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a b s t r a c t

The novel coronavirus disease 2019 (COVID-19) pandemic has caused a massive health crisis worldwide
and upended the global economy. However, vaccines and traditional drug discovery for COVID-19 cost
too much in terms of time, manpower, and money. Drug repurposing becomes one of the promising
treatment strategies amid the COVID-19 crisis. At present, there are no publicly existing databases for
experimentally supported human drug–virus interactions, and most existing drug repurposing methods
require the rich information, which is not always available, especially for a new virus. In this study, on
the one hand, we put size-able efforts to collect drug–virus interaction entries from literature and build
the Human Drug Virus Database (HDVD). On the other hand, we propose a new approach, called SCPMF
(similarity constrained probabilistic matrix factorization), to identify new drug–virus interactions for
drug repurposing. SCPMF is implemented on an adjacency matrix of a heterogeneous drug–virus
network, which integrates the known drug–virus interactions, drug chemical structures, and virus
genomic sequences. SCPMF projects the drug–virus interactions matrix into two latent feature matrices
for the drugs and viruses, which reconstruct the drug–virus interactions matrix when multiplied
together, and then introduces the weighted similarity interaction matrix as constraints for drugs and
viruses. Benchmarking comparisons on two different datasets demonstrate that SCPMF has reliable
prediction performance and outperforms several recent approaches. Moreover, SCPMF-predicted drug
candidates of COVID-19 also confirm the accuracy and reliability of SCPMF.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Human coronavirus 229E (HCoV-229E), HCoV-OC43, HCoV-
L63, HCoV-HKU1, Severe Acute Respiratory Syndrome (SARS)-
ssociated coronavirus (SARS-CoV), and Middle East Respiratory
yndrome (MERS)-associated coronavirus (MERS-CoV) are known
s six human coronaviruses so far. Specifically, HCoV-229E, HCoV-
C43, HCoV-NL63, HCoV-HKU1with lower pathogenicity are
revalent and generally cause common cold symptoms, while
ERS-CoV and SARS-CoV are zoonotic in origin reported in the
1st century [1]. In December 2019, patients with pneumonia
f unknown cause emerged in Wuhan, Hubei Province, China.
he pathogen has been identified as a new enveloped RNA be-
acoronavirus2, considered a relative of SARS and MERS, named
ARS-CoV-2 [2]. Subsequently, the novel disease was declared
oronavirus disease 2019 (COVID-19) by the World Health Or-
anization (WHO) [3]. Different from SARS-CoV and MERS-CoV,
ARS-CoV-2 is the seventh member of the coronaviruses, which
s the most pathogenic human coronavirus identified so far [4].
he COVID-19 epidemic has spread very quickly and has swept

∗ Corresponding authors.
E-mail addresses: jinmin@hnu.edu.cn (M. Jin), xjl@hnu.edu.cn (J. Xu).
ttps://doi.org/10.1016/j.asoc.2021.107135
568-4946/© 2021 Elsevier B.V. All rights reserved.
more than 210 countries around the world. As of 10th July 2020,
the COVID-19 infections continue to rise, with 12,102,328 cases
and over 551,046 deaths worldwide. To date, no proven effective
drugs or vaccines are available for COVID-19 [3].

Despite a substantial increase in pharmaceutical companies’
investment, the approval rate of new drugs has remained sta-
ble [5]. A recent study points out that the development of a new
proven drug basically takes billions of dollars and an average of
about 9-12 years to successfully bring it to the market [6]. Tradi-
tional de novo drug discovery takes more than 10 years and poses
considerable difficulties (e.g. time-consumption, substantial-cost
and high-risk) [7]. Drug repurposing (also known as drug reposi-
tioning) has emerged as a feasible solution to improve the overall
productivity of drug development, which uses existing drugs to
find potential drugs for treating new indications. Compared with
the traditional drug discovery, drug repurposing can significantly
shorten the drug development timelines, reduce overall devel-
opment costs, and avoid risks. Therefore, drug repurposing is a
promising strategy for accelerating drug discovery of COVID-19
and minimizing the translational gap in drug development.

The wet-lab experiments for drug repurposing are typically
expensive and time-consuming [5]. As a supplement of experi-
mental approaches, Computational methods offer novel testable
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ypotheses for drug discovery [8,9]. Computational methods ob-
ain the potential interaction candidates with superior accuracy in
short time by narrowing down the search space for drug–virus

nteractions and significantly reduce the experimental workload
y suggesting potential interaction candidates for validation [10].
owever, without the complex networks connecting viruses,
rugs, and diseases, the development of affordable computa-
ional drug repositioning technologies for screening potential
nti-COVID-19 drugs is challenging. To date, there are very few
rug–virus interactions databases, leading to many knowledge
aps about the newly emerged COVID-19. Due to little infor-
ation about the new COVID-19, the computational approaches
an hardly predict the interaction between the new virus and
ny drugs. Additionally, coronaviruses are features with mutating
apidly, altering tissue tropism, crossing the species barrier, and
ave a high tendency towards frequent genetic mutations and
ene recombination [11]. There is an urgent need for compre-
ensive databases of the drug–virus interactions in biomedical
esearches amid the COVID-19 crisis.

In this paper, we first manually collect a high number of drug–
irus interactions entries from literature to build a human drug
irus database (HDVD), which is a manually curated database of
xperimentally supported drugs associated with various viruses,
nd supplies a foundation for drug repositioning to help screen
nti-viral drugs. HDVD is freely accessible at (https://github.com/
uckymengmeng/HDVD) for fellow researchers. To the best of
ur knowledge, there are very few publicly existing databases
or drug–virus interactions. We then propose a novel computa-
ional drug repositioning approach, similarity constrained prob-
bilistic matrix factorization (called SCPMF), to precisely iden-
ify potential indications for existing drugs. Specifically, SCPMF
irst integrates the observed drug–virus interactions (i.e., HDVD),
rug-drug similarities (i.e., chemical structure similarities of drug
airs), virus-virus similarities (i.e., genomic sequence similari-
ies of virus pairs) into a heterogeneous network. Next, SCPMF
rojects the observed drug–virus interactions matrix into two
atent feature matrices for drugs and viruses, and reconstructs the
nteraction matrix as a product of two lower-rank drugs and virus
atrices. Different from the conventional probabilistic matrix fac-

orization method, SCPMF takes the biological information of the
roblem into account by introducing the similarity information as
onstraints for drugs and viruses. To evaluate the effectiveness of
CPMF, we applied SCPMF to two benchmark datasets by adopt-
ng AUC and AUPR metrics in the 5-fold Cross-Validation (CV)
nd local Leave-One-Out-Cross-Validation (LOOCV) experiment.
he results showed that SCPMF achieved the highest AUCs and
UPRs, outperforming the state-of-the-art approaches. Finally,
he analyses of the SCPMF-predicted drug candidates for COVID-
9 demonstrates that SCPMF is a useful method to prioritize
xisting drugs for further investigation, which has the potential to
ccelerate drug discovery for COVID-19 and other emerging viral
nfections diseases.

Theoretically, the main contributions of this work as follows:
i) We develop a drug–virus interactions dataset named HDVD.
o the best of our knowledge, there are very few publicly exist-
ng databases for drug–virus interactions. (ii) SCPMF respectively
ntroduces similarity constraints for drugs and viruses into the
robabilistic matrix factorization process, and hence leverages
he biological information of the problem to boost the perfor-
ance of SCPMF. (iii) We build a powerful computational drug

epositioning methodology, which is complementary to exist-
ng experimental methods for rapidly and precisely discovering
rug candidates for COVID-19 and other emerging viral infections
iseases.
2

2. Material and methods

As shown in Fig. 1, SCPMF involves five steps: (i) construct the
drug–virus network, (ii) calculate drug similarity scores by the
similar chemical structure of drugs, (iii) calculate virus similarity
scores by the genomic sequence of viruses, (iv) integrate the
known drug–virus interactions, drug-drug similarities, virus-virus
similarities networks to construct a heterogeneous network, and
(v) use the proposed similarity constrained probabilistic matrix
factorization approach to help suggest potential therapeutic drugs
for COVID-19 and other emerging viral infections diseases based
on the constructed heterogeneous network.

2.1. Human drug virus database (HDVD)

To construct the human virus-drug interactions network, we
assembled a significant number of experimentally validated drug–
virus interaction entries from literature by text mining tech-
nology and then built the HDVD, which is a database for ex-
perimentally supported human drug–virus associations. HDVD is
freely accessible for the researcher. HDVD includes 34 viruses,
219 drugs, and 455 confirmed human drug–virus interactions.

2.2. Construction of the drug–virus interactions network

We use the known drug–virus interactions in HDVD to con-
struct a drug–virus interactions network, where drugs and viruses
are the nodes, and interactions between drugs and viruses are the
edges. Let G = (D, V, I) represent the drug–virus interactions
network, where D = {d1, d2 ...,dn} is the collection of drugs, V =
{v1, v2, . . . , vm} is the collection of viruses, and I is the collection
of interactions between D and V. Let An∗m represent the adjacency
matrix of G. If di and vj is associated, Ai,j = 1, otherwise Ai,j = 0.
AT represents the transpose of An∗m.

2.3. Chemical structure similarity of drug pairs

A popular molecular structure 1D representation is SMILES
(Simplified Molecular Input Line Entry System), which describes
molecular structures in the form of special strings [12]. SMILES
is the most compact text-based molecular representation and
implicitly contains the information needed to compute all kinds
of molecular structures, which has been used to obtain molecular
similarity [13]. Therefore, we downloaded drug chemical struc-
ture information from the DrugBank database by adopting the
SMILES format. We then calculated the Molecular Access System
(MACCS) fingerprints of each drug via Open Babel v2.3.1 [14].
In this study, we used the Tanimoto index to measure the ab-
solute similarity between two molecules. Tanimoto index is the
most popular fingerprint-based molecular similarity metric in
cheminformatics-related fields [15]. Let two drug molecules have
a and b bits set in their MACCS fragment bit-strings, with c of
these bits being set in the fingerprints of both drugs. Tanimoto
index of a drug pair is given by [8]:

T =
c

a+ b− c
(1)

T is a value in the range of zero to one where zero means that no
bits are common, and one means that all bits are the same.

2.4. Virus genomic sequence similarity

We downloaded the genome nucleotide sequence of viruses
in Homo sapiens from the National Center for Biotechnology In-
formation (NCBI). MAFFT is becoming popular in recent years
because of its high performance. In this work, we calculated
the sequence similarity between viruses by using MAFFT version

https://github.com/luckymengmeng/HDVD
https://github.com/luckymengmeng/HDVD
https://github.com/luckymengmeng/HDVD
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Fig. 1. The workflow of SCPMF. We first create a confirmed drug–virus interactions network (denoted as the interaction matrix A with N drugs and M viruses) by
eveloping HDVD. Due to the rapid mutation of SARS-CoV-2 so far, we focus on the chemical structure similarities of drug pairs (denoted as the similarity matrix
d) and the genomic sequence similarities of virus pairs (denoted as the similarity matrix SV ). Afterwards, SCPMF integrates the drug-drug similarities, virus-virus
imilarities and confirmed drug–virus interactions networks to construct a heterogeneous network. Lastly, SCPMF projects the matrix A into two low-rank matrices
i.e., W and H) consisting of latent features for drugs and viruses, and then respectively introduces similarity as constraints for drugs and viruses in low-rank spaces.
he SCPMF-predicted candidate drugs can be further analyzed and experimentally validated.
w
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[16]. MAFFT is a multiple sequence alignment similarity-based
ethod and offers various alignment strategies, such as pro-
ressive methods (e.g. PartTree recommended for a large-scale
lignment), iterative refinement methods (e.g. FFT-NS-I suggested
or a small-scale alignment), and structural alignment methods
e.g. Q-INS-I proposed for a small-scale RNA alignment).

.5. SCPMF

In this study, we developed a human drug virus database
named HDVD) and a novel similarity constrained probabilistic
atrix factorization methodology (called SCPMF), a practically
seful framework, to effectively identify prospective drugs for
he potential treatments of COVID-19 and other emerging viral
nfections diseases. Fig. 1 illustrates the basic idea of SCPMF.

In HDVD, the observed drug–virus interactions can be denoted
s a binary matrix A ∈ {0, 1}N×M with N drugs and M viruses.
ij is the (i, j)th entry of A. Aij is equal to 1, if a drug di has
nteraction with a virus vj; otherwise Aij = 0. The pairwise
hemical structure similarities between N drugs are denoted as a
rug-drug similarity matrix Sd; the pairwise genomic nucleotide
equence similarities between M viruses are denoted as a virus-
irus similarity matrix Sv . The value range of Sd and Sv is [0, 1].
et W ∈ RK×N and H ∈ RK×M represent the latent drug and virus
eature matrices, Wi and Hj represent drug-specific and virus-
pecific latent feature vectors, respectively. Then, our goal is to
ind drug and virus latent models (W ∈ RK×N and H ∈ RK×M )
hose product (W TH) reconstructs the interaction matrix A. In
robabilistic point of view, the conditional distribution on the
bserved interactions A ∈ {0, 1}N×M is given by:

(
A|W ,H, σ 2)

=

N∏ M∏[
N

(
Aij|W T

i Hj, σ
2)]Iij (2)
i=1 j=1

3

here N
(
x|µ, σ 2

)
is the probability density function of the Gaus-

ian normal distribution, with mean µ and variance σ 2, and Iij is
he indicator function that is equal to 1 if the drug di and the virus
j is connected and equal to 0 otherwise. Thus, P

(
A|W ,H, σ 2

)
rovides us a probabilistic representation of the interaction ma-
rix A. As a generative model for drug and virus latent models,
e place zero-mean spherical Gaussian priors on drug and virus

eature vectors as follows:(
W |σ 2

W

)
=

N∏
i=1

N
(
Wi|0, σ 2

W I
)

(3)

P
(
H|σ 2

H

)
=

M∏
j=1

N
(
Hj|0, σ 2

H I
)

(4)

where I is a K -dimensional identity diagonal matrix. Thereafter,
we take the log of the posterior distribution over the drug and
virus features and transform it (see Supplementary File Equations
4 and 5). Maximizing the log-posterior over drug and virus fea-
tures with hyperparameters kept fixed is equivalent to minimiz-
ing the sum-of-squared-errors objective function with quadratic
regularization terms:

min
Wi,Hj

N∑
i=1

M∑
j=1

Iij
(
Aij −W T

i Hj
)2
+

λW

2

N∑
i=1

∥Wi∥
2
Fro +

λH

2

M∑
j=1

Hj
2
Fro

(5)

where λW = σ 2/σ 2
W and λH = σ 2/σ 2

H , and ∥·∥
2
Fro denotes the

Frobenius norm.
However, the conventional probabilistic matrix factorization

model still has some room for improvement, which simply uti-
lizes a probabilistic linear model with Gaussian noise to model
the drug–virus interactions. Different from probabilistic matrix
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actorization, SCPMF takes the biological information of the prob-
em (i.e., drug and virus similarity) into account. Therefore, we
ropose a new objective function of SCPMF as follows:

min
Wi,Hj

1
2

N∑
i=1

M∑
j=1

Iij
(
Aij −W T

i Hj
)2
+

λW

2

N∑
i=1

∥Wi∥
2
Fro

+
λH

2

M∑
j=1

Hj
2
Fro +

λ1

2

W TW − Sd
2
Fro +

λ2

2

HTH − Sv

2
Fro

(6)

where Wi represents the K -dimensional latent feature vector for
he drug, W TW is the drugs weighted similarity matrix, and HTH
s the viruses weighted similarity matrix.

To improve the efficiency of SCPMF, we optimize the problem
n Eq. (6) by utilizing the gradient descent algorithm. We define
he corresponding Lagrange function Lf of Eq. (6), and obtain the
artial derivatives equations of W and H . The detailed derivation
rocess is shown in the Supplementary File Equations 8–12. Thus,
e can obtain the updating rules as follows:

new
ik ← Wik

(
I ·

(
HAT

)
+ 2λ1 (W (Sd))

)
ik(

I ·
(
HHTW

))
ik + (λWW )ik +

(
2λ1

(
WW TW

))
ik

(7)

new
jk ← Hjk

(I · (WA)+ 2λ1 (W (Sv)))jk(
I ·

(
WW TH

))
jk + (λHH)jk +

(
2λ2

(
HHTH

))
jk

(8)

The matrices W and H are updated based on Eqs. (7) and (8)
ntil the local minimum of the objective function. Finally, the
redicted drug–virus interaction matrix is obtained as A∗ = W TH .
enerally, the jth column of A∗ indicates the interaction scores
etween virus vj and drugs, and the larger the score, the more
elevant it is.

. Performance evaluation of SCPMF

.1. Prediction of drug–virus interactions

We performed 5-fold CV and local LOOCV procedures based
n 455 known drug–virus interactions between 219 drugs and
4 viruses from HDVD to test the performance of SCPMF. In the
-fold CV experiment, the known interacting drug–virus pairs and
he non-interacting drug–virus pairs were randomly divided into
ive parts, in each fold, the four parts of drug–virus pairs were
elected as the training set, and the remaining one part of drug–
irus pairs were held out as the testing part. We repeated the
election five times to ensure that each of the five parts was
onsidered the testing part. In the local LOOCV experiment, each
rug related to the jth virus was repeatedly left out in turn as the
esting data, while An∗(m−1) is considered as the training data and
the range of j is [1, m].

3.2. Evaluation metrics

In order to test the performance of SCPMF, we adopted both
-fold CV and local LOOCV experiments. After all interactions
ave been tested, we calculate both True Positive Rate (TPR),
alse-Positive Rate (FPR), and Precision as follows:

PR (or Recall) =
TP

TP + FN
(9)

where TP is the number of positive samples identified correctly
and FN is the number of negative samples identified incorrectly.
TPR is the ratio of positive samples identified correctly among the
total positive samples.

FPR =
FP

(10)

TN + FP

4

Precision =
TP

TP + FP
(11)

here FP is the number of positive samples identified incorrectly
nd TN represents the number of negative samples identified
orrectly. FPR is the proportion of misidentified negative samples
ccounting for all the negative samples, and Precision is the
ercentage of the correctly identified positive samples among the
etrieved samples. The larger Precision value means the better
rediction performance.
For both 5-fold CV and local LOOCV, the testing data are

anked by SCPMF, a rank exceeding a preset threshold indi-
ates a successful prediction and vice versa. By varying the rank
hreshold, we calculated TPR, FPR and Precision to construct the
eceiver Operating Characteristic (ROC) curve and the Precision-
ecall (PR) curve. The ROC curve is a probability curve where
PR is on the x-axis and TPR is on y-axis at various thresholds.

AUC is the area under the ROC curve, which is widely used for
describing the global prediction performance [17]. An AUC of
one indicates an excellent performance whereas an AUC of 0.5
suggests a random performance [18]. Because the representation
of the Precision-Recall curve (PR) is more effective than ROC on
highly imbalanced or skewed datasets, we also utilize the PR
curve and the area under the PR curve (AUPR) to comprehensively
evaluate the performance of SCPMF. The larger the AUPR value,
the better the prediction performance.

4. Results

Since the current researches on COVID-19 are mostly based on
sequence information, there are very few drug–virus interactions
prediction methods for repurposing existing drugs for COVID-
19. However, the general problem of drug–virus interactions can
actually be thought of as the network association prediction. In
this work, we performed SCPMF and several association pre-
diction approaches: IMCMDA [19], NCPMDA [20], RLSMDA [21],
BNNR [22] on the HDVD. Specifically, Chen et al. proposed Induc-
tive Matrix Completion for MiRNA-Disease Association prediction
(IMCMDA) [19]. IMCMDA used the known miRNA-disease asso-
ciations, the integrated miRNA similarity, and disease similarity
to complete the missing miRNA-disease association by calculat-
ing the miRNA functional similarity, disease semantic similarity,
and Gaussian interaction profile kernel similarity. Gu et al. de-
signed Network Consistency Projection for MiRNA-Disease As-
sociations (NCPMDA) to identify the potential disease-related
miRNAs [20]. NCPMDA is a non-parametric universal network-
based method and does not require negative samples. It not
only can identify the miRNA-disease associations in all diseases
but also can predict the associations between miRNAs and iso-
lated diseases (diseases without any known miRNA association is
similar to COVID-19 without any known anti-viral drugs). Chen
et al. presented a semi-supervised method, the Regularized Least
Squares for MiRNA-Disease Association method (RLSMDA), to
prioritize the miRNAs candidates for all the diseases simultane-
ously. RLSMDA also does not need negative samples [21]. Yang
et al. developed a Bounded Nuclear Norm Regularization method
(BNNR), which integrated drug-drug, Drug–disease and disease-
disease networks and incorporated nuclear norm regularization
and additional constraints to complete the Drug–disease matrix
under the low-rank assumption [22]. For all parameters, we adopt
the parameters of the previous published methods provided by
the authors. Specifically, λW = λH = 1, λ1 = λ2 = 0.1 for
SCPMF, NCPMDA is parameter-free, W = 0.9 for RLSMDA, and
λ = λ = 1 for IMCMDA.
1 2
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.1. Performance of SCPMF in 5-fold CV

We compared the SCPMF with above-mentioned association
rediction methods: Inductive Matrix Completion (IMC), Regular-
zed Least Squares (RLS), Network Consistency Projection (NCP),
ounded Nuclear Norm Regularization (BNNR) for drug–virus
nteractions prediction. To compare the experimental results, we
lotted ROC and PR curves and calculated AUC and AUPR based
n the 5-fold CV (see Fig. 2). We found that SCPMF achieved
uperior performance (AUC = 0.8631 and AUPR = 0.509) in 5-
old CV experiment, outperforming that of the state-of-the-art
pproaches: IMC (AUC = 0.6423 and AUPR = 0.1649), RLS (AUC=
.7341 and AUPR = 0.1792), NCP (AUC = 0.6711 and AUPR =
.0908) and BNNR (AUC = 0.8537 and AUPR = 0.3947).

.2. Performance of SCPMF in the local LOOCV

To fully evaluate the effectiveness of SCPMF, the local LOOCV
xperiment was carried on the HDVD (see Fig. 3). SCPMF showed
higher performance over other approaches in terms of both
UC and AUPR. Specifically, SCPMF obtained AUC value of 0.6936,
utperforming that of IMC (0.5280), RLS (0.6480), NCP (0.6476),
NNR (0.6914). SCPMF achieved AUPR value of 0.1931, outper-
orming that of IMC (0.1092), RLS (0.1373), NCP (0.0831), BNNR
0.1657) as well.

.3. SCPMF identifies the potential drugs for COVID-19

We listed top 15 SCPMF-predicted drugs for COVID-19 in
able 1. For each drug, we showcased the rank (predicted score
orted by descending order), Accession Number in DrugBank,
anonical name, the literature-reported evidence. Among the top
5 drug candidates ranked according to the final predicted as-
ociation scores, nine drugs (60% success rate) were verified
y various evidences. Ribavirin, was initially recommended in
linical practice for the China 2019-nCoV pneumonia diagnosis
nd Treatment Plan Edition 5-Revised [23]. Herein, ribavirin is
he top first predicted candidate for potentially treating COVID-
9. Remdesivir, a nucleotide analogue prodrug, has a broad an-
iviral spectrum including filoviruses, pneumoviruses, paramyx-
viruses, and coronaviruses [24,25]. Remdesivir inhibited viral
NA polymerases and had shown in vitro activity against COVID-
9 [26–28]. Ref. [29] indicated the combination of remdesivir
nd emetine therapy may provide better clinical benefits. Chloro-
uine, a cheap, safe, and broadly used antimalarial drug that
as been used for more than 70 years, was highly effective in
ontrolling COVID-19 infection in vitro and thus may be clinically
pplicable against COVID-19 [30]. Ref. [31] again revealed that
hloroquine and remdesivir are highly effective in controlling
OVID-19 infection in vitro. Niclosamide was an FDA-approved
nthelminthic drug regulating multiple signaling pathways and
iological processes and identified as a multifunctional drug [32,
3]. For example, niclosamide could effectively resist various
iral infections such as SARS-CoV, MERS-CoV, ZIKV, HCV, and
uman adenovirus [34,35]. Ref. [36] envisioned that niclosamide
ight offer the therapeutic potential to battle COVID-19. Nita-
oxanide, FDA approved drug potentiates host antiviral response,
hereby reducing viral replication, titer, and ensuing immune
ysregulation. Camostat mesylate, an ingredient of the camostat,
an block SARS-CoV-2 infection of lung cells and could be con-
idered for off-label treatment of COVID-19 infections [37,38].
ased on the combined pathophysiological and pharmacologi-
al potential, camostat and nitazoxanide combination potentially
ecommended for early evaluation and clinical trials of COVID-
9 [39]. The results of Ref. [40] provided the preliminary evidence
hat Favipiravir can treat the SARS-CoV-2 infection. Umifenovir is
5

Table 1
The top 15 anti-COVID-19 drug candidates identified by SCPMF.
Rank Accession number Drug name Evidence

1 DB00811 Ribavirin [23]
2 DB00608 Chloroquine [30]
3 DB00507 Nitazoxanide [39]
4 DB13729 Camostat [37,38]
5 DB13609 Umifenovir [41]
6 DB15660 N4-Hydroxycytidine Unconfirmed
7 DB12617 Mizoribine Unconfirmed
8 DB06803 Niclosamide [36]
9 DB04115 Berberine Unconfirmed
10 DB14761 Remdesivir [26,28]
11 DB12466 Favipiravir [40]
12 DB01024 Mycophenolic Acid Unconfirmed
13 DB00864 Tacrolimus Unconfirmed
14 DB13393 Emetine [29]
15 DB07715 Emodin Unconfirmed

a broad-spectrum antiviral drug. Clinical trials with umifenovir
alone have been recently initiated in China [41]. Specially, almost
of the top 15 SCPMF-predicted anti-COVID-19 drugs can be found
in Ref. [41].

Furthermore, we analyzed unconfirmed drugs using the molec-
ular docking approach, which characterizes the behavior of small
molecules in the binding site of target proteins and models the
interaction between a small molecule and a protein at the atomic
level [42]. The cellular receptor angiotensin-converting enzyme 2
(ACE2) is considered to be an important functional receptor for
SARS and other coronaviruses [43]. Like SARS-CoV, SARS-CoV-2
invades through the mediation of S-protein and ACE2 receptors
on the human cell surface to infect human respiratory epithelial
cells. With the disclosure of ACE2 as a target for SARS-CoV-2,
blocking the combination of SARS-CoV-2 and ACE2 becomes one
of the treatment options [44]. In this work, we examined the
binding mode of SCPMF-predicted drugs to the cellular receptor
ACE2 using molecular docking (see Fig. 4). Fig. 4 reveals that
predicted drugs interact with multiple important binding sites on
the cellular ACE2, especially the three unconfirmed drugs (N4-
Hydroxycytidine, Berberine, Mycophenolic Acid). It again shows
that the drug candidates identified by SCPMF have therapeutic
effects on COVID-19.

4.4. Parameter sensitivity analysis

Parameter sensitivity analysis is significant for the perfor-
mance of a model in different scenarios. Thus, we mainly focus
on the λW , λH and λ1, λ2 and conducted 5-fold CV on the HDVD
to tune the parameters of SCPMF. Specifically, the parameters λW ,
H and λ1, λ2 are increased from 0.1 to 1 with a step of 0.1.
inally, we selected the parameters with the highest AUC and
UPR. The x-axis represents λ1, λ2 and y-axis represents λW, λH.
ig. 5A showed that the change of parameters has minimal effect
n AUC. As seen in Fig. 5B, it is indicated that the influence
f parameters is relatively significant for AUPR but within an
cceptable range. The results further confirm the robustness of
CPMF to parameters.

.5. Experiment on the other dataset

To test the adaptability of SCPMF for different datasets and
ake the prediction more convincing, we perform SCPMF on the
ther dataset named as Cdatasets [22] by performing 5-fold cross-
alidation. Cdatasets is generated by combining DNdatasets [45]
nd the gold standard dataset [46], which contains 663 drugs, 409
iseases, and 2352 known Drug–disease associations. It shows
hat SCPMF obtains an AUC value of 0.9216 in 5-fold CV, while
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Fig. 2. Evaluation of SCPMF on HDVD in the 5-fold CV experiment. (A) The ROC curves of prediction results. (B) The PR curves of prediction results. As is shown,
ompared with other four methods, DRHGCN has achieved excellent performance (AUC=0.8631 and AUPR=0.509). The results indicate that SCPMF has a superior
bility to accurately discover potential drug–virus interactions.
Fig. 3. Evaluation of SCPMF on HDVD in the local LOOCV experiment. (A) The ROC curves of prediction results. (B) The PR curves of prediction results. As is shown,
CPMF achieves an AUC of 0.6936 and an AUPR of 0.1931 in the local LOOCV, which is superior to the other four state-of-the-art methods. It again demonstrates
hat SCPMF achieves convincing performance for the discovery of potential drug–virus interactions, and thus can help identify high-confidence repurposed candidate
rugs for COVID-19 and other emerging viral infections diseases.
MC, RLS, NCP and BNNR have 0.6436, 0.8015, 0.8316, and 0.9103,
espectively (see Fig. 6). The excellent performance evaluation
esults on Cdatasets further prove that SCPMF is reliable for drug
epositioning.

. Conclusion

As the COVID-19 pandemic is still rapidly spreading world-
ide leading to a colossal toll in human suffering and lives,
hysicians are trying to search for effective antiviral therapies to
ave lives. Although multiple COVID-19 vaccine trials are under-
ay, there is no enough vaccines for everyone in a short period
f time or specific antiviral medication for COVID-19.
In this study, to fight the emerging COVID-19 pandemic, we

ut great efforts to create a human drug virus database (named
DVD). On the other hand, we proposed a novel similarity con-
trained probabilistic matrix factorization methodology, called
CPMF, to help identify high-confidence drug candidates for the
6

potential treatment of COVID-19 and other emerging viral infec-
tions diseases. Specifically, due to the rapid mutation of SARS-
CoV-2 so far, we focused on the chemical structure similarities
of drug pairs and the genomic sequence similarities of virus
pairs to obtain the drug-drug similarities network and the virus-
virus similarities network. Then, we embedded them with the
observed drug–virus interactions network to construct a hetero-
geneous network. Lastly, different from the classic probabilistic
matrix factorization method, which adopts a probabilistic linear
model with Gaussian noise to model the drug–virus interac-
tions matrix as a product of two lower-rank drug and virus
matrices. SCPMF introduces similarity constraints for drugs and
viruses into the probabilistic matrix factorization process, hence
leveraging the biological information of the problem boosts the
performance of the model. We have validated the performance
of SCPMF in terms of 5-fold CV, local LOOCV, and the other
external dataset. Experimental results demonstrated that SCPMF
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Fig. 4. The predicted ligand–protein binding mode between the drugs and the cellular receptor ACE2 using molecular docking. As is shown, in addition to Remdesivir,
the other three SCPMF-predicted anti-COVID-19 drugs (i.e., N4-Hydroxycytidine, Berberine and Mycophenolic Acid, which have not been confirmed to be effective
against COVID-19 so far) all interact with binding sites on ACE2. The results signify that SCPMF-predicted drug candidates have great potential efficacy against the
COVID-19. We expect that the predicted candidate drugs targeting the emerging COVID-19 will provide a meaningful Ref. to assist clinicians.
Fig. 5. The influence of parameters on the performance of SCPMF. (A) The influence of parameters on the AUC. (B) The influence of parameters on the AUPR. It
hows that SCPMF is highly robust to parameter settings.
chieved convincing performance for the rapid discovery of can-
idate drugs for COVID-19 and other diseases and was superior
o the state-of-the-art prediction methods.

Although we make the utmost efforts to collect the experi-
entally reported drug–virus interactions from clinical researches
nd published literature, the drug–virus interactions may be
7

incomplete. In future work, we will capture comprehensive in-
formation to improve the HDVD. In summary, we presented
HDVD and SCPMF, a practically useful framework which can
help effectively identify prospective drugs for COVID-19 and
other emerging viral infections diseases. Our proposed method
can minimize the translational gap between preclinical testing
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Fig. 6. Evaluation of SCPMF on the other Drug–disease associations dataset named Cdatasets in the 5-fold CV experiment. (A) The ROC curves of prediction results.
B) The PR curves of prediction results. As is shown, compared with other four methods, SCPMF had strong adaptability on different datasets, achieving the highest
UC of 0.9216 and AUPR of 0.5754 in the 5-fold CV. It signifies that SCPMF has a high generalization ability to assist the drug repositioning.
utcomes and clinical results, which is a significant problem in
rug development.
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