms and their
different brain areas, but also the potential different follow
up consequences for MCID and MCIND patients. Secondly,
it remains unclear that the mechanism of the differences
and abnormalities in the patients of MCID and MCIND.
In further studies, we would like to combine the rsfMRI,
structural MRI and other biophysical data simultaneously
with a larger sample and would reveal structural and
biological substrates underlying these functional deficits in
MCI and MCID patients.

CONCLUSION

In summary, we have investigated the IBA of MCID and
MCIND using rsfMRI technique. We have found some
obvious difference in the IBA between MCID and MCIND
in the regions such as frontal gyrus (included SFG, MFG
and IFG), temporal gyrus (included MTG, ITG and STG),
parietal gyrus (superior parietal gyrus, IPG), occipital gyrus,
parahippocampus gyrus and cuneus. The rsfMRI study
suggests that the abnormal IBA pattern of the whole-brain
functional activity may serve as an early biomarker for
the detection of cognitive deficits and emotional problems
in MCI patients.
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