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Nonlinear optimal control of a
mean-field model of neural
population dynamics

Lena Salfenmoser* and Klaus Obermayer

Institute of Software Engineering and Theoretical Computer Science, Technical University of Berlin,

Berlin, Germany

We apply the framework of nonlinear optimal control to a biophysically realistic

neural mass model, which consists of two mutually coupled populations of

deterministic excitatory and inhibitory neurons. External control signals are

realized by time-dependent inputs to both populations. Optimality is defined

by two alternative cost functions that trade the deviation of the controlled

variable from its target value against the “strength” of the control, which is

quantified by the integrated 1- and 2-norms of the control signal. We focus

on a bistable region in state space where one low- (“down state”) and one

high-activity (“up state”) stable fixed points coexist. With methods of nonlinear

optimal control, we search for the most cost-e�cient control function to

switch between both activity states. For a broad range of parameters, we find

that cost-e�cient control strategies consist of a pulse of finite duration to push

the state variables only minimally into the basin of attraction of the target state.

This strategy only breaks down once we impose time constraints that force the

system to switch on a time scale comparable to the duration of the control

pulse. Penalizing control strength via the integrated 1-norm (2-norm) yields

control inputs targeting one or both populations. However, whether control

inputs to the excitatory or the inhibitory population dominate, depends on the

location in state space relative to the bifurcation lines. Our study highlights the

applicability of nonlinear optimal control to understand neuronal processing

under constraints better.

KEYWORDS

nonlinear optimal control, control of neural dynamics, neuralmassmodels, bistability,

delay di�erential-algebraic equations (DDAEs), nonlinear population dynamics

1. Introduction

Optimal control theory (OCT) provides a toolbox to investigate the effect of targeted

perturbations on dynamical systems (Berkovitz and Medhin, 2012). It enables to answer

the question of how stimulation must be designed to optimally induce or stop specific

dynamical states or activity patterns. Optimality is defined through the global minimum

of a cost function, which typically rewards closeness to desired target values of the

state variables and penalizes control effort, which can be quantified, for example, in

terms of the duration and strength of an external control signal (Casas et al., 2015).

Applications of OCT are 2-fold. In a “synthetic” application scenario, OCT can help

us to manipulate a dynamical system optimally, for example, to follow the desired
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trajectory. In an “analytic” application scenario, it can help

us understand the way in which a natural dynamical system

is designed and offers explanations of its workings in terms

of optimization principles. In the past, OCT has been applied

successfully in biology and biomedicine with applications to

cellular systems, metabolic networks, and the development of

effective treatments against pathogens (see, e.g., Ewald et al.,

2017; Tsiantis and Banga, 2020 for recent reviews).

Applications to neural systems have been mostly on the

synthetic side so far and cover a variety of open and closed

loop approaches for modulating brain activity (cf. Grosenick

et al., 2015; Tafazoli et al., 2020; Takeuchi and Berényi, 2020).

Examples include deep brain stimulation for the treatment

of patients with Parkinson’s disease (Popovych and Tass,

2019), invasive stimulation to imprint population activity

(Marshel et al., 2019), e.g., in the context of neuro-prosthetic

devices (Chen et al., 2020; Flesher et al., 2021), and non-

invasive transcranial electrical stimulation for modulating and

improving perception, motor control, and cognition (Au et al.,

2017; Colzato et al., 2017; Reteig et al., 2017). Applications of

OCT, however, are few and are mostly restricted to theoretical

investigations. OCT in form of minimum-energy or minimum-

power control strategies was applied to phase oscillators, which

were derived to match single neuron phase response curves

(Nabi et al., 2012; Dasanayake and Li, 2014; Pyragas et al.,

2020). Here, the first experimental verifications of this technique

confirmed an improved performance (Wilson et al., 2015).

OCT was applied more extensively to wave propagation in

systems of coupled non-linear oscillators (cf. Löber and Engel,

2014; Ziepke et al., 2019; Shangerganesh and Sowndarrajan,

2020), which also serve as models for neurons or neural

populations, but closer links to the neuroscience literature were

not yet made.

Compared to other applications in biology and biomedicine,

there have been fewer works exploring the potential of OCT

for analytic investigations into neural systems. One exception

is motor control, for which OCT and optimal feedback control

theory are well-established frameworks and drive theoretical

analysis and modeling on a behavioral level (Todorov and

Jordan, 2002; Diedrichsen et al., 2009; Scott, 2012). Beyond

validating its applicability (Bian et al., 2020), recent studies

extend this framework by including feedforward strategies (Yeo

et al., 2016) and stochastic effects (Berret et al., 2021). Studies

on applications of OCT to neural dynamics are few. Bassett and

colleagues (cf. Gu et al., 2015; Tang and Bassett, 2018; Srivastava

et al., 2020) applied diagnostics from linear control theory to

the dynamics of neural populations in a whole-brain network

setting, arguing that linearization is a valid approximation

locally. Questions that were addressed include the efficacy of

network nodes to steer the network dynamics, with some of the

obtained results being confirmed by numerical simulations of a

corresponding non-linear model (Muldoon et al., 2016). Results

were interpreted in the context of the brain’s internal control of

general neurophysiological processes with implications for brain

development and cognitive function, but also in the context of

controlling altered neurophysiological processes in a medical

context. A recent work (Ref. Chouzouris et al., 2021) applied

nonlinear OCT to a whole-brain network model of FitzHugh-

Nagumo oscillators, discussing the predictions of linear control

diagnostics vs. nonlinear optimal control for different control

settings. These studies highlight the potential of control theoretic

concepts in an “analytic” setting for amechanistic understanding

of neural dynamics.

In this contribution, we explore the potential of OCT for

predicting optimal perturbations for a motif, which consists

of two recurrently connected populations of excitatory and

inhibitory neurons and which is a common building block of

many neural systems. We consider a biophysically grounded

two population mass model (Cakan and Obermayer, 2020),

whose populations are mathematically described via mean-field

approximations of infinitely large populations of exponential

integrate-and-fire (EIF) neurons (Brette and Gerstner, 2005;

Augustin et al., 2017) and which exhibits down-states, up-

states, and several oscillatory phenomena observed in neural

systems. Here, we focus on a region in state space, in which

the model is bistable, i.e., in which stable states of constant

high and low activity coexist. We then apply nonlinear OCT

in search of the most efficient strategies (in terms of accuracy

and required control strength) for an external input to steer the

motif from one of its stable fixed points to the other. To do so,

we implement a gradient descent algorithm minimizing a cost

function, which trades accuracy (w.r.t. the control goal) against

control strength (measured by the integrated 1- and 2-norms

of the control signal). We first explore the performance of the

optimization method and explore its limitations. When applied

to the switching task we find that—in the noiseless case—low-

cost control strategies exploit the intrinsic properties of the

dynamical system by steering the system just slightly across

the boundary to the target attractor, from where the system

converges to its target state without further external input. We

then apply the OCT ansatz to inquire whether it is more efficient

to steer the system via inputs to the inhibitory or the excitatory

population if control strength is constrained. Penalizing control

strength via the integrated 1-norm we find that the answer

depends on the exact location of the system in state space. Thus,

optimal control may require changing control inputs between

the participating neural populations when the dynamical context

is changed. These results show that OCT is a valuable tool and

highlight its applicability to probe the dynamics of a nonlinear

neural system.

This work is structured as follows. Section 2 introduces

the mean-field model and its dynamics, formalizes the optimal

control problem mathematically, and finally describes the

numerical implementation of our optimal control algorithm.

In Section 3, we explain the setup for the experiments and

present our main findings. Section 4 concludes with a brief
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FIGURE 1

A simplified visualization of the model. The excitatory and the

inhibitory subpopulations are recurrently coupled and receive

external background inputs µext
E,I and time-varying external

control currents uE,I (t).

discussion and comments on the potential and shortcomings of

our approach.

2. Methods

2.1. The neural mass model

The model consists of two recurrently coupled excitatory

(E) and inhibitory (I) populations (cf. Cakan and Obermayer,

2020), whose activities are measured in terms of their average

firing rates rE(t) and rI(t) (see Figure 1). Both populations

receive static background inputsµext
E andµext

I and time-varying

external control inputs uE(t) and uI(t).

The model is derived from a network of excitatory and

inhibitory EIF neurons under the assumption of sparse and

random connectivity to neurons of the same or opposite type

and in the limit of an infinite number of neurons. All parameters

and variables are biophysically grounded.

2.1.1. The spiking neuron model

In a network of identical EIF neurons, the dynamics of the

membrane voltage of the ith neuron is described by (cf. Augustin

et al., 2017; Cakan and Obermayer, 2020).

C ·
dVi

dt
= Ii,ion(Vi)+ Ii(t)+ µext

i (t). (1)

The ion current Ii,ion of an EIF neuron is given by

Ii,ion(Vi) = gL · (EL − Vi(t))+ 1T · exp
Vi(t)− VT

1T
, (2)

where EL, 1T , and VT are the leak reversal potential, the

threshold slope factor, and the threshold voltage, respectively.

Whenever the membrane voltage reaches or exceeds the spike

threshold Vs, i.e., Vi ≥ Vs, an action potential is generated,

the membrane voltage is changed to the reset voltage Vr ,

i.e., Vi = Vr , and clamped for the refractory time Tref.

Table 1 summarizes the numerical values of these parameters (cf.

Cakan and Obermayer, 2020).

Ii(t) is the sum of synaptic currents to the ith neuron induced

by the neural activity of the connected neurons in the network.

Excitatory (E) and inhibitory (I) neurons stimulate subsequently

connected neurons differently, hence the synaptic current that

neuron i of population α,α ∈ {E, I} receives is given by

Ii,α(t) = C ·
(

JαEsi,αE(t)+ JαIsi,αI(t)
)

. (3)

C denotes the membrane capacitance, and Jαβ quantifies the

coupling strength, i.e., the maximum synaptic current from

population β to population α when all synapses are active. The

fraction si,αβ of active synapses is determined by

dsi,αβ

dt
= −

si,αβ

τs,β
+
cαβ

Jαβ
(1−si,αβ )

∑

j

Gij

∑

k

δ(t−tkj −dα), (4)

where τs,β is the synaptic time constant. We sum over all spikes

k that neuron j of population β emits and that are received by

neuron i of population α after the time delay dα . G is a random

binary connectivity matrix, i.e., Gij = 1 if neuron j is coupled to

neuron i and Gij = 0 else.

Each neuron in the network receives a noisy background

current µext
i (t) = µext + σ extξi(t) with mean value µext and

standard deviation σ ext, which are equal for all neurons within a

population. ξi(t) is a Gaussian noise process with mean zero and

variance one.

2.1.2. The mean-field model

In the limit of an infinitely large population, the spiking

neuron model can be turned into a neural mass model by

averaging the neural dynamics of all neurons of each type.

One can express the fraction of active synapses connecting

population β to population α in terms of its mean value

sαβ (t) and its variance σ 2
s,αβ (t). These determine the average

membrane current µα(t) and its variance σ 2
α (t), which in

turn determine the mean firing rate rα(t). We denote the

model as the mean-field model of excitatory and inhibitory EIF

neurons (mean-field EI EIF model). For a thorough derivation

of the model equations, we refer to Augustin et al. (2017).

We set parameters as in Cakan and Obermayer (2020) and

list the numerical values in Table 1. The model variables are

summarized in Table 2. In the following, we denote the vector

of dynamical variables by x(t).
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TABLE 1 Parameters of the mean-field EI EIF model (upper block) and the spiking neuron model (lower block).

Parameter Description Numerical

value

JEE Maximum synaptic current from E to E 2.4mVms−1

JEI Maximum synaptic current from I to E −3.3mVms−1

JIE Maximum synaptic current from E to I 2.6mVms−1

JII Maximum synaptic current from I to I −1.6mVms−1

cEE , cIE Maximum AMPA postsynaptic current (PSC) amplitude 0.3mVms−1

cEI , cII Maximum GABA PSC amplitude 0.5mVms−1

τs,E Excitatory synaptic time constant 2ms

τs,I Inhibitory synaptic time constant 5ms

C Membrane capacitance 200 pF

gL Leak conductance 10 nS

τm = C/gL Membrane time constant 20ms

dE Synaptic delay to excitatory neurons 4ms

dI Synaptic delay to inhibitory neurons 2ms

KE Mean number of excitatory inputs per neuron 800

KI Mean number of inhibitory inputs per neuron 200

σ ext
E,I standard deviation of external input 1.5mV/

√
ms

EL Leak reversal potential −65mV

1T Threshold slope factor 1.5mV

VT Threshold voltage −50mV

Vi Spike threshold −40mV

Vr Reset potential −70mV

Tref Refractory time 1.5ms

Values are taken from Cakan and Obermayer (2020).

The system of delay differential-algebraic equations
(DDAEs) that defines the model dynamics reads











































































rE(t)− 8r(µE , σE)

rI (t)− 8r(µI , σI )

µ̇E − 1
τE(t)

(JEEsEE(t)+ JEI sEI (t)+ µext
E − µE(t))

µ̇I − 1
τI (t)

(JIEsIE(t)+ JII sII (t)+ µext
I − µI (t))

σE(t)− (
2J2EEσ 2

s,EE(t)τs,Eτm

(1+rEE(t))τm+τs,E
+ 2J2EIσ

2
s,EI (t)τs,I τm

(1+rEI (t))τm+τs,I
+ (σ ext

E )
2
)
1
2

σI (t)− (
2J2IEσ 2

s,IE(t)τs,Eτm

(1+rIE(t))τm+τs,E
+ 2J2IIσ

2
s,II (t)τs,I τm

(1+rII (t))τm+τs,I
+ (σ ext

I )
2
)
1
2

τE(t)− 8τ (µE , σE)

τI (t)− 8τ (µI , σI )

ṡEE + sEE(t)
τs,E

− (1− sEE(t)) · rEE(t)
τs,E

ṡEI + sEI (t)
τs,I

− (1− sEI (t)) · rEI (t)
τs,I

ṡIE + sIE(t)
τs,E

− (1− sIE(t)) · rIE(t)
τs,E

ṡII + sII (t)
τs,I

− (1− sII (t)) · rII (t)
τs,I

σ̇ 2
s,EE − 1

τ 2s,E

(

(1− sEE(t))
2 · ρEE(t)+ (ρEE(t)− 2τs,E(rEE(t)+ 1)) · σ 2

s,EE(t)
)

σ̇ 2
s,EI −

1
τ 2s,I

(

(1− sEI (t))
2 · ρEI (t)+ (ρEI (t)− 2τs,I (rEI (t)+ 1)) · σ 2

s,EI (t)
)

σ̇ 2
s,IE − 1

τ 2s,E

(

(1− sIE(t))
2 · ρIE(t)+ (ρIE(t)− 2τs,E(rIE(t)+ 1)) · σ 2

s,IE(t)
)

σ̇ 2
s,II −

1
τ 2s,I

(

(1− sII (t))
2 · ρII (t)+ (ρII (t)− 2τs,I (rII (t)+ 1)) · σ 2

s,II (t)
)











































































= 0.

(5)

The system (Equation 5) of equations consists of four blocks.

The population averages rα(t),α ∈ {E, I}, of the excitatory

and inhibitory rates (first block), are determined by the

precomputed transfer function 8r(µα , σα), which depends on

the corresponding mean membrane current µα and its standard

deviation σα . Their dynamics are described in the second block.

The membrane current µα exponentially decays with the time

constant τα while the weighted sum
∑

β=E,I Jαβ sαβ of mean

synaptic inputs and the background current µext
α counteract the

decay. To relate µα (given in units of mVms−1) to a physical

electric current (given in units of A), it is multiplied with

the membrane capacitance C. The variances of the membrane

currents combine the variances σ 2
s,αβ , α,β ∈ {E, I} of the

synaptic inputs and the fixed parameter σ ext
α . rαβ denotes the

population activity received by population β from population α

after the time delay dβ .

rαβ (t) =
cαβ

|Jαβ |
Kβτs,β · rβ (t − dβ ). (6)

The fraction
cαβ

|Jαβ | of the maximum postsynaptic and the

maximum synaptic current downscales the effect of the

incoming rate rβ . Each neuron of population E and I is

connected to Kβ neurons of population β . The third block

contains the effective time constants τα , which the mean

membrane current of the excitatory and inhibitory population

decay with. They are determined by a precomputed function
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TABLE 2 Variables of the mean-field EI EIF model.

Variable Description Unit

rα Mean firing rate of population α Hz

µα Mean membrane current of population α mVms−1

σα Variance of membrane current of population α mV/
√
ms

τα Effective timescale of population α ms

sαβ Mean synaptic activity from population β to population α 1

σs,αβ Variance of synaptic activity from population β to population α 1

8τ that depends on µα and σα . The last block defines the

synaptic activities sαβ of the recurrently coupled populations

and their variances σ 2
s,αβ . sαβ decays exponentially with the

time constants τs,β and increases depending on the activity rαβ

transmitted from population β . The variance σ 2
s,αβ combines the

uncertainties of the different contributions to sαβ , where

ραβ (t) =
c2αβ

J2αβ

Kβτ2s,β · rβ (t − dβ ). (7)

Time delays enter the system through rαβ and ραβ . We denote

the system of DDAEs (see Equation 5) by

h(ẋ(t), x(t), x(t − dE), x(t − dI)) = 0. (8)

2.1.3. State space of the mean-field EI EIF
model

Figure 2 shows a slice through the state space of the EI

EIF model. With the parameters as defined in Table 1, one can

observe all dynamically interesting phenomena by varying the

external background inputs µext
E and µext

I , which take the role

of bifurcation parameters. With numerical simulations, we find

a down state of constant low activity, an up state of constant

high activity, a limit cycle with rate oscillations, and a bistable

regime, where stable states of constant low and high activities

coexist. We validate the stability of these points by numerically

evaluating the Jacobian Matrix (see Supplementary section 1).

Minimal and maximal values of the rates vary throughout the

regimes. For a thorough analysis of the dynamics, refer to Cakan

and Obermayer (2020). In this work, we focus on the bistable

regime and investigate how to switch from one stable state

to another. Bistability is considered an important feature for

realistic models of brain dynamics as similar patterns appear in

biological neural networks (Latham et al., 2000; Holcman and

Tsodyks, 2006).

FIGURE 2

The dynamical landscape of the mean-field EI EIF model.

Depending on the mean background inputs µext
E and µext

I , we

observe a down state, an up state, an oscillatory regime, or a

bistable regime, where down and up states coexist. We choose

two locations, which we call point a

(µext
E = 0.45nA,µext

I = 0.475nA) and point b

(µext
E = 0.475nA,µext

I = 0.6nA), for which we show explicit

results in Section 3. We define the horizontal, vertical, and

shortest distance to the regime boundary as dE , dI , and dmin,

respectively. This definition can be applied both for the

distances to the up regime, as shown in the figure, and to the

down regime.

2.2. Nonlinear optimal control

2.2.1. The control setting

Optimal control theory enables us to find a control

function u(t) that affects a dynamical system in an

efficient way to reach a target state x̃(t). We quantify the

performance of the control u(t) with a cost functional.

Minimal costs reflect optimality. Minimizing the cost

functional is a constrained optimization problem.
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In a controlled setting, the system of DDAEs (see

Equations 5 and 8) depends on the external control

function u(t),

h(ẋ(t), x(t), x(t − dE), x(t − dI),u(t)) = 0. (9)

We denote the total cost functional by F(x(t,u(t)), x̃(t),u(t)). It

depends on the state vector x(t,u(t)), the target state x̃(t), and

the control u(t). The total cost F is the weighted sum of three

contributions (Casas et al., 2015),

F(x(t,u(t)), x̃(t),u(t)) = FP(x(t,u(t)), x̃(t))+W1 · F1(u(t))
+W2 · F2(u(t)). (10)

The precision cost FP measures how accurately the target state

x̃(t) is reached. It is defined as the integral over the squared

difference of the actual state x(t) and the target state x̃(t),

FP =
1

2

t1
∫

t0

∥

∥x(t,u(t))− x̃(t)
∥

∥

2
dt. (11)

Imprecision is penalized in a time interval [t0, t1]. In this study,

[t0, t1] is at the end of the control interval [0,T]. We denote the

integrand by fP = 1
2 ‖x− x̃‖2. The “efficiency” of the control

input is quantified by one cost functional that uses the L1-

norm, F1, and one cost functional that uses the L2-norm, F2. In

the literature, former is often referred to as the “sparsity cost”

and the latter as the “energy cost.” The F1-cost is defined as

Casas et al. (2015).

F1 =
dim u
∑

i=1

√

√

√

√

√

T
∫

0

u2i dt. (12)

By integrating over the squared components of the control signal

and taking the square root for each dimension individually

before summing over the input dimensions, this cost functional

enforces a small number of control input channels with non-zero

control strength. The F2-cost measures the total strength of the

control signal and enforces small absolute values. It is given by

F2 =
1

2

T
∫

0

∥

∥u(t)
∥

∥

2
dt. (13)

The optimal control u∗(t) is defined as the control with

minimal cost,

u∗(t) = argminuF(x(t,u(t)), x̃(t),u(t)). (14)

By choosing the weights W1 and W2 appropriately, one can

enforce different characteristics of the optimal control solution.

FIGURE 3

Flowchart summarizing the gradient descent procedure for

computing the optimal control u∗(t). After initializing the

algorithm with an initial guess for the control u0(t), six steps are

performed within each iteration. The algorithm terminates if the

change of control between subsequent iterations is below a

predefined threshold value ǫu in all components and for all

points of time.

2.2.2. The optimal control algorithm

We compute the optimal control with a gradient descent

algorithm. The gradient of the cost functional with respect to

the control is obtained from the adjoint method (we provide

an explicit derivation in the Supplementary section 2, based on

Göllmann et al., 2009; Biegler, 2010). It is given by

∇uF =
∫ T

0
∇uf + λ

T · Duhdt. (15)

h denotes the system dynamics (see Equations 5 and 8),Du is the

Jacobian matrix with respect to the control, λ(t) is the so-called

adjoint state, and the components of∇uf = W1·∇uf1+W2·∇uf2

are given by Casas et al. (2015).

(∇uf1)α =











uα
√

∫ T
0 |uα |2dt

dt if
∫ T
0 |uα |2 6= 0,

0 else

, α ∈ {E, I},

(∇uf2)α = |uα |, α ∈ {E, I}.
(16)

The adjoint state λ(t) is defined by the differential equation

∇xfP+λ
T(Dxh+χ[0,T−dE]DxEh+χ[0,T−dI]DxIh)−λ̇

T
Dẋh = 0.

(17)

with the final condition λ(T) = 0. In Equation (17), χ[ta,tb]

denotes the indicator function on the interval [ta, tb]. Dx, DxE ,

DxI , and Dẋ are the Jacobian matrices with respect to the state
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variable at time t (i.e., x(t)), at time t − dE (i.e., x(t − dE)), at

time t− dI (i.e., x(t− dI)), and the Jacobian matrix with respect

to the derivative of the state variable (i.e., ẋ(t)).

The iterative algorithm for the calculation of the optimal

control u∗(t) is given in Figure 3. After initialization with a first

guess u0 for the optimal control (see Section 2.2.4.1), the steps in

the κth iteration are as follows:

1. Perform a forward simulation using uκ−1(t) to obtain all

dynamical variables xκ−1(t).

2. Compute the adjoint state λκ (t) by solving Equation (17)

backward in time with the initial condition λκ (T) = 0.

3. Compute the gradient (∇ufκ + λ
T
κ · Duh).

4. Set the descent direction dκ (t) = −(∇ufκ + λ
T
κ · Duh).

5. Find an appropriate step size sκ such that uκ (t) = uκ−1(t)+
sκ ·dκ (t) outperforms uκ−1(t) in terms of total costs.We start

by multiplying dκ (t) with a step size sκ = 10. We halve sκ

and evaluate the cost resulting from uκ−1(t)+ sκ ·dκ (t) until

we find the cost minimum. We choose this step size sκ . The

bisection algorithm returns sκ = 0 if the step size falls below

a threshold value ǫs to avoid infinite loops.

6. Update the control uκ (t) = uκ−1(t)+ sκ · dκ (t).

We terminate the iteration if the change of the control uκ (t) −
uκ−1(t) is below a threshold value ǫu in all components and for

all points of time.

2.2.3. Optimal control of the mean-field EI EIF
model

We add time-varying functions uE(t) and uI(t) to the

differential equations that define the membrane currents of the

mean-field EI EIF model (see Equation 5 and Figure 1).

µ̇E = 1
τE(t)





∑

α=E,I

JEαsEα(t)− µE(t)+ µext
E



 →

µ̇E = 1
τE(t)





∑

α=E,I

JEαsEα(t)− µE(t)+ µext
E + uE(t)





µ̇I = 1
τI(t)





∑

α=E,I

JIαsIα(t)− µI(t)+ µext
I



 →

µ̇I = 1
τI(t)





∑

α=E,I

JIαsIα(t)− µI(t)+ µext
I + uI(t)



.

(18)

Note that the control inputs are measured in units of mVms−1.

However, they can be converted to currents measured in units of

A by multiplication with the membrane capacitance C. We will

present our results in units of nA.

We compute and investigate the optimal control for the tasks

of driving the EI EIF model from the down to the up state

and vice versa, for either L1- or L2-constraints, and for various

parameter combinations (µext
E ,µext

I ) in the bistable regime (see

Figure 2). This yields four tasks per parameter combination:

1. Down state→ up state, L1-constraints: DU1-task,

2. Down state→ up state, L2-constraints: DU2-task,

3. Up state→ down state, L1-constraints: UD1-task,

4. Up state→ down state, L2-constraints: UD2-task.

The observable physical quantity of the mean-field EI EIF model

is the rate rα ,α ∈ {E, I}, which, in the stable target state, does not
depend on time.We observe that a state transition of rE is always

accompanied by a transition of rI . Therefore, we define the target

state x̃(t) = r̃ via themean rate of the excitatory population only,

which unambiguously characterizes this target state. We chose a

time window [0,T], during which control is active and penalize

the deviation of the excitatory rate from its target value during

an interval [t0,T], t0 ≥ 0. When t0 is small, we can investigate

optimal transitions with time constraints.

We apply either L1-constraints (W1 = 1 · 1
As5/2

,W2 =
0 · 1

A2s3
) to investigate, to which population the application

of control is more efficient, or L2-constraints (W1 = 0 ·
1

As5/2
,W2 = 1 · 1

A2s3
) to investigate the effect of enforcing low

amplitudes. The corresponding total cost reads

F1(x, u) = FP +W1 · F1 =
1

2

1

T − t0

T
∫

t0

∥

∥rE(t)− r̃
∥

∥

2
dt

+W1 ·
∑

α=E,I

√

√

√

√

√

T
∫

0

u2αdt, or

F2(x, u) = FP +W2 · F2 =
1

2

1

T − t0

T
∫

t0

∥

∥rE(t)− r̃
∥

∥

2
dt

+
W2

2

T
∫

0

‖u‖2 dt.

(19)

Tomake results better comparable across different lengths of the

time window of penalization T − t0, we multiply the precision

cost with its inverse 1
T−t0

.

We present results that investigate optimal transitions with

or without time restrictions. For the former (presented in

Sections 3.1, 3.2, and 3.3), we define the control time T =
500ms and the precision measurement onset time t0 = 480ms.

This is significantly longer than the duration over which the

optimal control signal has a finite value and enables smooth

transitions without major discontinuities or other finite-size

effects (see Section 3.4). Throughout the bistable regime, we find

that under optimal control the target states are reached before

the precision measurement starts, such that the precision cost

FP is negligibly small. For transitions under time constraints

(presented in Section 3.4), we decrease both the simulation

duration T and the precision measurement onset time t0 from
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T = 500ms and t0 = 480ms to T = 20ms and t0 = 0ms

stepwise, such that T − t0 = 20ms remains constant.

2.2.4. Initialization

Gradient descent methods in general are only guaranteed

to converge to a local optimum. Whether this optimum also

corresponds to a global optimum of the cost depends on the

initialization u0 of the control.

2.2.4.1. Initialization for long transition times

For investigations with T = 500ms, we find optimal control

signals that lead to vanishing precision costs, FP ≈ 0. Therefore,

the final control result does not depend on the weight Wj, as

long asWj is below a threshold value that we denote byWj,max.

Beyond Wj,max, it is less costly to be imprecise and stay in the

initial state than to intervene and change the state, and the

algorithm will return the zero control signal u(t) = 0. Wj

determines the relative weight of ∇ufj (i.e., the gradient of the

L1- or L2-cost; first term in Equation 15) and λ
T ·Duh (resulting

from the precision measurement; the second term in Equation

15). During optimization, the speed of convergence may vary

with the choice of Wj. The algorithm convergences relatively

fast if we frequently change Wj to a randomly chosen number

between 0 andWj,max.

We denote the components of the control vector by u(t) =
(uE(t), uI(t)). For the down-to-up switching tasks, we define

three initializations:

1.

(u0)E =















0 for t < 210ms

0.4 nA for 210ms ≤ t ≤ 270ms

0 for t > 270ms

(u0)I = 0

(20)

2.

(u0)E = 0

(u0)I =















0 for t < 210ms

−0.4 nA for 210ms ≤ t ≤ 270ms

0 for t > 270ms

(21)

3.

(u0)E =















0 for t < 210ms

0.4 nA for 210ms ≤ t ≤ 270ms

0 for t > 270ms

(u0)I =















0 for t < 210ms

−0.4 nA for 210ms ≤ t ≤ 270ms

0 for t > 270ms

(22)

These are rectangle pulses centered at t0
2 = 240ms. For the up-

to-down switching tasks, we multiply with−1. For each of these

initializations, the algorithm converges to a pulse-shaped control

signal. Depending on the task and the state space parameters

(µext
E ,µext

I ), all three initializations might lead to the same or

two different results. In the latter case, these correspond to

local optima. We validate that the algorithm returns identically

shaped control signals if initialized differently (e.g., gaussian

function in uE, uI , both, zero, etc.). However, shifting signals in

time is computationally very time-consuming, in particular, if

initializations are centered close to t = 0 or t = t0.

For each of these u0(t), we compute the optimal control

as follows:

1. We perform ten iterations with W1 = 10 · 1
As5/2

or W2 =
10 · 1

A2s3
allowing only control input uE to the excitatory

population (1. initialization), uI to the inhibitory population

(2. initialization), or control inputs to both populations

(3. initialization).

2. We allow control inputs to both populations.

3. We set Wj to a random value between 0 and Wj,max

and perform several tens of iterations. We repeat until

convergence (ǫs = 1× 10−30, ǫu = 1× 10−12, see Section

2.2.2 and Figure 3).

4. We setW1 = 1 · 1
As5/2

orW2 = 1 · 1
A2s3

and measure the total

cost of the control.

We compare the three initializations and take the result with the

lowest total cost as the optimal control. This initialization yields

results with peaks approximately at t0
2 .

2.2.4.2. Initialization for reduced transition times

For point a (see Figure 2), we investigate the optimal control

for shorter simulation times T < 500ms. To this end, we

successively reduce T and t0, keeping T − t0 = 20ms fixed.

When reducing T, we initialize with the optimal control signal

for T = 500ms, shifted back in time such that the peak

remains at t0
2 . To avoid local optima, we also compute the

optimal control for T = 20ms and t0 = 0 and successively

increase T and t0, keeping T − t0 = 20ms fixed. For each

optimization, we initialize with the optimal control signal of the

next longest T. We compare the results from the two different

approaches and choose the signal with the lowest total cost as

the optimal control.

2.2.5. Implementation and numerical
computation

We implement the optimal control algorithm using neurolib

(Cakan et al., 2021), an open source python simulation

framework for whole-brain neural mass modeling. Neurolib

offers various models of neural dynamics, including the mean-

field EI EIF model described in Section 2.1. We use Euler

integration with an integration step size of dt = 0.1ms. We

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2022.931121
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Salfenmoser and Obermayer 10.3389/fncom.2022.931121

validate that this value is sufficiently small to avoid numerical

inaccuracies, results are shown in the Supplementary section 3.

A graphical interface visualizes the optimal control signals

and the resulting neural activity for the four state switching

tasks for various parameter combinations (µext
E ,µext

I ) within

the bistable regime (see Figure 2). The interface is available at

github.com/lenasal/Optimal_Control_GUI.

3. Results

3.1. Continuous sets of optimal control
signals

Figure 4 shows the optimal control signals and the resulting

firing rates obtained from initializations as described in Section

2.2.4.1. We also show optimal control signals obtained from

an initial rectangle pulse centered around 200 and 280ms (cf.

Equations 20–22). Across the three initializations, resulting costs

are identical to at least five significant digits, for all four control

tasks, for both points a and b. Also, there are no noteworthy

differences in the control signals apart from their respective

shifts by ±40ms. We subtract the signals (shifted back by

±40ms) from the original ones and find a difference of 31 nA

at most for the two points and the four tasks. We hypothesize

that there is a continuous set of optimal control signals with

different peak times. For T → ∞, we thus expect a continuous

set of global optima, where any peak time can be realized. In

the following, we will present the solutions obtained from the

initialization as explained in Section 2.2.4.1 only.

3.2. The optimal control steers the
system only minimally into the target
basin of attraction

When optimal control is applied, the firing rates of the

excitatory and inhibitory population pass a plateau (see Figure 4,

all tasks and both points). Once the control pulse is applied,

the system departs from the initial state. The transition is

decelerated until the system reaches the intermediate plateau

state. Then, the control terminates, keeping the control effort

low. As a consequence, the system relaxes and naturally

accelerates toward the stable target state, which is smoothly

approached. This behavior is observed for all tasks in Figure 4

and throughout the whole bistable regime (results not shown).

We plot all dynamical variables for the DU1-task at point a

in Figure 5 and verify that the constant intermediate state is a

common feature of all variables. We denote the state variables

at the plateau state by xP . As the values are constant, ẋP ≈ 0.

We hypothesize that the intermediate plateau is related to an

unstable fixed point (see Supplementary section 1) that separates

the basins of attraction of the initial and the final state. The

control acts such that the system is steered minimally across

the boundary of the basins of attraction. Once the boundary is

passed, the system is certain to reach the target state without

further control input.

3.3. Control task and state space
parameters determine the optimal
control

Optimal control signals are bell-shaped pulses

throughout the bistable regime for all tasks.

We investigate four properties of the optimal

control signals:

1. Dimensionality: We refer to a control as one-dimensional

(1d), if it is applied to one population only. For 1d control

signals, either uI = 0 or uE = 0. If a control signal is applied

to both excitatory and inhibitory populations, we call it two-

dimensional (2d). 2d signals can be dominated by input to

the excitatory population (max |uE| ≥ max |uI |) or by input
to the inhibitory population (max |uE| < max |uI |).

2. Amplitude: We define the maximum of the absolute

value of each control signal as its amplitude

aα = max
t

|uα(t)|,α ∈ {E, I}.

3. Cost:We investigate the effects of L1- (DU1- and UD1-task)

or L2-constraints (DU2- and UD2-task). The contribution to

F1 of a control signal applied to the α population is given by

F1,α =

√

√

√

√

√

T
∫

0

u2αdt, (23)

and the corresponding contribution to F2 by

F2,α =
1

2

T
∫

0

|uα(t)|2dt. (24)

4. Width: We define the width wα of a control signal uα(t) as

the duration, over which the absolute value is at least half its

maximum, i.e., wα = tw1 − tw0 , where |uα(t)| ≥ 1
2 ·max |uα |

for t ∈ [tw0 , tw1 ].

In the following, we denote the horizontal (vertical) distance

from a selected point (µext
E ,µext

I ) to the target regime boundary

by dE (dI) and the shortest distance by dmin (see Figure 2).

Dimensionality. We investigate the dimensionality of the

optimal control signals for all tasks for various parameter

combinations (µext
E ,µext

I ) in the bistable regime. The results

are summarized in Figure 6, where each symbol represents one

point (µext
E ,µext

I ) in state space, for which the optimization

was performed.

As expected, we find that L1-constraints lead to one-

dimensional solutions only (DU1- and UD1-task). For the DU1-

task, we find 1d control of the inhibitory population for lower

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2022.931121
https://github.com/lenasal/Optimal_Control_GUI
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Salfenmoser and Obermayer 10.3389/fncom.2022.931121

FIGURE 4

Control inputs and population rates for three di�erent initializations for the four control tasks and for points a (top row) and b (bottom row)

marked in the state space diagram of Figure 2. Bold lines show results obtained for the standard initialization, and the lines to the right (left)

show results with the initialization pulse shifted by 40 ms (−40 ms). The top rows show the firing rates of the excitatory (red) and inhibitory (blue)

population as a function of time, bottom rows show the corresponding optimal control currents, uE in red, uI in blue. From left to right, the

columns show the results for the DU1-, DU2-, UD1-, and UD2-task. The respective target rates are indicated by the dashed lines. The simulation

duration is T = 500 ms. During the last 20 ms, precision is penalized (gray shaded area). The numerical values for the costs are

FDU1 = 3.3312, FDU2 = 3.5516, FUD1 = 2.1462, and FUD2 = 2.2901 at point a, and FDU1 = 5.0064, FDU2 = 10.9004, FUD1 = 2.6569, and FUD2 = 3.5209 at

point b for all three initializations.

and 1d control of the excitatory population for higher values

of µext
I . For the UD1-task, all solutions show non-zero control

input to the excitatory population only. Constraints resulting

from applying L2-constraints lead to 2d solutions. For the DU2-

task, these are dominated by input to the inhibitory population

for low and by input to the excitatory population for high values

ofµext
I . For the UD2-task, all solutions are dominated by control

inputs to the excitatory population.

Applying control to the excitatory (inhibitory) population

is related to a shift in state-space along the µext
E -axis (µext

I -

axis). The control always operates such that it moves the system

toward the target regime; right or downwards for the down-

to-up tasks, left or upwards for the up-to-down tasks. As a

consequence, uE and uI always have opposite signs. Due to

the almost vertical boundary toward the down regime, applying

control to the inhibitory population is not efficient for the

up-to-down switching tasks.

Amplitude. The amplitude of the (dominating) control

signal depends on the distance to the target regime boundary.

Figure 7 shows amplitudes as a function of distances for the

four control tasks. We observe linear dependencies for all cases.

Comparing the top and bottom panels of the up-to-down tasks,
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FIGURE 5

Dynamical variables as a function of time for the DU1-task, when optimal control is applied. Parameters correspond to point a shown in

Figure 2. Variables related to the excitatory (inhibitory) population are plotted in red (blue). We show the optimal control input to the inhibitory

population in each plot as the thin, dashed, blue line (uE = 0). All dynamical variables reach a plateau state between t ≈ 250 ms and t ≈ 400 ms.

FIGURE 6

The dimensionality of the optimal control signals at selected points (µext
E ,µext

I ) in the bistable regime. The four panels correspond to the four

control tasks. Each marker represents one point in state space, for which the optimal control was computed. We indicate the excitatory

(inhibitory) control amplitude with red (blue) markers. The area of the markers scales with the respective amplitude of the optimal control signal.

For the down-to-up tasks (first and second panel), red circles correspond to positive signals, blue circles correspond to negative signals. For the

UD2-task (rightmost panel), the size of the blue diamonds was increased by a factor of 200 compared to the red diamonds to also visualize the

contribution of the weak control signal uI .

we observe that aE increases faster than aI with distance, i.e.,
daE
ddE

>
daI
ddI

.

For the DU2-task, we compare results with

max |uE(t)| ≥ max |uI(t)| (red markers in Figure 7) to

results with max |uE(t)| < max |uI(t)| (blue markers in

Figure 7). For the former, aI is relatively small, indicating

that transitions are mainly induced by stimulation of the

excitatory population. For the latter, aE is relatively high,

indicating that stimulation of both populations is crucial for

optimal transitions.
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FIGURE 7

Amplitude of the optimal control signals as a function of the horizontal or vertical distance to the target regime boundary. The four columns

correspond to the di�erent tasks. We indicate 1d control of the excitatory population or 2d control with max |uE(t)| ≥ max |uI(t)| by red color and

1d control of the inhibitory population or 2d control with max |uE(t)| < max |uI(t)| by blue color. For the down-to-up switching tasks, the figures

show aE over dE (top panel) and aI over dI (bottom panel). For the DU2-task, both figures include data from optimal control signals with

max |uE(t)| ≥ max |uI (t)| (red markers) and max |uE(t)| < max |uI (t)| (blue markers). For the UD1- and UD2-tasks, we only show aE over dE .

Correlation coe�cients of aE over dE are as follows: 0.9984 (DU1, E), 0.9935 (DU2, E), 0.8996 (DU2, I), 0.9992 (UD1), 0.9992 (UD2). Correlation

coe�cients of aI over dI are as follows: 0.9968 (DU1, I), 0.6279 (DU2, E), and 0.9909 (DU2, I).

A higher control strength, i.e., a higher amplitude, is needed

to overcome a larger distance toward the target regime. Despite

the highly nonlinear dynamics of the model, the required

increase in amplitude scales linearly with the distance dE or dI

in the dominating input channel.

Cost. The cost of the (dominating) control signal is also

determined by the distance to the target regime boundary.

Figure 8 shows costs as a function of distances for the four

control tasks. We observe a linear dependence if L1-constraints

are applied. For the DU2- and UD2-tasks, we also find a linear

correlation, however, the dependence is superlinear for these

control tasks. For the DU1-task, the slope of the excitatory cost

is steeper than the slope for the inhibitory cost, i.e.,
dF1,e
ddE

>
dF1,i
ddI

.

For the DU2-task, we compare results with

max |uE(t)| ≥ max |uI(t)| (red markers in Figure 8) to

results with max |uE(t)| < max |uI(t)| (blue markers in

Figure 8). Similar to the relations found for the amplitude, we

find that for the former, F2,I is relatively small, whereas for the

latter, F2,E is relatively high.

A higher required control strength (i.e., a higher amplitude)

is reflected in the corresponding cost. Due to the mathematical

definition of F1 (see Equation 19, first line) and due to the fact

that the amplitude scales linearly with the distance dE or dI , the

dependence of F1,e or F1,i on dE or dI is also linear. However,

the definition of F2 (see Equation 19, second line) implies that,

if amplitude scales linearly with distance, the dependence of the

cost must be superlinear.

We investigate the scaling of the total cost F with the

shortest distance dmin to the target regime boundary. For

the DU1-task, control inputs to the excitatory population

produce higher total costs to overcome a certain distance

to the target regime than control inputs to the inhibitory

population (Figure 9, left panel). For the DU2-task, control

signals dominated by inputs to the excitatory population

produce higher total costs to overcome a certain distance to the

target regime than control signals dominated by inputs to the

inhibitory population (Figure 9, right panel).

Width. The widths of the control signal depends on the

distance to the regime boundary. For control signals dominated

by inputs to the excitatory population, we observe a negative

correlation (see red markers in Figure 10), i.e., such control

pulses become sharper when moving away from the target

regime boundary. For the DU2-task, this also holds for wI . In

particular, wE and wI correlate strongly with each other, the

Pearson correlation coefficient is 0.9916. For control signals

dominated by inputs to the inhibitory population, we observe

a positive correlation for the DU1-task (see Figure 10, first

column, bottom panel), i.e., these control pulses become wider
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FIGURE 8

F1 and F2 of the optimal control signals as a function of the horizontal or vertical distance to the target regime boundary. The four columns

correspond to the di�erent tasks. We indicate 1d control of the excitatory population or 2d control with max |uE(t)| ≥ max |uI(t)| by red color and

1d control of the inhibitory population or 2d control with max |uE(t)| < max |uI(t)| by blue color. For the down-to-up tasks, the figure shows F1,E
or F2,E over dE (top panel) and F1,I or F2,I over dI (bottom panel). For the DU2-task, both figures include data from optimal control signal with

max |uE(t)| ≥ max |uI (t)| (red markers) and max |uE(t)| < max |uI (t)| (blue markers). For the UD1- and UD2-tasks, we only show aE over dE .

Correlation coe�cients of F1,E or F2,E over dE are as follows: 0.9980 (DU1, E), 0.9652 (DU2, E), 0.7984 (DU2, I), 0.9964 (UD1), and 0.9840 (UD2).

Correlation coe�cients of F1,I or F2,I over dI are as follows: 0.9953 (DU1, I), 0.5253 (DU2, E), and 0.9330 (DU2, I).

FIGURE 9

Total cost F as a function of the shortest distance dmin to the

target regime boundary for the DU1- (left panel) and DU2-tasks

(right panel).

when moving away from the target regime boundary. For the

DU2-task, the width of control signals dominated by inputs to

the inhibitory population hardly changes with the distance to the

target regime boundary.

3.4. Tradeo�s between transition time
and cost

To investigate tradeoffs between transition time, precision

cost, and strength of control, we reduce both the simulation

duration T and the precision measurement onset time t0 from

T = 500ms and t0 = 480ms to T = 20ms and t0 = 0

successively, such that T − t0 = 20ms remains constant (see

Section 2.2.4.2).

We investigate optimal control signals for T ≤ 500ms for

the DU1-task at point a and for two penalization strategies. We

compute the optimal control forW1 = 1 · 1
As5/2

, or forW1,max.

The numerical value depends on T and t0.

Figure 11 shows optimal control signals and the resulting

trajectories of the firing rates for several values of T and t0 for

the DU1-task at point a for W1 = 1 · 1
As5/2

. We find three

different control strategies. For large transition times, t0 &

72ms,T & 92ms, the optimal control remains a 1d signal to the

inhibitory population (see Figure 11, top row). The cost remains

almost constant with decreasing transition time, however, the

plateau state becomes shorter. For intermediate transition times,

17ms . t0 . 71ms, 37ms . T . 91ms, there is a finite

contribution of uE that increases when t0 becomes smaller (see

Figure 11, center row). A secondary peak appears just before

t0, which helps push the system toward the target state. The

input to the excitatory population is much smaller than the

input to the inhibitory population. For small transition times,

t0 . 16ms,T . 36ms, the optimal control is a 1d signal

to the excitatory population (see Figure 11, bottom row). The

amplitude increases and reaches a maximum of approximately
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FIGURE 10

Width of the optimal control signals as a function of the horizontal or vertical distance to the target regime boundary. The four columns

correspond to the di�erent tasks. We indicate 1d control of the excitatory population or 2d control with max |uE(t)| ≥ max |uI(t)| by red color and

1d control of the inhibitory population or 2d control with max |uE(t)| < max |uI(t)| by blue color. For the down-to-up tasks, the figure shows wE

over dE (top panel) and wI over dI (bottom panel). For the DU2-task, both figures include data from optimal control signal with

max |uE(t)| ≥ max |uI (t)| (red markers) and max |uE(t)| < max |uI (t)| (blue markers). For the UD1- and UD2-tasks, we only show wE over wE .

Correlation coe�cients of wE over dE are as follows: –0.7120 (DU1, E), –0.6479 (DU2, E), –0.6962 (DU2, I), –0.5492 (UD1), and –0.5476 (UD2).

Correlation coe�cients of wI over dI are as follows: 0.8848 (DU1, I), –0.6213 (DU2, E), and –0.6962 (DU2, I).

8 nA for t0 = 0ms (note that the scaling along both the x-

and the y-axis changes). With this control strength, the firing

rate of the excitatory population reaches the target state after

approximately 1ms.

Figure 12 shows optimal control signals and the resulting

trajectories of the firing rates for several values of T and t0

for the DU1-task at point a for the highest possible value of

W1, i.e., W1,max. We find two different control strategies. For

large transition times, t0 & 210ms,T & 230ms, the optimal

control remains a one-dimensional signal to the inhibitory

population (see Figure 12, top row). Again, the cost remains

almost constant with decreasing transition time, whereas the

plateau state becomes shorter. For small transition times, t0 .

200ms,T . 220ms, the optimal control is a one-dimensional

signal to the excitatory population (see Figure 12, bottom row).

The amplitude increases only for t0 ≈ 0ms and reaches a

maximum of approximately 0.6 nA for t0 = 0ms. W1 is a

relatively high number, preventing large input signals at the cost

of an increased precision cost FP .

Transition strategies differ from the solution found for T =
500ms once the simulation duration becomes comparable to

the width of the control signal, i.e., around t0 ≈ 180ms and

T ≈ 200ms. For longer t0 and T, control signals are relatively

similar to the original signal for T = 500ms (see top panel

in Figures 11, 12). For shorter t0 and T, the control signals

differ notably from the original signal. The respective costs

increase. For t0 . 180ms and T . 200ms, the results for

W1 = 1 · 1
As5/2

and W1 = W1,max reveal different strategies.

W1 determines the relationship between precision and control

strength. In accordance with expectations, we can enforce either

precise transitions, by choosingW1 ≈ 1· 1
As5/2

, or low-amplitude

transitions, by choosing W1 ≫ 1 · 1
As5/2

. For both penalization

strategies,W1 = 1 · 1
As5/2

andW1 = W1,max, it is more efficient

to stimulate the inhibitory population for long transition times

and the excitatory population for short transition times. This

could be a consequence of the time delay dE (see Equations 6

and 7) and of the fact that wemeasure precision only in the firing

rate of the excitatory population, as rE reacts faster to inputs to

the excitatory node.

4. Discussion

This study uses an iterative numerical algorithm to compute

optimal control for a biologically motivated nonlinear mean-

field model of a population of excitatory and inhibitory neurons
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FIGURE 11

Firing rates (top panels) and optimal control signals (A) for transitions with various transition times t0 for the DU1-task at point a for W1 = 1 · 1
As5/2

.

Excitatory (inhibitory) activity and control applied to the excitatory (inhibitory) population are plotted in red (blue). The gray area shows the time

window of precision measurement, T − t0. The transition time t0 decreases from left to right and from top to bottom. The respective precision

cost FP , and the F1,E- and F1,I-costs are given in the box of each figure.

for four different control tasks. Our key findings are as follows:

First, there are continuous sets of optimal control signals for

each parameter choice and task if the time interval with no

penalty on precision is sufficiently long, i.e., if the precision

cost at the end of this interval is negligible compared to the

cost of control strength. Since the duration of the control

inputs remains finite even for long time intervals [0,T], time-

shifted versions of otherwise identical control signals are cost-

optimal as long as control signals are not too close to the

interval boundaries. Second, we find that the optimal control

operates such that the system is steered just minimally beyond

the boundary that separates the two basins of attraction. The

system converges to the respective stable target state without

the requirement of further control input beyond that boundary.

This keeps the control costs low. Third, we find systematic

dependencies of input channels and certain parameters related

to the shape of the optimal control signals on the distance

to the target regime boundary. Rather unexpectedly, we also

find that optimal control strategies do not consistently select

one input channel, but steer the system through the excitatory

or inhibitory channel depending on the exact location in state

space. Finally, in a time-constrained setting, we observe not only

amplitude effects, which would be expected, but also changes in

shape and input channels.

Our approach to nonlinear OCT features some technical

limitations, whichmust be considered appropriate to ensure that

reliable results are produced. First, gradient descent algorithms

are not guaranteed to converge to global optima. Optimal

cost solutions may reflect local optima only, and there may

be other initializations that could converge to control inputs

at an even lower cost. Comparing solutions resulting from

different initializations, however, did not provide evidence for a
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FIGURE 12

Firing rates (top panels) and optimal control signals (bottom panels) for transitions with various transition times t0 for the DU1-task at point a for

W1 = W1,max. Excitatory (inhibitory) activity and control applied to the excitatory (inhibitory) population are plotted in red (blue). The gray area

shows the time window of precision measurement, T − t0. The transition time t0 decreases from left to right and from top to bottom. The

respective precision cost FP and the F1,E- and F1,I-cost (without the factor W1) are given in the box of each figure.

complicated energy landscape. One specific control signal shape

is found from different initialization strategies, and shifts in time

are computationally extremely time-consuming. We conclude

that our heuristic approach to initialization produces results that

are satisfactorily close to a global optimum and can thus be

used to reliably investigate the systematic properties of optimal

control strategies. Models of higher complexity, however,

may require modifications of initialization strategies (cf.

Chouzouris et al., 2021).

The time complexity of the proposed OCT method depends

on the number of dynamical variables, the number of iterations

of the descent algorithm, and the simulation time measured

in units of the integration step size. Computation time scales

linearly with the simulation time T and the number of iterations.

The computation of the adjoint state (see Section 2.2.2, Figure 3,

and Supplementary section 1) requires the Jacobian matrix.

Hence, the computational complexity of the gradient of the cost

scales quadratically with the number of dynamical variables.

The computation of the descent step sκ (see Section 2.2.2

and Figure 3) requires approximately O(10 − 1, 000) forward

simulations per descent step, the computational complexity

of the forward simulation scales linearly with N and T. For

our investigations, we find that due to a large number of

forward simulations, the step size computation accounts for

approximately 40–60% of the total computation time. For the

EI EIF model, the computation of the optimal control signal

for one initialization for one point in state space requires

approximately 10min CPU time on a laptop-computer (11th

Gen Intel R© CoreTM i7-1165G7, CPU base frequency 2.8GHz,

maximum frequency 4.7GHz) for T = 500ms (integration step

dt = 0.1ms). The choice of abort criteria, ǫs = 1× 10−30

and ǫu = 1× 10−12 (see Section 2.2.2 and Figure 3), led to

several thousand iterations of the gradient descent procedure.

For simpler models (e.g., the Wilson-Cowan model), the

computation time decreases approximately by a factor of M/N,

where M is the number of the respective dynamical variables,

rendering the investigation of neural mass models of complex

networks feasible also on laptop computers (cf. Chouzouris et al.,

2021).

Given the high metabolic demand of neural systems,

evolutionary pressure could have enforced energy efficient

interactions between its components (Niven, 2016; Watts et al.,

2018). The consequences for the neural dynamics could, in

principle, be investigated using methods from nonlinear OCT.

Setting up a realistic energy balance for a neural system is a

difficult task, and a neural mass model as it is investigated

here would not be detailed enough to allow for this. Given the

interpretation of the control u(t) as an induced ion current that

affects the neurons’ membrane potential, the metabolic energy E

required to restore the neurons’ state could be estimated roughly
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via the number of ions involved,1

E ∝
∫ T

0

(

|uE(t)| + |uI(t)|
)

dt. (25)

In our simplistic example, efficiency would then be related to the

L1-norm of the control, i.e., to the optima of the corresponding

cost functionalF1(x,u) in Equation (19). The formalism of OCT

investigated in this work, however, can be extended to other

cost functionals in principle and may thus allow for realistic

analytical investigations into the consequences of metabolic or

other constraints on neural processing.

On the synthetic side, both the L1- and the L2-norm have

previously been investigated in the context of the external

control of neural systems. The L2-norm leads to so-called

minimum-energy control strategies (cf. Nabi et al., 2012;

Wilson et al., 2015). These strategies are motivated by reduced

energy consumption of an electric stimulation device potentially

supporting a longer-term deployment. The L1-norm leads to

so-called minimum-charge control strategies (cf. Pyragas et al.,

2018, 2020). These strategies are motivated by a reduced

interference with neural tissue potentially lowering the danger of

tissue damage (cf. Shannon, 1992). Gradient-based optimization

as investigated in this study may provide an alternative method

to derive these optimal control strategies. With properly

adapted precision measures (e.g., measures of synchronization,

Chouzouris et al., 2021) and alternative constraints (if required),

the formalism of OCT investigated in this work can be extended

to a variety of novel control goals.

This study focuses on a state-switching task in a bistable

regime. In vivo experiments show that neural tissue can

spontaneously transit between a state of low, steady activity

(1Hz-5Hz) and a state of high activity or rhythmic bursting

in the absence of stimuli (Latham et al., 2000; Holcman

and Tsodyks, 2006). Electrophysiological recordings during

the execution of memory tasks report regular transitions

between states of inactivity and activity of single neurons

(e.g., Funahashi et al., 1989). During sleep and anesthesia,

slow-wave oscillations are observed and commonly modeled

as periodic transitions of up and down states (Torao-Angosto

et al., 2021). It is hypothesized that such transitions are

fundamental for working memory and attention and for

memory consolidation during sleep (Diekelmann and Born,

2010; Klinzing et al., 2019). Hence, bistability is thought to

be a functionally important element of neural population

dynamics, and efficient control of the population state may be

a prerequisite for performing cognitive tasks (Durstewitz and

Seamans, 2006). Beyond its biological importance, bistability

enables stimulation that is limited in time and can yet

1 For di�erent ion species with di�erent restoration costs the integrand

must be replaced by a weighted sum of the individual currents.

produce sustainable changes in the activity of the system

and is, therefore, a convenient dynamical regime for studies

of control.

The results reported in this study pertain to the noise-

free case. When additive noise affects the membrane currents

µα (see Equation 5), the mean activities rE and rI of both

excitatory and inhibitory populations decrease in the up state,

and rI increases in the down state. In addition, noise-induced

transitions between up and down states may occur. The

probability of spontaneous transitions increases with noise

strength. The theoretical framework needs to be adapted by

replacing the precision cost in Equation (11) with its expectation

value. Practically, it is required to average over several noise

realizations. Preliminary investigations into the optimal control

for switching between the two stable states in the bistable regime

show that both the amplitude aα and the cost cα of the control

signals increase. As a result, the system is pushed closer to

the target regime. The plateau state vanishes thus preventing

immediate noise-induced transitions back to the original state.

In general, our theoretical and algorithmic approach can be

applied to a wide range of models of neural dynamics, including

whole-brain network structures (cf. Cakan et al., 2022) and can

be extended to different control tasks (e.g., Chouzouris et al.,

2021). This could, for example, open up new ways to study

the efficiency of neural interaction theoretically. Evolutionary

pressure and natural selection led to a high degree of cost

efficiency in biological processes. Principles of communication

resulting from applying optimal control to neural dynamics

could thus be reflected in biological systems. In the context of

our toy example, these principles could enable conclusions on

the efficiency of stimulating the excitatory vs. the inhibitory

population. On the synthetic side, applying optimal control

methods to a real-world framework of neural dynamics could

offer a fresh view on optimal protocols for neural stimulation in

a clinical context, and presumably enable to minimize undesired

side- and after-effects.
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