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A B S T R A C T   

Machine learning methods played a major role in improving the accuracy of predictions and classification of DNA 
(Deoxyribonucleic Acid) and protein sequences. In eukaryotes, Splice-site identification and prediction is though 
not a straightforward job because of numerous false positives. To solve this problem, here, in this paper, we 
represent a bidirectional Long Short Term Memory (LSTM) Recurrent Neural Network (RNN) based deep 
learning model that has been developed to identify and predict the splice-sites for the prediction of exons from 
eukaryotic DNA sequences. During the splicing mechanism of the primary mRNA transcript, the introns, the non- 
coding region of the gene are spliced out and the exons, the coding region of the gene are joined. This bidi-
rectional LSTM-RNN model uses the intron features that start with splice site donor (GT) and end with splice site 
acceptor (AG) in order of its length constraints. The model has been improved by increasing the number of 
epochs while training. This designed model achieved a maximum accuracy of 95.5%. This model is compatible 
with huge sequential data such as the complete genome.   

1. Introduction 

Recent research has shown that the machine learning approach 
serves to be a boon for different types of prediction, especially in the 
field of bioinformatics. In the last many years an increasing number of 
sequencing projects and the accessibility of entirely sequenced genomes 
create difficulty in finding gene sequences in an expeditious and decisive 
manner. In this research area, bioinformatics plays a major role. In re-
ality, for the improvement of genome annotation, a number of bioin-
formatics tools and software have been developed that consider multiple 
and heterogeneous evidence sources. Genome annotation has two 
distinct phases: gene prediction and functional annotation. The process 
to identify the exact gene structure is described by the prediction phase, 
restricting the boundaries of exon and intron and the localization of 
genes on the genome. On the other hand, characterization of predicted 
genes, assigning them a biological function, and identifying their 
metabolic role or describing structural features are the criteria of func-
tional annotation. 

The whole genome sequence of an organism is actually a “blueprint”, 
that says that an organism’s genome carries a set of instructions that 
recite its biological characteristics. The central dogma plays an indis-
pensable role in unfolding the instructions by the process of transcrip-
tion of the DNA into RNA and then RNA to protein. That means the DNAs 
are processed into messenger RNAs, which pass through the nuclear 
membrane and reach the cytosol, where they are translated to proteins. 
In the eukaryotic cell system, just after the transcription process, a 
process called “splicing” takes place. Splicing is the process in which the 
non-coding sequences of genes i.e., introns are removed and the coding 
sequences i.e., exons are spliced back which means joined so that the 
hnRNA (heteronuclear RNA) after splicing becomes mRNA (messenger 
RNA) and the translation process gets enabled. 

Eukaryotes have a complex genome in which less than 5% of DNA 
carries protein-coding sequences and the rest are non-coding and un-
translated regions of DNA. Identifying genes from DNA sequences is an 
important problem in bioinformatics. The region of the DNA sequence 
that codes for a protein are called the coding sequence (CDS). The main 
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characteristic of a eukaryotic CDS is the organization of its structure into 
exons and introns. These exons and introns are separated by splice site 
regions. In general, there are four classes of exons: (i) 5′ exons, (ii) in-
ternal exons, (iii) 3′ exons and (iv) intronless exons [1]. Exons are the 
region of the gene that codes for protein to be expressed and introns are 
the non-coding region of the gene segment. The exon and intron se-
quences are characteristically envisaged as the sense strand of the 
double-stranded DNA (5′-3′). In general, in the coding sequence, the 
exon region starts with a start codon ATG and ends with one of the three 
stop codons, TAA, TAG and TGA. At least two exons are there in the 
coding sequence which makes us know that there is a minimum of one 
intron region and usually intron region starts with GT bases and ends 
with AG bases [2]. Splice sites are those sites that separate exons from 
introns and after splicing introns are removed and exons are joined. 
Introns are characterized by splice site donor (GT) and splice site 
acceptor (AG) [3]. These splice site donor and splice site acceptor acts as 
a signal in identifying splice sites in exon prediction methods. 

The accuracy in the prediction of genes is indispensable for the 
accomplishment of computational gene discovery from genomes. Ma-
chine learning approaches and statistical techniques are being used for 
predictions that can reliably identify genes in anonymous sequences of 
DNA. Some of the machine learning approaches are; Hidden Markov 
Model, Artificial Neural Network, Deep Learning, etc. 

Machine learning is a field of artificial intelligence that is growing 
continuously and contributing to its application in solving biological 
problems. In machine learning, the machine is made learned by 
improving the computer algorithms with experience [4,5]. In the field of 
bioinformatics, machine learning is performing so well such as in ge-
nomics and prediction of hidden factors of genomic sequences. Predic-
tion of coding regions of DNA has always been a challenge for 
computational biologists due to the complex nature of the eukaryotic 
genome. As computational programming has become more compre-
hensive and evolving gradually, machine learning is playing an inevi-
table role in the field of bioinformatics. Deep learning is the subset of 
machine learning where neural network algorithms use a huge amount 
of data to learn [6]. The deep learning model can be comprehended as a 
unique type of artificial neural network that is designed in multiple 
layers. 

The idea behind ANN is the human brain that is built up of multiple 
interconnecting neurons, i.e., nerves cells. In the context of artificial 
intelligence, the brain is a highly complex, nonlinear and parallel 
computer, whose structural constituents or basic units are “neurons” [7, 
8]. So, the machine can also perform tasks such as decision making, 
classification, and prediction as the human brain does [5]. Basically, in 
ANN, the processing elements, neurons are interconnected to each other 
in such a way that they are structured in three layers: the input layer, the 
hidden layer and the output layer. In advance of ANN, the hidden layer 
may be up to five. The information is sent by the input neurons, that 
build the input layer, to the hidden layer. The hidden layer neurons send 
the information to the output layer. The neurons of each of these layers 
contain some parameterized weights [8]. In machine learning, there are 
different types of neural network defined which falls under the category 
of deep learning. Deep learning is actually a subset of machine learning 
itself. The different types of neural networks like Artificial Neural 
Network (ANN), Convolutional Neural Networks (CNN), Recurrent 
Neural Networks (RNN), etc. play a great role in prediction programs. 

2. Materials and methods 

2.1. Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN) 

Long short-term memory-based Recurrent Neural Networks (LSTM- 
RNN) are basically a deep learning model. Deep learning or deep 
structured learning can be defined as a special kind of neural network 
composed of multiple layers. These networks are better than traditional 
feed-forward neural networks that need a fixed size input and give fixed- 

size output and are not designed for sequences or time-series data. A 
recurrent neural network (RNN) is designed for capturing information 
from sequences or time-series data. They can take variable size inputs; 
variable size outputs and they work well with these sequences (like DNA 
sequences) or time-series data. RNN is one such machine that has a 
combination of networks in the loop. The networks in the loop allow the 
information to persist. Each network in the loop takes input and infor-
mation from the previous network and performs the specified operation 
in turn producing output along with passing the information to the next 
network [9]. In the case of multilayer RNN, the output calculated serves 
as the input of the next layer and thus helps in creating multilayer RNN, 
that is deeper the network better will be the accuracy. Some applications 
require only recent information while others may ask for more from the 
past. The common recurrent neural networks lag in learning as the gap 
between required previous information and the point of requirement 
increases to a large extent and in turn, it affects the accuracy of the 
model. But fortunately, Long Short Term Memory (LSTM) Networks, a 
special form of RNN are capable of learning such scenarios [10]. These 
networks are precisely designed to escape the long-term dependency 
issue of recurrent neural networks [11]. LSTM is actually the addition of 
little more interactions to RNN to increase the accuracy of the model. 

Long short-term memory (LSTM) is an artificial recurrent neural 
network (RNN) based architecture used in the field of deep learning 
[11]. Unlike standard feed-forward neural networks, LSTM has feedback 
connections. It can not only process single data points (such as images), 
but also entire sequences of data (such as DNA/RNA). LSTM is a type of 
recurrent neural network (RNN) proposed by Hochreiter and Schmid-
huber (1997) [12], [13]. 

In this paper, bidirectional LSTM (Long Short-Term Memory) RNN 
(Recurrent Neural Network) has been applied for the identification of 
splice-sites for the prediction of eukaryotic exons. Bidirectional LSTM 
structure permits the networks to preserve both backward and forward 
information from the two combined hidden states regarding the 
sequence data at each time step. In Fig. 1, both backward and forward 
information is clearly shown by the directed arrows in the hidden layer, 
wn represents the input and yn represents the output respectively. So that 
at any point in time, the information from both past and future are 
preserved using the hidden states [14,15]. This special feature of bidi-
rectional LSTM increases the accuracy of the RNN model. 

The summarized work plan using the bidirectional LSTM-RNN model 
for the identification and prediction of splice sites has been illustrated in 
Fig. 2. Basically, inputs for the model are the DNA sequences or 

Fig. 1. The architecture of Bidirectional LSTM in which both flow of backward 
and forward information is shown by the directed arrows in the hidden layer; 
w0, w1, w2 and wn represent the input and y0, y1, y2 and yn represent the output 
respectively. 
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complete genome. Then, as a part of dataset preparation, open reading 
frames (ORFs) are predicted so that prediction progresses in a more 
precise manner. These ORFs are then converted into the categorical 
numeric format as deep learning models read input in numeric format. 
After dataset and model preparation the input dataset is passed through 
the bidirectional LSTM-RNN model. The splice site donor and acceptor 
regions i.e., GT and AG regions respectively are identified and predicted 
for the given DNA sequence. Details are described in materials and 
methods. On the basis of all theseinformation, exon predictions can be 
done more precisely. 

LSTM networks are much suitable for classifications and predictions 
based on time series data, due to the lags of the unidentified period amid 
significant events in a time series. LSTMs were propagated to act on the 
vanishing gradient issue that can come across while training traditional 
RNNs [11]. An advantage of LSTM over RNNs and other methods is 
relative insensitivity to gap length in several applications. Introns al-
ways have two distinct nucleotides at either end. At the 5′ end the DNA 
nucleotides are GT [GU in the pre-messenger RNA (pre-mRNA)]; at the 
3′ end they are AG. These nucleotides are part of the splicing site. 

2.2. Data selection and training dataset preparation 

Data selection is the foremost step for proceeding in prediction 
methods. The type of data here selected for the training dataset is 
basically a eukaryotic genomic DNA sequence in FASTA format. These 
nucleotide sequences are retrieved from the NCBI database (National 
Center for Biotechnology Information) and are stored together in a file. 

Now next step is the preparation of the training dataset for the 
training of the model. 

2.2.1. Finding (open reading frame) ORF 
The complete genome of Cryptosporidium parvum (C. parvum), a 

protozoan, responsible to cause cryptosporidiosis that attacks the in-
testinal and respiratory epithelium of vertebrates has been selected as 
input for the bidirectional LSTM- RNN model for the identification and 
prediction of splice sites for exons. The complete genome of C. parvum 
comprises 8 chromosomes and a size of 9.1 Mb, comprising 3807 genes. 
The data used in this paper is from C.parvum lowa II. This organism has 
been selected as the complete annotation of its genome is available [16, 
17]. These annotations are set as benchmark data for the validation of 
the proposed model. The open reading frame (ORF) in the region of DNA 
sequence from the start codon (ATG) to stop codons (TAG/TGA/TAA) 
[18]. The ORFs are extracted from the complete genome of C. parvum by 
using ORFfinder [19] (https://www.ncbi.nlm.nih.gov/orffinder/). This 
program is executed for all the 8 chromosomes that are the complete 
genome of C. parvum. Minimal ORF length was kept at 150 and genetic 
code 4 was chosen as it includes the genetic code of protozoan because 
C. parvum belongs to the same group. Table 1 shows the 
chromosome-wise number of ORFs obtained. The total number of ORFs 
found from all the chromosomes was 785. All of these ORFs were stored 
in a single file. 

2.2.2. Identifying splice site donor (GT) and acceptor (AG) 
Here, along with the identification of the “splice site donor (GT) 

region” and “splice site acceptor (AG) region”, one more region, “No site 
region” was added to the program to increase the model’s performance. 
A program has been developed to identify splice site donor, the GT re-
gion and splice site acceptor, the AG region. Algorithm 1 shows, that this 
program reads the ORFs as a string variable that finds the triplets that 
start with GT and stores the triplet’s position in an array containing the 
positions of the GT region. In the same manner, the program searches for 
the AG region and stores its position in an array containing the positions 
of the AG region. After that, for the no-site region, the region that is not a 
potential splice site is considered a No-site region and its position has 
been also stored in an array containing a No-site region [20]. 

2.2.3. Preparation of splice site classes 
Now, the DNA sequences of the merged ORFs that were stored in a 

single file, were split into a sequence of window size 60 in such a manner 
that each sequence contains one of the splice-site. 

Each of the classes contains such 37005 sequences with the window 
size 60 as the number of GT positions identified were 37005. The 
number of AG positions was also 37005 because the intron starts with 
GT and ends with AG, the numbers of GT and AG positions must be 
equal. The positions of No-site were also 37005 as it is the mean value of 
GT and AG positions. But all these predicted positions are not true donor 
splice sites (explained in the result and discussion section). 

Three classes of splice site regions were prepared, donor (GT) splice 
site region, acceptor (AG) splice site region and no-site region. Each of 
the classes consists of 37005 sequences with a length of 60 nucleotides. 

2.2.3.1. Donor (GT) splice site region. For each position in the GT 

Fig. 2. Proposed work plan using bidirectional LSTM-RNN model for splice site 
identification and prediction: Here in this figure, inputs for the model are the 
DNA sequences or may take complete genome. Then these DNA sequences are 
processed for ORF prediction; then these ORFs are then converted into cate-
gorical numeric format; Then these prepared datasets are passed through a 
Bidirectional LSTM-RNN model that consists of an embedding layer, a dropout 
layer, a bidirectional LSTM layer and a dense layer; after processing the output 
are donor, acceptor and no sites that is the identified and predicted regions. 

Table 1 
Result of ORFfinder for reference genome of Cryptosporidium parvum lowa II, 
median total length 9.1089 Mb and median GC% 30.2 (https://www.ncbi.nlm. 
nih.gov/genome/?term=cryptosporidium+parvum).  

Chromosome no. RefSeq (NCBI) Size (Mb) No. of ORFs 

1. NC_006980.1 0.88 87 
2. NC_006981.1 0.99 95 
3. NC_006982.1 1.1 93 
4. NC_006983.1 1.1 89 
5. NC_006984.1 1.08 100 
6. NC_006985.1 1.33 110 
7. NC_006986.1 1.28 117 
8. NC_006987.1 1.34 94  
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position list, 30 nucleotides were appended just before the GT position 
and 30 nucleotides just after the GT position. In this way, a nucleotide 
sequence of window size 60 containing the GT region in the middle is 
prepared. This class of training dataset has been labeled as 0. 

2.2.3.2. Acceptor (AG) splice site region. Similarly, for each position of 
AG in the AG position list, 30 nucleotides were appended just before the 
AG position and 30 nucleotides just after the AG position. In the same 
way, a nucleotide sequence of window size 60 containing the AG region 
in the middle is prepared. This class of training dataset has been labeled 
as 1. 

2.2.3.3. No-site region. Respectively, for each position of no-site in the 
no-site position list, 30 nucleotides were appended just before the no- 
site position and 30 nucleotides just after the no-site position. Like-
wise, a nucleotide sequence of window size 60 containing a no-site re-
gion in the middle is prepared. This class of training dataset has been 
labeled as 2. Algorithm 1 describes the execution details. 

In machine learning, the series of sequences of all these classes pre-
pared needs to be converted into numerical representations [20]. Tradi-
tionally, a technique called one-hot encoding is used to convert each of 
the nucleotide positions in the DNA sequence of a certain length into a 
4-dimensional binary vector, which is most suited for Convolutional 
Neural Networks (CNN) [10]. As in this work, bidirectional LSTM-RNN 
has been used, this approach will be inefficient and hence categorical 
numeric format encoding has been used in which A=>1, G=>2, T=>3 
and C=>4 are considered for the whole DNA sequence [21]. 

Algorithm 1. Training data set preparation 

2.3. Designing bidirectional LSTM-RNN model 

In this work, the bidirectional LSTM-RNN model has been designed 
using Keras of TensorFlow, a deep learning library and an API (Appli-
cation Programming Interface) written in python that allows to define 

and train deep neural network models [22]. This model has been 
considered over traditional RNN and CNN models due to its good per-
formance and ability to process huge sequential data with more accu-
racy and high processing speed. CNN models work for image processing 
and it does not work for sequence patterns [11]. The deep learning 
bidirectional LSTM-RNN model has been prepared by followings steps: 

2.3.1. Loading dataset 
As mentioned in the preparation of splice site classes in the data 

preparation step (2.2.3), 37005 sequences were stored in each of the 
three classes respective to the positions of splice site regions. So, then a 
total of 111015 unique sequences were loaded in a NumPy array. Now, 
out of these 111015 sequences, 37005 sequences comprising of GT re-
gion were loaded GT sequence list, 37005 sequences comprising of AG 
region were loaded to the AG sequence list and 37005 sequences 
comprising the no-site region were loaded to the no-site sequence list. 
All the sequences of the GT sequence list were labeled to 0, the AG 
sequence list was labeled to 1 and the no-site sequence list was labeled to 
2. The sequences of the above three lists were merged and the resulting 
list was stored to X (input). The labels of the above three lists were 
merged and the resulting list was stored to Y (output). The input and 
output resulting data list were split into 80–20 train-test datasets, which 
means, out of total data, 80% of data were stored as Train X (training 
input data) and Train Y (training output data) for the training of the 
model; rest of 20% data were stored as Test X (test input data) and Test Y 
(test output data) for testing of the model. 

2.3.2. Compilation of bidirectional LSTM-RNN model 
As in this work, four-layered LSTM-RNN sequential models are being 

used, the first embedding layer, which takes the input data in numeric 
format, with an input size of 60 and vocab size of 4 was added. Then, the 
second layer added is the dropout layer, which filters the results that are 
out of range [23]. After that, the third layer added is the bidirectional 
LSTM layer that has been introduced to RNN to improve the model 
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performance, with 60 inputs. At last, the fourth layer added is the dense 
layer with 3 outputs and an activation softmax function that is the 
output function (Table 2 and Fig. 3). The result of the softmax function is 
interpreted as the probability distribution of the list classes. Once the 
model has been prepared, it gets compiled with probabilistic metrics i.e. 
loss = categorical_crossentropy class, adam optimizer and accuracy 
metrics to train the model [24]. 

3. Result and discussion 

3.1. Training results for bidirectional LSTM-RNN model 

As mentioned above, 80% of the total dataset prepared was used to 
train the model. That means the training dataset is Train X (training 
input data) and Train Y (training output data) which are comprised of 
80% dataset. Table 3 shows the training data for both the X and Y 
vectors, where vector X represents all the nucleotide sequences with 
their window size and vector Y represents corresponding labels. For the 
training of bidirectional LSTM-RNN model, the method applied here is 
the Adam optimizer of Keras library that optimizes the multi-class loss 
function [25,26], categorical cross-entropy that calculates the loss be-
tween true labels and the predicted labels and accuracy metrics which 
computes that how often prediction equals labels. 

The compiled model was trained with input X, output Y and a set of 
10 epochs 5 times (50 epochs). 

The loss curves of the developed model for training and test data are 
shown in Fig. 4. The accuracy curves for the training and test model are 
shown in Fig. 5. This is apparent from the graph curves that as the 
number of epochs increases loss decreases and the accuracy of the model 
increases. 

3.2. Testing of the bidirectional LSTM-RNN model 

As described earlier in the methodology that 20% data of the total 
dataset that is Test X (validating input data) and Test Y (validating 
output data) comprises the 20% data of the dataset prepared were used 
to test the model. Actually, the model is evaluated with this 20% testing 
data. Table 4 

Shows the 20% test data with its X and Y vectors representing all the 
nucleotide sequences with their window size and corresponding labels 

Fig. 3. Bidirectional LSTM-RNN model representing each layer.  

Table 3 
Training data comprising of 80% of total pre-
pared dataset (80% of 111015).  

Train_X (88812, 60) 

Train_Y (88812, 3)  

Fig. 4. Loss curve of the model shows high training and test loss at beginning 
that gradually decreases and flattens thus proving a good fit model. As the 
curves of traing and test are very close, this is also a mark of a good fit model. 

Fig. 5. Accuracy curve of the model shows that the train and test curve are very 
close to each other thus proving a good fit model and pretty high accuracy. 

Table 2 
Summarized bidirectional LSTM-RNN Model. 

Table 4 
Testing data comprising 20% of total prepared 
dataset (20% of 111015).  

Test_X (22203,60) 

Test_Y (22203, 3)  
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respectively. The reason behind using this testing data is to test the 
abstraction ability of the trained model [27]. On evaluation, the model 
performance reaches the accuracy of 95.5% (Fig. 6) on the test data set 
after running 50 epochs, a set of 10 epochs 5 times. 

After the evaluation of the model, a random whole genome sequence 
of C. parvum was taken as an input sequence to predict the exons from 
the trained and tested model. In the model, the length constraint for 
intron was added as a filter to improve the accuracy of the introns and 
exons prediction. A range of 70–100 intron length was set. After running 
the model, the prediction result comes in the form of labels 0, 1, and 2. 
This illustrates that in a particular window of sequences the counter 
shows a number of 0=> GT, 1 => AG and 2 =>no-site. The maximum 
number of counts for each label in one window will be the true pre-
diction of the donor or acceptor sites for exon prediction. After applying 
the intron length constraint, 650 introns were predicted to possess an 
average length of 95. The number of predicted exons was 4325 with an 
average length of 1453. Table 5 shows the results of exon and intron 
prediction by the proposed model compared with the annotated genome 
of C. parvum [17]. This result shows that the model is validated with the 
annotated benchmark data of C. parvum with approximately 95% 
accuracy. 

Table 6 represents the test accuracy of the proposed approach over 
other deep learning methods for splice site prediction. Here, the test 
accuracy of our proposed Bidirectional LSTM-RNN performance sur-
passes the other deep learning methods (Deep Belief Networks, Unidi-
rectional LSTM and LSTM-RNN). 

As discussed earlier, bidirectional LSTM-RNN allows the neural 
networks to preserve backward as well as forward information from the 
hidden states of the sequence data so that the machine can learn much 
better. RNN models are designed in a way so that they can handle 
sequential data (like DNA sequence) well [30]. The reason behind the 
addition of LSTM to RNN was that only that LSTM solves the problem of 
‘vanishing gradient’ and gives much better accuracy by adding extra 
interactions. Each state has some gradient, when we update each state 
and run our machine but then also the network cannot get better, this 
problem is called ‘vanishing gradient’ [31]. That is why Bidirectional 
LSTM-RNN has been used in this research work. 

4. Conclusion 

In this research paper, our proposed bidirectional LSTM-RNN 
approach for the identification and prediction of splice sites of eukary-
otic DNA has been discussed. Bidirectional LSTM-RNNs are compatible 
with huge sequential data such as complete genome. The training speed 
of the model is increased in this approach. Results clearly show that only 
50 epochs are sufficient to reach the accuracy level of 95.5%, this in-
dicates the speed of the model. The loss curve clearly shows that the 
proposed model is a good fit model. Bidirectional LSTM-RNN gives the 
best results on the basis of accuracy. The accuracy of the model can be 
increased more by increasing the number of epochs or iterations. This 
model can be used efficiently in the prediction of more precise exons for 
various other eukaryotic genomes that will prove to be a great work and 
facilitate the study of comparative genomics. Also, the predicted exons 
can be extracted from the genome sequence by the exclusion of introns 
and concatenating the exons. These extracted exons can be used for 
protein modeling for specific drug targets. 
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