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Background: Esophageal squamous cell carcinoma (ESCC) is the most prevalent

histological type of esophageal cancer, but there is a lack of definite prognostic markers

for this cancer.

Methods: We used the ESTIMATE algorithm to access the tumor microenvironment

(TME) of ESCC cases deposited in the TCGA database, and identified TME-related

prognostic genes using Cox regression analysis. A least absolute shrinkage and selector

operation or LASSO algorithm was used to identify key prognostic genes. Risk scores

were calculated, and a clinical predictive model was constructed to evaluate the

prognostic value of TME-related genes.

Results: We found that high immune and stromal scores were significantly associated

with poor overall survival (p < 0.05). We identified a total of 1,151 TME-related differently

expression genes, among which 67 were prognosis-related genes. Through the LASSO

method, 13 key prognostic genes were selected, namely, ADAMTS16, LOC51089,

CH25H, CORO2B, DLGAP1, GYS2, HAL, MXRA8, NPTX1, OTX1, RET, SLC24A2, and

SPI1, and a 13-gene risk score was constructed. A higher score was indicative of a

poorer prognosis than a lower risk score (hazard ratio = 8.21, 95% confidence interval:

2.56–26.31; P < 0.001). The risk score was significantly correlated with immune/stromal

scores and various types of infiltrating immune cells, including CD8 cells, regulatory T

cells, and resting macrophages.

Conclusion: We characterized the tumor microenvironment in ESCC, and identified

the key prognosis genes. The risk score based on the expression profiles of these

genes is proposed as an indicator of TME status and is instrumental in predicting

patient prognosis.
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INTRODUCTION

Esophageal cancer is the seventh most common cause of cancer-
related deaths worldwide (Fitzmaurice et al., 2018). Esophageal
squamous cell carcinoma (ESCC) accounts for ∼90% of all
esophageal cancers, which are always in the advanced stage at the
time of their first diagnosis (Rustgi and El-Serag, 2014). Although
recent advances in therapeutic approaches for gastroesophageal
tumors have significantly improved the curative resection rates,
as well as the disease-free and overall survival rates, the prognosis
of patients with ESCC remains unfavorable (Cunningham et al.,
2006; Baba et al., 2018). The pathological subtypes of this cancer
present limitations in the prediction of prognosis, as patients
with similar clinical and pathological types could have totally
different final outcomes (Smyth et al., 2017). Thus, it is crucial
to identify prognostic biomarkers for ESCC patients and develop
more effective therapies.

The tumor microenvironment (TME) is composed of
stromal cells, immune cells, extracellular matrix molecules, and
inflammatory mediators. Tumor cells could promote immune
escape by forming an immunosuppressive microenvironment
(Hegde and Chen, 2020). In addition to the genetic heterogeneity
of tumor cells, the heterogeneity of immune and stromal cells
also contribute to the complexity of TME; this affects the time
and intensity of the anti-tumor response and becomes a major
obstacle in the treatment of tumors. Even though much attention
has been devoted to the role of TME in the development of
cancers and their clinical outcomes (Galon et al., 2012; Pitt
et al., 2016; Senbabaoglu et al., 2016), little is known about the
relationship between TME and the prognosis of ESCC patients,
or the role of TME-related genes in ESCC.

In the present study, we gathered information about the
clinical features and RNA sequencing data of 95 ESCC tumor
samples from the TCGA database and evaluated their TME
profiles. We then identified the correlation between the TME
profile and patient prognosis. The relevant mechanism was
explored with gene expression profiling, and a TME-related gene
signature model was established for predicting the prognosis
of ESCC.

MATERIALS AND METHODS

Data Collection From the TCGA Database
Gene expression and clinical data of 185 esophageal cancer
patients were downloaded from the TCGA database (https://
portal.gdc.cancer.gov/). Only patients with a histological
diagnosis of ESCC and who had not undergone neoadjuvant
chemotherapy were included. Based on these criteria, 95 ESCC
cases with gene expression data were included in our analysis.
The clinical information of the patients is shown in Table 1.

Abbreviations: ESCC, esophageal squamous cell carcinoma; TME, tumor

microenvironment; LASSO, least absolute shrinkage and selector operation; HRs,

hazard ratios; DEG, differently expression gene; CD8, cluster of differentiation 8;

M0, resting macrophages.

TABLE 1 | Clinical features of patients with esophageal squamous cell carcinoma

in TCGA.

Clinical features Count (%) (n = 95)

Status

Alive 63 (66.3)

Dead 32 (33.7)

Gender

Female 14 (14.7)

Male 81 (85.3)

Age

≤50 21 (22.1)

>50 74 (77.9)

Grade

G1 16 (16.8)

G2 48 (50.5)

G3 21 (22.1)

Missing 10 (10.5)

Stage

Stage 1 7 (7.4)

Stage 2–3 82 (86.3)

Stage 4 4 (4.2)

Missing 2 (2.1)

Stage T

T1 8 (8.4)

T2 31 (32.6)

T3 50 (52.6)

T4 4 (4.2)

Missing 2 (2.1)

Stage N

N0 54 (56.8)

N1 29 (30.5)

N2 6 (6.3)

N3 3 (3.2)

NX 1 (1.1)

Missing 2 (2.1)

Stage M

M0 83 (87.4)

M1 4 (4.3)

MX 5 (5.3)

Missing 3 (3.2)

Calculation of Stromal and Immune Score
The ESTIMATE algorithm was used to calculate immune and
stromal scores for each tumor sample with the estimateR package
(Yoshihara et al., 2013). The stromal, immune, and ESTIMATE
scores were compared across different clinical indexes with the
Wilcoxon rank-sum test (two groups) or Kruskal-Wallis H-test
(three or more groups).

To determine the optimal cutoff value for grouping patients,
maximally selected rank statistics were employed with the
maxstat R package (Hothorn and Zeileis, 2008). Based on the
cutoff value, all samples were divided into the high and low
score groups.
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Identification of Differentially Expressed
Genes and Functional Enrichment Analysis
Linear models were used to identify differentially expresses genes
(DEGs) between the two immune/stromal groups (high score
group vs. low score group) using the limma R package (Ritchie
et al., 2015). A false discovery rate (FDR) adjusted p < 0.05
combined with a simultaneous absolute value of >1 for logFC
was set as the threshold for DEG identification. Next, upregulated
and downregulated genes were identified based on the stromal
and immune scores.

Functional enrichment analysis of the DEGs with the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and gene ontology
(GO)was carried out using the clusterProfiler R package (Yu et al.,
2012). The GO terms are classified under biological process (BP),
cellular component (CC), and molecular function (MF).

Identification of Key Prognostic Genes
In order to identify key prognostic genes, we conducted a
comprehensive analysis. First, we used a Cox regression analysis
to estimate the association between the expression of all DEGs
and the overall survival time of patients. Tumor samples were
grouped into the “high expression group” and “low expression
group” with the median gene expression level set as the cutoff.
Through this method, 67 genes for which the p < 0.05 were
identified as candidate prognostic genes.

Next, a least absolute shrinkage and selector operation
(LASSO) algorithm was used to identify key prognostic genes
with the glmnet R package (Friedman et al., 2010). Clinical
variables, including age, sex, tumor grade, and tumor stage,
were included. Lambda.min is the cutoff point at which the
minimum mean cross-validated error occurs. Genes or indexes
whose coefficient was not 0 at lambda.min were selected for
further analysis.

External Validation of Key Prognostic
Genes
The genes selected by the LASSO method were further validated
in a GEO dataset (GSE44021). We extracted 73 samples of ESCC
tumor tissue from the dataset, and the immune and stromal
scores were calculated based on their expression profile. The
correlation of the prognostic genes selected by LASSO to the
immune/stromal scores was evaluated utilizing a Spearman’s
correlation test.

Risk Score Calculation and Model
Construction
The risk scores for every tumor sample were calculated using the
following formula:

Risk score =

∑n
i=1 Expi ∗

±1
Di∑n

i=1
1
Di

In the above formula, Exp represents the expression level of
the gene, ± is the positive or negative sign for the regression
coefficient of the gene calculated with the LASSO method, and
D represents the variance in the expression level of the gene in all
the samples.

To verify that this risk score can independently predict the
prognosis of patients with ESCC, multivariate Cox survival
analysis was performed with sex and age as covariates.

Estimation of Immune Cell Fractions
CIBERSORT (https://cibersort.stanford.edu/) and leucocyte
signature matrix 22 (LM22) were used to quantify the
proportions of different immune cell types in the ESCC
samples from the TCGA database (Newman et al., 2015).
Normalized gene expression data were analyzed using the
CIBERSORT algorithm by running 1,000 permutations. The
CIBERSORT p-value reflects the statistical significance of the
results, and a threshold <0.05 is recommended. Finally, samples
with CIBERSORT p < 0.05 were included in the analysis of the
correlation between risk scores and immune cell types.

Statistical Analysis
The correlation between the risk scores and immune cell
infiltration or TME scores were evaluated using Spearman’s
correlation analysis. Survival curves were compared using the
Kaplan-Meier method and the log-rank test. A ROC curve was
used to calculate the AUC value for 1 and 2-year survival. Hazard
ratios (HRs) and 95% confidence intervals (CIs) were calculated
using Cox regression analysis. All tests were two-sided, and a
p < 0.05 was considered to indicate significance, unless stated
otherwise. All analyses were performed with R version 4.0.2.

RESULTS

Association of High Immune and Stromal
Scores With Poor Prognosis
The stromal, immune, and ESTIMATE scores of all 95 ESCC
tumor samples were calculated using the ESTIMATE algorithm
based on their gene expression profile. The immune scores
ranged from −1,190 to 2,705; the stromal scores, from −1,370
to 1,136; and the ESTIMATE scores, from −2,232 to 3,231.
There was no significant difference in the immune scores
according to any of the clinical indexes, and the stromal or
ESTIMATE scores did not show significant differences either
(Supplementary Figure 1).

To determine whether there was a correlation between the
stromal/immune/ESTIMATE scores and overall survival, we
separated samples into high- and low-score groups according to
the cutoff values determined by maximally selected rank statistics
(Supplementary Figure 2). According to the immune scores, 77
patients were assigned to the high score group and 22 patients
were assigned to the low score group. According to the stromal
scores, 53 patients were assigned to the high score group and 42
patients were assigned to the low score group. According to the
ESTIMATE scores, 81 patients were assigned to the high score
group and 14 patients were assigned to the low score group.
Kaplan-Meier survival analysis showed that a high immune score
and high stromal score were associated with poor overall survival
(Figure 1).
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FIGURE 1 | Kaplan-Meier curves of (A) immune score, (B) stromal score, and (C) ESTIMATE score with overall survival time.

FIGURE 2 | Different expression genes identification. (A) Volcanic diagram of DEGs based on the comparison of high/low immune scores; (B) expression levels of

DEGs based on the comparison of high/low immune scores; (C) volcanic diagram of DEGs based on the comparison of high/low stromal scores; (D) expression levels

of DEGs based on the comparison of high/low stromal scores.

Identification of DEGs and Functional
Analysis
Differential expression analysis was performed between the high-
and low-score groups. When the threshold of |log2FC| and
FDR were set at >1 and <0.05, respectively, 459 upregulated

genes and 124 downregulated genes were identified based on
the immune scores (Figure 2A), and 767 upregulated genes and
285 downregulated genes were identified based on the stromal

scores (Figure 2B). Using hierarchical clustering analysis, we

found that these DEGs could be used to distinguish tumors
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with high stromal/immune scores from those with low scores
(Figures 2C,D).

All the DEGs were included in GO and KEGG functional
enrichment analyses. The DEGs based on the immune score,
were mainly enriched in BP related to immune response
and immune cell activation, CC was associated with immune
receptor activity, and MF terms were associated with the external
side of the plasma membrane (Supplementary Figure 3A).
The top KEGG pathway identified was the hematopoietic cell
lineage pathway (Supplementary Figure 3C). The DEGs based
on the stromal score were mainly enriched in BP terms that
were strongly linked to extracellular matrix organization and
extracellular structure organization, in CC terms that were
associated with the collagen-containing extracellular matrix,
and MF terms that were significantly related to extracellular
matrix structural constituents (Supplementary Figure 3B). The
top KEGG pathway identified was the cell adhesion molecule
pathway (Supplementary Figure 3D).

Identification of Key Prognostic Genes
Based on the Machine Learning Method
To evaluate the prognostic effect of DEGs, Cox regression
analysis was performed on the expression of 1,514 DEGs and
overall survival. Finally, 67 genes were found to have a significant
association with overall survival (Supplementary Table 1).

We used the LASSO method to select key prognostic genes
from these 67 candidate genes based on the clinical features
(Supplementary Figure 4). Thirteen genes and the clinical
indicators sex and age were identified (Table 2). Furthermore,
the ability of these 15 features to predict survival was determined
using the cv.glmnet function. ROC curve analysis revealed that
the AUC value was 0.875 (Figure 3A).

We used the 13 genes (ADAMTS16, LOC51089, CH25H,
CORO2B, DLGAP1, GYS2, HAL, MXRA8, NPTX1, OTX1, RET,

SLC24A2, and SPI1) selected by the LASSO algorithm for
further investigation. We also analyzed the association between
the expression of the 13 genes and overall survival using
Cox regression analysis. Age and sex were inputted into each
regression model. The high expression levels of LOC51089 (HR
= 1.34, 95% CI = 1.04–1.72), CH25H (HR = 1.20, 95% CI
= 1.01–1.43), CORO2B (HR = 1.42, 95% CI = 1.13–1.78),
RET (HR = 1.25, 95% CI = 1.04–1.50), and SPI1 (HR = 1.41,
95% CI = 1.04–1.92) were positively correlated with overall
survival, while high expression levels of MXRA8 (HR = 0.72,
95% CI = 0.55–0.93) and SLC24A2 (HR = 0.69, 95% CI = 0.52–
0.91) were negatively correlated with overall survival (Table 2).
The correlation between the 13 genes and the infiltration of
immune cells was identified by Pearson’s correlation analysis
(Supplementary Table 2).

External Validation of Key Prognostic
Genes
An external ESCC dataset from the GEO database was used to
validate the correlation between the expression of the 13 key
prognostic genes and the immune/stromal scores. Immune and
stromal scores were calculated based on the gene expression
profile, and 10 out of 13 genes were matched in this ESCC
dataset. Among the 10 genes, the correlation of five genes to the
immune/stromal scores was validated, including CH25H, HAL,
MXRA8, SLC24A2, and SPI1 (Supplementary Figure 5).

Construction of a 13-Gene Risk Score
The risk score was calculated based on the expression level (EL)
of all 13 key prognostic genes. Risk score = [(−0.22 × EL of
ADAMTS16) + (0.49 × EL of LOC51089) + (0.26 × EL of
CH25H)+ (0.42× EL of CORO2B)+ (−0.21× EL of DLGAP1)
+ (−0.20 × EL of GYS2) + (0.25 × EL of HAL) + (−0.60 × EL
ofMXRA8)+ (0.32× EL ofNPTX1)+ (−0.53× EL ofOTX1)+

TABLE 2 | Thirteen key prognostic genes and two clinical indexes selected by the LASSO method.

Clinical index/gene Description Coefficient Hazard ratio 95% CI P-value

Age 0.0408

Sex −0.3281

RET Ret proto-oncogene 0.3421 1.25 1.04–1.50 0.02

LOC51089 (C1QA) Complement C1q A chain 0.1787 1.34 1.04–1.72 0.02

CORO2B Coronin 2B 0.2032 1.42 1.13–1.78 0.003

CH25H Cholesterol 25–hydroxylase 0.1026 1.20 1.01–1.43 0.04

SPI1 Spi−1 proto–oncogene 0.1117 1.41 1.04–1.92 0.03

HAL Histidine ammonia-lyase 0.0783 0.97 0.81–1.17 0.76

NPTX1 Neuronal pentraxin 1 0.0077 1.13 0.95–1.33 0.17

DLGAP1 DLG associated protein 1 −0.0174 0.95 0.81–1.11 0.53

OTX1 Orthodenticle homeobox 1 −0.0409 0.82 0.66–1.03 0.09

SLC24A2 Solute carrier family 24 member 2 −0.0341 0.69 0.52–0.91 0.008

ADAMTS16 ADAM metallopeptidase with thrombospondin type 1 motif 16 −0.1505 0.84 0.70–1.00 0.053

GYS2 Glycogen synthase 2 −0.2956 0.88 0.72–1.07 0.20

MXRA8 Matrix remodeling associated 8 −0.4201 0.72 0.56–0.93 0.01

Multivariate Cox survival analysis was performed for every gene when sex and age were used as covariates.
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FIGURE 3 | Prognostic value for 13 genes selected by LASSO. (A) ROC curve for 13 key prognostic genes to survival status; (B) Cox proportional hazards regression

analyses results for the 13-gene score; (C) ROC curves for predicting 1 and 2-year overall survival probability with the 13-gene score.

(0.33× EL of RET)+ (−0.50× EL of SLC24A2)+ (0.83× EL of
SPI1)]/5.17. All the EL values were logarithmically transformed.

Patients were then separated into high-risk and low-risk
groups according to the cutoff point of 0.98 bymaximally selected
rank statistics. To evaluate the risk score model based on the
LASSO algorithm, Cox regression analysis was performed for
overall survival time with sex, age, and risk group as covariates.
The results of multivariate Cox analysis demonstrated that the
risk score could be regarded as an independent predictive factor
for OS (HR= 8.21, 95% CI= 2.56–26.31; p< 0.001) (Figure 3B).

Next, we established a prognostic nomogram to predict 1 and
2-year OS in 95 ESCC patients. The AUC values for 1 and 2-year
OS were 0.503 and 0.716, respectively (Figure 3C).

Correlation of Risk Score to TME-Score
and Immune Cell Infiltration
We conducted a Spearman’s correlation test to evaluate the
correlation between the TME score and the 13-gene risk
score. The results showed that the 13-gene risk score was

significantly correlated with the immune/stromal/ESTIMATE
scores (Figure 4).

Based onCIBERSORT, unmatched samples with p> 0.05 were
removed. A total of 23 tumor samples, including 21 samples in
the high-risk group and 2 samples in the low-risk group were
used for further analysis. Our results showed that there were
significant differences in the proportion of various immune cell
fractions. The high-risk group had a higher infiltration of CD8
cells (p = 0.043) and dendritic cells (p = 0.043) (Figure 5). In
addition, the correlation of the 13-gene risk score with CD8 cell,
regulatory T cell, and resting macrophage (M0) fractions was
confirmed using a Spearman’s correlation test (Figure 6).

DISCUSSION

Although significant benefits of new therapeutic strategies have
been reported in the past few decades, the overall survival rates
of ESCC remain unsatisfactory (Cunningham et al., 2006; Baba
et al., 2018). This is because ESCC is characterized by high
heterogeneity that is attributable to the heterogeneity of tumor
cells and the tumor environment, and as a result, the response to
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FIGURE 4 | The correlation between the 13-gene score and tumor microenvironment scores. (A) Stromal score; (B) Immune score; (C) ESTIMATE score.

FIGURE 5 | The profiles of immune infiltration between the high-risk and low-risk score groups.

therapy is highly varied among patients (Marshall and Djamgoz,
2018). Therefore, it is critical to screen for prognostic markers
related to the TME of ESCC. In the present study, we identified
13 TME-related genes and developed a risk score signature for
ESCC. This signature could be used to efficiently determine the
overall survival time of ESCC patients.

Previous studies have established several molecular models
to predict the long-term survival of patients with ESCC (Wen
et al., 2014; Chen W. et al., 2020; Wang C. et al., 2020).
These studies often overlook the role of TME in ESCC. The

ESTIMATE algorithm is a widely accepted and verified algorithm
in studies on various cancers, such as endometrial cancer, cervical
squamous cell carcinoma, and breast cancer (Priedigkeit et al.,
2017; Pan et al., 2019; Chen P. et al., 2020). In this study, we
calculated the stromal and immune scores of ESCC tumor tissues
with the ESTIMATE algorithm in order to predict the level
of the infiltration of stromal and immune cells. ESCC patients
with high immune/stromal scores had a poorer prognosis than
those with low scores; this indicates that the TME composition
affects the clinical outcomes of ESCC patients. Furthermore, the
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FIGURE 6 | The correlation between the 13-gene score and immune infiltration.
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DEGs based on immune score were significantly enriched in
the regulation of T cell activation, the regulation of lymphocyte
activation, and lymphocyte differentiation, while the DEGs
based on stromal score were mainly enriched in extracellular
matrix organization, extracellular structure organization, and
cell-substrate adhesion. These findings confirm the role of
immune cells and TME heterogeneity on the clinical outcomes
of ESCC.

Cox regression analysis was performed to determine the
association between the expression of DEGs and survival,
and 67 DEGs were identified as being associated with overall
survival. Then, using the LASSO algorithm, 13 key prognostic
genes and two clinical indexes were selected. These genes had
independent prognostic values, and the correlation of their
expression to immune/stromal scores was also validated in
the external GEO dataset. These genes have previously been
reported to be associated with different malignant tumors in
various ways. For example, abnormally methylated CH25H has
been found to be a prognostic marker for lung squamous
cell carcinoma patients (Gao et al., 2019). Additionally, low
CH25H levels in leukocytes from melanoma patients were
correlated with poor prognosis (Ortiz et al., 2019). CORO2B
was found to be involved in many biological processes of
malignant transformation in BEAS-2B cells induced by cigarette
smoke (Wang et al., 2019). LOC51089, also called C1QA,
was found to be involved in the innate immune system and
was associated with the expression of PD-L1 (Olkhov-Mitsel
et al., 2020), and its abnormal expression in tumor tissues
was confirmed in head and neck squamous cell carcinoma
and clear cell renal cell carcinoma (Yu et al., 2019; Apanovich
et al., 2020). MXRA8 is one of the predicted tumor stroma-
specific markers in various cancers (Kiflemariam et al., 2015).
Accordingly, kidney renal clear cell carcinoma patients with high
expressions of MXRA8 had worse overall survival (Li and Xu,
2019). RET is an important proto-oncogene that can undergo
oncogenic activation through both cytogenetic rearrangement
and the activation of point mutations, and alterations in
RET have been identified as being oncogenic in multiple
malignancies (Subbiah et al., 2020). Moreover, alterations in
SLC24A2, a potassium-dependent sodium-calcium exchanger,
were observed in pancreatic ductal adenocarcinoma (Wang
et al., 2017). Alterations in SPI1 lead to cellular proliferation
and differentiation arrest, resulting in oncogenic subversion
(Roos-Weil et al., 2019). Finally, high expression levels of HAL
contributed to poor prognoses in breast cancer patients (Wang C.
Y. et al., 2020). Our study demonstrated that all these genes may
be crucial biomarkers for predicting survival outcome in ESCC.
Therefore, both in vitro and in vivo experiments are necessary
to validate the expression of these genes and their roles in
tumor cell proliferation, metastasis, and invasion. Further clinical
studies are also required to determine whether these genes are

independent prognosis biomarkers as well as their association
with immunotherapy efficacy.

It is critical to accurately predict the prognosis of patients
with ESCC for the selection of appropriate treatment. In this
regard, combining different independent prognostic variables
into one risk score can significantly improve prognostic potential.
In this study, we constructed and verified a 13-gene risk score
for ESCC based on stromal/immune scores. The 13-gene model
can be used as a prognostic tool independently of other clinical
and pathological features. Based on this signature, we could
conveniently monitor the infiltration of immune cells and further
reduce the degree of immune response. Thus, this signature
could reflect these changes in TME from different aspects and
has the potential to be appropriate for rational diagnosis and
individualized treatment.

Several limitations of this study should be noted. First, given
that the study was retrospective in nature, the risk scores need
to be validated in a large cohort. Second, in this study, the
associations between the 13 genes and the biological mechanisms
of ESCC have not been clarified. Thus, further experiments are
required to validate the exact mechanism of these 13 genes under
in vitro and in vivo conditions.

CONCLUSION

In conclusion, we developed a robust TME-related gene signature
for the prognostic prediction of ESCC based on samples
deposited in the TCGA database. Our signature could reflect the
TME features and prognosis of ESCC. These findings are the basis
for more studies on the specific roles of these TME-related genes
in the development and progression of ESCC.
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