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Hemocyanin facilitates lignocellulose digestion by
wood-boring marine crustaceans
Katrin Besser1, Graham P. Malyon 2, William S. Eborall1, Giovanni Paro da Cunha3, Jefferson G. Filgueiras3,

Adam Dowle4, Lourdes Cruz Garcia2, Samuel J. Page5, Ray Dupree5, Marcelo Kern1, Leonardo D. Gomez 1,

Yi Li1, Luisa Elias1, Federico Sabbadin1, Shaza E. Mohamad1,6, Giovanna Pesante 1, Clare Steele-King1,

Eduardo Ribeiro de Azevedo3, Igor Polikarpov 3, Paul Dupree 7, Simon M. Cragg 2,

Neil C. Bruce 1 & Simon J. McQueen-Mason1

Woody (lignocellulosic) plant biomass is an abundant renewable feedstock, rich in poly-

saccharides that are bound into an insoluble fiber composite with lignin. Marine crustacean

woodborers of the genus Limnoria are among the few animals that can survive on a diet of this

recalcitrant material without relying on gut resident microbiota. Analysis of fecal pellets

revealed that Limnoria targets hexose-containing polysaccharides (mainly cellulose, and also

glucomannans), corresponding with the abundance of cellulases in their digestive system, but

xylans and lignin are largely unconsumed. We show that the limnoriid respiratory protein,

hemocyanin, is abundant in the hindgut where wood is digested, that incubation of wood with

hemocyanin markedly enhances its digestibility by cellulases, and that it modifies lignin. We

propose that this activity of hemocyanins is instrumental to the ability of Limnoria to feed on

wood in the absence of gut symbionts. These findings may hold potential for innovations in

lignocellulose biorefining.
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Lignocellulosic, woody tissues provide mechanical support to
higher plants. They are formed of a macromolecular com-
posite of cellulose microfibrils coated and bound to one

another by hemicellulose and lignin, producing a strong material
that is resistant to biological and chemical degradation1. Cellulose
is made of β-1,4-linked glucan polymers that form strong para-
crystalline microfibrils, whereas the hemicellulose may be galac-
toglucomannans in softwoods (produced by gymnosperms such
as pine) or predominantly glucuronoxylans in hardwoods (pro-
duced by angiosperms such as willow)2. These polysaccharides
typically comprise ~70% of the wood, but are rendered hard to
access within a hydrophobic macromolecular material inter-
penetrated and bound by the polyphenolic lignin. Lignin is
unusual among biological polymers in that it is not made by
specific polymerases. Instead, the constituent monolignols are
secreted into the cell wall space and then polymerize without
enzymatic assistance in situ by oxidative coupling, followed by a
re-aromatization reaction, which can also form bonds between
lignin and hemicellulose3. This gives rise to a polymer without a
regular repeat structure to which specific lytic enzymes can
evolve, resulting in high resistance to degradation.

Lignocellulose represents the largest pool of fixed carbon in the
terrestrial environment and the abundance and availability of
lignocellulosic materials such as timber, crop residues, and
dedicated biomass crops makes them an attractive feedstock for
the production of renewable fuels, chemicals, and materials
without competing with food demand4. Despite their great
abundance, the recalcitrance of woody materials to degradation
presents a challenge for cost-effective biofuels production1,5, as
well as for digestion by heterotrophic organisms that feed on this
material, such as fungi, bacteria, invertebrates, and other ani-
mals6–9.

Fungi are preeminent among terrestrial wood-degrading
organisms, owing to their ability to degrade lignin. Fungal lig-
nin degradation follows two general strategies: white-rot fungi
such as Phanerochaete chrysosporium are able to fully depoly-
merize and metabolize lignin, whereas brown-rot fungi such as
Postia placenta modify lignin extensively through depolymeriza-
tion and repolymerization, but do not metabolize it, in order to
gain access to the polysaccharides in wood7,10–13. These different
strategies are reflected in the secretome of such fungi: white rots
invest in an extensive array of ligninolytic peroxidases and
carbohydrate-active enzymes (CAZymes), whereas brown rots
use a radical-generating system based on Fenton chemistry to
attack lignin and polysaccharides, and deploy a less extensive
range of CAZymes to degrade wood7,10,11.

Besides the well-studied capability of bacteria to degrade cel-
lulose and hemicellulose, there is growing evidence of their lig-
ninolytic capacity by the utilization of peroxidases, laccases, and
superoxide dismutases14,15.

A number of invertebrates have evolved to live on woody plant
materials, particularly insects such as termites and beetles9,16,17.
These animals typically have complex digestive systems, involving
several stages of digestion, and rely on populations of specialized
microbes resident in the digestive tract9,16,17. In this context,
termites have been best studied and their digestive systems are
home to a fascinating diversity of bacteria, archaea, and protists
that contribute to highly efficient lignocellulose digestion,
whereas modified lignin accumulates in the feces of lower and
higher termites without being metabolized by the animal9,16.
However, there is limited information about the mechanism for
the lignin deconstruction in termites and beetles6,16–18.

Although lignocellulose is produced by land plants, large
quantities enter the marine environment through estuaries,
mangroves, and salt marshes, providing a niche for specialist
marine arthropods and mollusks6. Teredinid mollusks

(shipworms) consume large amounts of wood and rely, at least
partly, on endosymbiotic gill bacteria for lignocellulose diges-
tion6,19. In contrast, marine isopod crustacean woodborers of the
Limnoriidae (colloquially known as gribble) do not rely on
microbial symbionts, and have digestive systems devoid of resi-
dent microbiota6,20,21. Recent work has begun to uncover the
genes and enzymes involved in cellulose degradation in Limnoria
spp.21,22. However, the mechanisms for overcoming the lignin
barrier to allow these enzymes to access their substrates remain
unknown.

King et al.21 (2010) reported that hemocyanins are abundant in
the digestive transcriptome of Limnoria quadripunctata and
speculated that they might be involved in wood digestion.
Hemocyanins are copper-containing proteins in the hemolymph
of arthropods, in which they have evolved from structurally
related phenoloxidases (POs)21,23–25. They are recognized as the
major respiratory proteins in the hemolymph of Pancrustacea
(Hexapoda and Crustacea) and share a type-3 di-copper active
center involved in oxygen binding with POs, tyrosinases, and
catechol oxidases23–25. Hemocyanins are shown to exhibit PO
activity upon activation, which is thought to involve loosening of
the tertiary structure enabling access to the copper-containing
active site24,26,27. PO activity plays a role in immune responses,
melanization, and sclerotization by generating quinones24,27–29,
which are cytotoxic and highly reactive. Quinones can undergo
redox cycling, which can generate semiquinone radicals that form
polymers or adducts during melanization and sclerotization, or
reactive oxygen species (ROS) that have antimicrobial proper-
ties30. Previous work in crayfish showed hemocyanins to be
involved in tanning the chitinous cuticle lining the hindgut
during molting, but they are confined to gastroliths (temporary
calcium storage organs) to fulfill this function31.

Here, we present an investigation into the process of wood
digestion in Limnoria, revealing the extent of lignocellulose
breakdown and a characterization of the digestive proteome. We
show that the oxygen-carrier hemocyanin is found in the site of
wood digestion, has ligninolytic activity, and markedly increases
the digestibility of wood by cellulases. We therefore suggest that
hemocyanins play a key role in isopod woodborer digestion,
adding another aspect to the multi-functionality of these proteins
in arthropods.

Results
Wood transformation during digestion. We carried out mass
loss studies and compositional analyses comparing wood fed to
Limnoria with their excreted fecal pellets (Fig. 1a) to gain insights
into the lignocellulose digestion process. This showed that ∼ 22%
of ingested material is consumed during gut passage, which takes
about a day, both for willow (angiosperm, hardwood) and Scots
pine sapwood (gymnosperm, softwood) (Supplementary Table 1).

In willow, most, if not all, of this mass loss is associated with
digestion of the partially crystalline cellulose fraction, of which
more than half was removed, whereas the typically more
accessible hemicellulose fraction, as well as lignin, accumulate
in the fecal pellets and show little change in relative amounts
when normalized to mass loss (Fig. 1b). Sugar composition
analysis of the sequentially hydrolyzed polysaccharide fractions
hemicellulose (using trifluoracetic acid, TFA) and cellulose (using
sulfuric acid (H2SO4) following TFA hydrolysis) revealed that
most of the mass lost during digestion was accounted for by
release of glucose, the major sugar of the cellulosic fraction
(Fig. 1c). Most of the small amount of TFA-resistant hemi-
cellulose in wood was reduced in fecal pellets (either because the
hemicellulose is degraded during digestion or becomes more
susceptible to hydrolysis by TFA after digestion), as shown by the
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marked decrease in xylose and mannose contents of the cellulosic
fraction (Fig. 1c). In contrast, very little sugar of the hemicellulose
fraction appeared to be mobilized, and consisted mainly of xylose
and smaller amounts of glucose (Fig. 1d). This indicates that
the mechanism of hardwood digestion is mainly targeting the
cellulosic fraction, where most of the glucose is found.

A similar situation is evident when the animals are feeding on
Scots pine, with the cellulosic fraction being reduced in mass by
40% (Supplementary Fig. 1a, b). In contrast to willow, the
hemicellulosic fraction is also reduced in mass by ~ 20%
(Supplementary Fig. 1a). Softwood hemicellulose consists mainly
of galactoglucomannan, but also of some arabinoglucuronoxylan,
and during digestion mostly mannose and some glucose are
released from this fraction, with little loss of xylose content
(Supplementary Fig. 1c). These data may reflect the ability of
many cellulases to partially digest glucomannans which contain
β-1,4-glucose units and suggest that polymers containing hexose
sugars (mainly cellulose but also some glucomannan) are the
main targets for softwood digestion by Limnoria.

Solid-state 13C nuclear magnetic resonance (ssNMR) studies of
willow wood and fecal pellets confirm the major loss of cellulose
when spectra are normalized to lignin (Supplementary Fig. 2,
inset). The spectra also reveal that there is little or no change in
the ultrastructure of the residual cellulose following digestion,
evidenced by the unaltered ratio of the C4 signals of interior-to-
surface or ordered-to-disordered cellulose microfibril regions (89
vs 84 ppm) in wood versus fecal pellets (Supplementary Fig. 2).

Although direct assessments of chemical changes of single
molecules in a heterogeneous complex such as lignocellulosic

plant biomass cannot be accomplished by Fourier transform
infrared (FTIR) spectroscopy alone, analyses of wood and fecal
pellets corroborate our findings of the digestion process in
Limnoria (Supplementary Fig. 3; Supplementary Table 2).
Attenuated total reflectance (ATR)-FTIR spectra are consistent
with an increase in hemicellulose (1160 and 1045 cm−1), which
may be less acetylated (1737 cm−1), an increase in lignin
(1630–1670, 1160, and 1140 cm−1), which may be more
oxidized (1640 and 1550 cm−1), and a decrease in cellulose
(985 and 896 cm−1) in fecal pellets in comparison with wood
(Supplementary Fig. 3a, b; Supplementary Table 2).

Taken together, these data suggest that hexose-containing
polysaccharides (cellulose and glucomannan) represent the major
target of the Limnoria digestive system, with little reduction in the
lignin and pentose-containing hemicellulose fractions. This is
supported by the dominance of cellulase-like glycosyl hydrolases
(GHs) of GH families 7 and 9 found in this animal’s digestive
transcriptome21. In order to enable access of the cellulases to their
substrate, the tight complex of cellulose with hemicelluloses and
phenolic lignin must be disrupted. Hemicellulose connects with
cellulose by interaction with the crystalline surface of micro-
fibrils32 and this association seems to be disrupted as indicated by
the decreased amount of hemicellulose in the cellulosic fraction of
the biomass (Fig. 1c; Supplementary Fig. 1b). As lignin is still
present in the fecal pellets, this polymer presumably has been
modified to disrupt the association with the polysaccharide
fraction and to facilitate access to the cellulose. To further
investigate the mechanisms of wood digestion, we examined the
physio-chemical properties and proteome of the digestive system.
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Fig. 1 Major biopolymer composition of willow wood before and after digestion. a Scanning electron micrograph of fecal pellet from Limnoria (scale bar,
50 µm). b Relative amounts of biomass fractions from wood (Willow, N= 10) and fecal pellets (Feces 78%, normalized to mass loss during digestion, N=
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A two-compartment digestive system. The digestive system of
Limnoria is dominated by two structures: a cuticle-lined linear
hindgut that is tightly packed with finely chopped wood particles
and the hepatopancreas, which is the site of enzyme production
and nutrient uptake (Fig. 2a–c)21,22,33. The hepatopancreas has a
secretory and absorptive microvilli-lined epithelium facing its
lumen that is kept free of wood particles by a complex filter
system at the manifold connecting the hepatopancreas and the
midgut, which leads into the hindgut (Fig. 2a–c)33. The hepato-
pancreas is contractile and, it is assumed, contracts to inject
enzyme solutions, then relaxes, when the muscles of the hindgut
contract to return breakdown products and enzymes for recy-
cling, whereas spikes in the hindgut lining prevent the return of
fecal matter. During feeding, seawater is ingested along with
wood particles and is mixed with fluids in the digestive tract. This
is evident in the pH gradient from the acidic hepatopancreas
(distal region of lobes at pH 5.6 to proximal region of lobes at pH
5.8), to the neutral hindgut (pH 7.3), and to the exterior alkaline
seawater (pH 7.9; Fig. 2a; Supplementary Fig. 4). The pH in
terrestrial isopods is maintained ~ 6.0–6.5 in both organs, with a
slight gradient from the most acidic distal end of the hindgut to
the hepatopancreas34, and similar trends and values were
observed in freshwater amphipods35. We show by microprobe
analysis that the hindgut has a low oxygen content compared
with the rest of the body and the surrounding seawater, sug-
gesting it is an oxygen sink (Fig. 2d). In the absence of gut-
resident microbial populations this may reflect the action of an
oxygen-consuming biochemical process rather than it being the
result of microbial respiration, as suggested in other isopod
digestive systems34.

To identify the enzymes involved in the degradation of
lignocellulosic biomass in the hindgut of the woodborer, we
undertook proteomic analyses using label-free emPAI (exponen-
tially modified protein abundance index)-based relative protein
quantification of the fluids collected from the hindgut, with
spectral data searched against a transcriptomic Limnoria library
(PRJNA453115; SRP142516). A third of the proteins detected in
the hindgut fluid comprise CAZymes (32.9%), which represent

almost exclusively GHs and few carbohydrate esterases (0.8% of
CAZymes) (PXD009486; MSV000082271). Known cellulase
families GH7 and GH9 account for over 50% of the soluble
GHs in the gut fluids (Fig. 3a). Hemocyanins, the oxygen-carrier
proteins of crustaceans, were also detected to differentially
accumulate in the gut fluids, as shown by comparing relative
hemocyanin protein abundance in fluids and tissue/solid content
of the hindgut (Fig. 3b). Reverse Transcriptase quantitative
PCR (RT-qPCR) revealed that GHs and hemocyanins are
specifically transcribed in the hepatopancreas, in which
the proteins were detected by western analysis (Fig. 3c, d). The
prediction of N-terminal signal peptides in GH and hemocyanin
sequences (using SignalP 4.1, http://www.cbs.dtu.dk/services/
SignalP/) suggested that proteins are secreted into the hepato-
pancreas lumen, from where they are moved into the hindgut, in
which they accumulate as evidenced by immunoblots and
proteomic data (Fig. 3c, d; Supplementary Fig. 5). The digestive
proteome of Limnoria lacks peptides for known ligninolytic
enzymes such as peroxidases, laccases, and other oxidoreductases
known to degrade lignin10,15 (PXD009486; MSV000082271).

A role for hemocyanin in lignocellulose digestion. Our study
shows that respiratory hemocyanins are abundant and soluble in
the hindgut luminal fluids of the marine woodborer, where they
might play a part in wood digestion. Phenoloxidase activity of
hemocyanins has previously been shown to occur in the hemo-
lymph and in gastroliths of arthropods to fulfill multiple func-
tions in immune response reactions and cuticle tanning24,27–29,31.
To examine a potential role in wood digestion, native hemocya-
nins from Limnoria were purified by gel filtration and their
identity confirmed by western blot analysis (Supplementary
Fig. 6a, b). Analysis of the purified and concentrated fractions
revealed a strong enrichment in hemocyanin, which forms mul-
timers, most likely hexamers and multiples of these (Fig. 3e), as
has been observed for terrestrial isopods and arthropods23,28,36.
We tested the purified hemocyanin for potential oxidative activity
on small phenolic compounds and found that it oxidized
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pyrogallol to form purpurogallin, as indicated by the increased
absorbance at ∼ 320 nm37, and that this reaction required acti-
vation of hemocyanin with SDS (sodium dodecyl sulfate), but was
independent of hydrogen peroxide supply (Fig. 4a, Supplemen-
tary Fig. 6c, d).

When hemocyanin was purified in seawater, the expected
solvent in the woodborer’s digestive system, its melting
temperature (Tm) was lowered by 5 °C compared with the Tm

in buffer, indicating a slight unfolding of the protein (Supple-
mentary Fig. 7a, b, c) sufficient to enable ligninolytic activity.
Incubation of hemocyanin in seawater with alkali lignin led to
distinctive modifications of the lignin structure, evidenced by
ssNMR spectra (Fig. 4b, top panel). The most prominent change
upon hemocyanin treatment is the intensity reduction in the
spectral region corresponding to aromatic carbons (140–160
ppm), as well as in the signal attributed to aryl methoxyl carbons
(56.1 ppm). With the exception of the C1 carbon of guaiacyl
units, the spectral region between 140 and 160 ppm is caused by
O-aromatic carbons (see caption of Fig. 4b). The intensity of the
signal in the region of 110–140 ppm is also decreased
and represents contributions from O-aromatic carbons. In
addition, the spectrum of the hemocyanin-treated samples shows

a signal at 24.9 ppm, which is typical of CH3 groups in aliphatic
moieties. Although the NMR results alone cannot be specific
about the exact mechanism of the hemocyanin-lignin interac-
tion, the simultaneous relative reduction of the O-aromatic and
aryl methoxyl carbon signals, as evidenced by the difference
spectrum of hemocyanin- and seawater-treated samples (Fig. 4b
insets), suggests that hemocyanin acts mostly on the aromatic-
OCH3 sites. This is also supported by the little or no change in
the signal of ring carbons not linked to oxygen (105 ppm). Co-
incubation of hemocyanin with the chelator diethylene triamine
penta-acetic acid (DTPA) prevented these lignin modifications
and NMR signals are very similar in both control and
hemocyanin-treated samples (Fig. 4b, bottom panel), likely
owing to hemocyanin inactivation as a result of copper sequestra-
tion from its active site by DTPA. In support of this, we found
that addition of chelators to hemocyanin in seawater removed
oxygen bound to its active site, evidenced by the loss of
absorbance at ∼ 340 nm (Supplementary Fig. 7d)24,28. It appears
that chelator-dependent sequestration of copper from the
hemocyanin active center, not only caused the loss of the oxygen
binding property, but also led to further destabilization of the
protein, as indicated by a significant temperature shift in the
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with molecular size marker in kDa. Hc, band containing hemocyanin as identified by protein ID. f Uranyl acetate negative stained TEM images of native
Limnoria hemocyanin extract showing hexamers and stacked multiples of these (scale bar, 50 nm)
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melting curve with a Tm of 70 °C to below 55 °C (Supplementary
Fig. 7a, c), both potentially contributing to inactivation of the
protein. It is interesting to note that chelators had no effect on
the conformation and stability of (inactive) hemocyanins in
buffer without SDS, as evidenced by an unshifted melting curve
and stable Tm with increasing chelator concentration, confirming
that the copper in the active center is not exposed and therefore
not accessible for sequestration or enzymatic activity in buffer
without SDS (Supplementary Fig. 7b, c).

Hemocyanins as effective pretreatment for saccharification.
The pretreatment of woody biomass is required to reduce its
recalcitrance and to improve accessibility and digestibility of the
polysaccharide fractions by hydrolytic enzymes (saccharification)1,5.
In industrial processes this generally involves thermo- or physico-
chemical processes, using acidic, alkaline, or organic solvents
combined with high temperature and/or pressure5, whereas wood-
degrading organisms use a range of ligninolytic enzymes and/or
Fenton chemistry to achieve this6. Our data suggest that hemo-
cyanin in the Limnoria digestive system provides the phenolox-
idative power for lignin disruption, improving access of cellulases to
their substrate. To test this hypothesis we pretreated wood with
hemocyanin prior to digestion with cellulases, and assessed the
impact on its saccharification.

We found that incubation of powdered wood with Limnoria
hemocyanin in seawater for short periods (10–20 minutes) at
room temperature is sufficient to increase cellulase activity by

50–300% compared with controls without hemocyanin pretreat-
ment (Fig. 5, Supplementary Fig. 8a). Similar results were
obtained using the recombinant limnoriid LqCel7B (LqGH7B),
a processive cellobiohydrolase (CBH)22, or the fungal HjCel7A
(Hypocrea jecorina CBH I) in saccharification reactions (Supple-
mentary Fig. 8b), as well as using softwood (Scots pine sapwood,
Supplementary Fig. 8c) instead of the hardwood (willow), which
have different lignocellulose compositions. This pretreatment
effect of hemocyanin was suppressed by addition of the chelator
DTPA, which inhibited hemocyanin activity on soluble lignin as
shown above (Fig. 5a, Fig. 4b). Similarly, hemocyanin pretreat-
ment in the presence of the strong reducing agent dithionite
prevented increased saccharification by CBH, likely owing to the
reduction of the enzyme’s copper center (Fig. 5b)38. Hemocyanin
incubation had only a minor impact on the digestibility of pure
phosphoric acid swollen cellulose (PASC) and this was unaffected
by chelator treatment (Supplementary Fig. 8d), indicating that the
increased digestibility of wood does not arise from direct effects
on cellulose. The small increase in cellobiose release from PASC
by hemocyanin pretreatment is likely due to the activity of the
small amount of cellulases co-purified with hemocyanin (GHs,
Supplementary Fig. 6c).

One way that protein addition might enhance cellulase action
on wood might be by reducing non-productive binding of
cellulases to non-cellulosic components such as lignin39,40. To
assess if such an effect might be responsible for the enhanced
cellulase action, the binding of cellulases to hemocyanin-
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Fig. 4 Hemocyanin activity on pyrogallol and isolated lignin. a UV-Vis spectra of Trametes versicolor laccase compared with activated (by addition of
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vicinity, so the signal of Cu-DTPA complexes is not expected to show in 13C CP-MAS spectra. Insets: difference spectra (blue) of hemocyanin- and
seawater-treated lignin samples
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pretreated biomass was investigated. A similar proportion of the
fungal HjCBH I (containing a cellulose binding module) was
found to bind to the biomass during saccharification reactions
independent of hemocyanin pretreatment, as shown by
Coomassie-stained SDS-polyacrylamide gel electrophoresis
(PAGE) gels (Supplementary Fig. 9). A very small proportion
of hemocyanin remained on the wood mass after removal of the
pretreatment solutions, which is likely to be caused by protein
being trapped in the biomass upon pelleting prior to removal
(Supplementary Fig. 9). Therefore, it is unlikely that the
enhancement of digestibility seen with active hemocyanin is
caused by reduced non-productive binding of cellulases to the
biomass.

To assess whether hemocyanin treatment led to increased
porosity of wood enhancing access to cellulose by cellulases, we
examined the T2 relaxation time profiles of N,N-Dimethylaceta-
mide (DMAc) in hemocyanin-treated wood using low field time
domain NMR41. DMAc penetrates the pores in the material and
its relaxation time T2 becomes relative to the size of the pore it is
filling (the smaller the pore, the shorter T2) and to the pore
surface ability to produce spin relaxation of the DMAc protons
(so-called surface relaxivity parameter). This parameter depends
on surface properties such as magnetic susceptibility and affinity
to the enclosed fluid. Lignocellulose has characteristic interstitial
scales (pores), presenting a T2 profile with components that
encode the various length scales of the pores as well as their
occupancy by the enclosed fluid42. The proportion of DMAc in
each interstitial scale is estimated from the relative area of the
respective component of the T2 distribution, which can be
correlated to the accessibility of each type of pore by DMAc
molecules.

When comparing willow wood treated with seawater or with
hemocyanin, it is apparent that the T2 profiles of DMAc in both
samples are similar in shape, i.e., reveal the same type of pore
distribution, with three pore populations at similar length scales
(Supplementary Fig. 10a, b). Assuming a similar surface relaxivity
of DMAc in willow as in cotton cellulose, the length scales
corresponding to these profiles are estimated to be in the order of
1–10 nm, 10–100 nm, and 100–1000 nm (Supplementary
Fig. 10b)41. These pore populations are interpreted as interstitial
spaces in the amorphous region of cellulose (surface of cellulose
fibrils), voids in the inter-microfibril spaces, and small luminal

structures, respectively42. However, the relative area of the two
lower T2 population curves increased considerably in the
hemocyanin-pretreated sample (Supplementary Fig. 10b, c),
which indicates that there are more pores within these two
length scales (both associated with the accessibility of the cell
wall) after hemocyanin incubation. This suggests that there is
increased porosity of lignocellulose and potentially better
accessibility of cellulose by hydrolytic enzymes upon hemocyanin
pretreatment.

Liquid chromatography-tandem mass spectrometry (LC-MS/
MS) analysis of the hemocyanin extract after trypsinolysis
revealed that it contained low level contamination with ferritin
(1.3%, based on emPAI-derived molar percentages; Supplemen-
tary Fig. 6c), which was also detected in the gut fluid proteome
(0.5 mol%; PXD009486; MSV000082271). Therefore, we tested
the effect of ferritin in pretreatment reactions on willow followed
by saccharification with CBH to exclude the possibility that the
ferritin co-extracted with hemocyanin in our experiments
contributed to the observed digestibility improvement43. Ferritin
pretreatment had no impact on digestibility of willow when used
at a molarity five times higher than the one expected in the
hemocyanin extract used in pretreatment reactions (Supplemen-
tary Fig. 11).

To compare the pretreatment performance of hemocyanin to
other copper-containing phenoloxidases, Trametes versicolor
laccase and Agaricus bisporus mushroom tyrosinase were used
at the same molarity as hemocyanin (14 µM) in pretreatment
reactions followed by saccharification and revealed no effect on
digestibility by the laccase, and a smaller increase (than that by
hemocyanin) for the tyrosinase (Supplementary Fig. 11).

We also show that the hemocyanin dependent enhancement of
cellulase efficiency after ten minutes incubation at ambient
temperature is comparable to mild thermochemical pretreatment
with sodium hydroxide at 90 °C for 45 min (Supplementary
Fig. 8a). To provide evidence for the potential recyclability of
hemocyanins in view of industrial applications of ligninolytic
agents, the pretreatment solutions from one experiment were
removed after the incubation period and re-applied to untreated
wood powder of a second cellulase digestion experiment. This
repeated use of hemocyanin in pretreatment reactions still led to
increased cellobiose release by cellulase from pretreated willow
wood (Supplementary Fig. 8a).
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Discussion
We have studied the digestion of wood by crustacean woodborers
of the genus Limnoria that have no detectable microbial sym-
bionts in their guts20–22. Our data show that the digestive process
mainly targets the cellulosic fraction, and also other hexose-
containing polysaccharides of wood, through the action of
endogenously produced cellulases of families GH7 and GH9 that
are expressed in the hepatopancreas and constitute over 50% of
soluble GHs in the hindgut fluids surrounding the wood. We
found that hemocyanins are abundant in the digestive proteome
of the woodborer, that they can modify lignin, and that pre-
incubation of wood with hemocyanins leads to a marked increase
in the digestibility of wood by cellulases, which is likely due to an
increase in the porosity of the lignocellulose. Ander et al.44

reported the activity of hemoglobin and other heme compounds
towards lignin in the presence of oxidants such as hydrogen
peroxide, in a similar fashion to peroxidase-type ligninases. In
contrast, we report the discovery that respiratory hemocyanins in
the Limnoria hindgut enhance lignocellulose digestibility by a
mechanism that requires no additional oxidant and appears to
function in a manner distinct to that reported for hemoglobin.

The considerable mass loss of 22% during wood digestion in
Limnoria represents a loss of over 50% of the cellulose per day in
willow (compared with few weeks for similar total mass loss of
10–50% by fungi45), leaving the fecal pellets enriched in the
hemicellulose and lignin fractions. This differs from the degra-
dation by wood-decay fungi, which first attack the more acces-
sible polysaccharides (non-crystalline cellulose and
hemicelluloses) before moving on to the crystalline cellulose
fraction10–12. Xylophagous insects, such as beetles and termites,
also usually degrade the hemicellulose fraction in addition to
cellulose, aided by their microbial gut community16,17. In contrast
to their herbivorous hosts, many symbiotic microbes are generally
able to metabolize the pentose sugar xylose, resulting in nutri-
tional benefits to the host upon release of these fermentation
products16,17. In the absence of gut microbiota in the crustacean
woodborer there may be no route to utilize xylose, explaining the
accumulation of xylan in fecal pellets of Limnoria.

Cellulose occurs as partially crystalline microfibrils of β-1,4
glucans that GHs do not digest efficiently without facilitation
through oxidative attack by free radicals or by enzymes like lytic
polysaccharide monooxygenases (LPMOs)6,7,11,46. We could find
no putative enzymes of classes recognized for oxidative poly-
saccharide degradation7,11,46,47 in the digestive transcriptome or
proteome of Limnoria. Our ssNMR data suggest that cellulose
crystallinity is unchanged in fecal pellets, indicating indis-
criminate degradation of amorphous and crystalline cellulose
parts during wood digestion. The marine environment of the
woodborer may aid the accessibility of cellulose in the absence of
LPMOs, as the salts of seawater are thought to partially disrupt
the hydrogen bonds between cellulose chains in microfibrils
similarly to ionic liquids48,49.

The lignin matrix in wood represents a major barrier to cel-
lulose hydrolysis, hindering the access of cellulases to their sub-
strates1,5. Wood-degrading fungi typically utilize extracellular
reactive oxygen species for lignin breakdown and/or the action of
oxidative enzymes (peroxidases and laccases)6,7,10,11. Lignin
degradation to varying degrees has been reported in the microbe-
containing gut systems of wood-feeding beetles, moths and ter-
mites, with modifications detected that resemble those caused by
wood-decay fungi, including aromatic ring deconstruction and
ring demethoxylation18,50,51. A combined host and symbiont
transcriptomic approach in termites revealed that sequences
encoding ligninolytic enzymes such as laccases were exclusively
host-derived with only one putative peroxidase identified from
symbionts52. Correlated laccase gene expression and

phenoloxidase activity in the foregut and salivary glands, together
with confirmation of phenoloxidase activity of laccases from the
salivary glands towards lignin-phenolics, suggests a role for lac-
cases in lignocellulose digestion by termites52,53. Transcriptomic
profiling of animal and microbial digestive enzymes in wood-
feeding beetles suggested a more cooperative approach to lignin
degradation, and identified transcripts from both origins for
reductases, dehydrogenases, laccases, other multi-copper oxi-
dases, peroxidases, and other auxiliary lignocellulolytic
enzymes17,54.

Symbiotic as well as endogenous phenoloxidase activity has
been observed in the digestive tracts of some peracarid (a group
of crustaceans including isopods and amphipods) detritivores
that feed, at least partly, on lignocellulose55,56. More recently, it
has been proposed that sensu strictu phenoloxidases are lacking in
peracarids and that in the hemolymph their function may be
replaced by multifunctional hemocyanin, which is involved in
respiration and immune responses36. Our work shows that
hemocyanin from Limnoria is abundant inside the digestive
system and able to oxidise pyrogallol, a lignin-derived phenolic,
but also promotes aromatic ring cleavage of lignin. Lignin per-
oxidases and laccases involved in lignocellulose digestion in
white-rot fungi have been shown to cleave side chains and aro-
matic rings of lignin model compounds57,58, leading to efficient
decomposition of lignin7,10,58. We speculate that in the absence of
such proteins from gut fluids of the marine woodborer their
ligninolytic function is provided by hemocyanin in the digestive
tract, resulting in lignin modifications that improve accessibility
of cellulases and leading to oxygen depletion of the hindgut.

We show that native Limnoria hemocyanins provide a highly
effective pretreatment of wood, enabling cellulases to hydrolyze
the cellulose fraction, whereas hemocyanin has no impact on the
digestibility of cellulose itself. We also found that hemocyanin
increased the porosity of the biomass. We, therefore, infer that it
is the observed lignin-modifying activity that potentiates the
hydrolysis of cellulose in wood. It is interesting to note that
hemocyanin sequences have been identified in the digestive
proteome and transcriptome of a termite and a xylophagous
beetle, respectively, but no direct involvement in digestion has
been shown54,59. When fungal phenoloxidases, implicated in
lignocellulose degradation58,60,61, were used under the same
conditions as for hemocyanin in pretreatment reactions, it
became apparent that the laccase had no impact on wood
digestibility, maybe owing to the lack of a suitable mediator60,
whereas the mushroom tyrosinase increased digestibility. In this
study, we have shown that mushroom tyrosinase potentially
enhances enzymatic saccharification of wood and it is interesting
to note that it shares the same type-3 copper center with
hemocyanins. In addition to their suggested role as redox partner
for LPMOs62, tyrosinases may also increase digestibility of wood
during decomposition by fungi due to their ligninolytic activity61.

Hemocyanins represent a novel class of lignin-modifying
proteins that have a pronounced impact on wood digestibility
and likely underpin the unusual ability of Limnoria to live on a
diet of wood in the absence of microbial assistance in digestion.
Insights gained from this digestive system may prove useful in
developing effective methods for producing sugars from lig-
nocellulose for sustainable biofuel production. The opportunity to
exploit seawater rather than valuable and limited freshwater
resources may provide a further significant benefit.

Methods
Animal source. The animal experiments described in this paper comply with and
were approved by the Animal Welfare and Ethical Review Body of the University of
Portsmouth (approval number 815 C). Specimens of Limnoria quadripunctata
Holthuis were collected from a heavily infested piece of balau wood (Shorea sp.)
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removed from a site in the intertidal zone at Portsmouth, UK. Specimens of the
closely related Limnoria tripunctata Menzies were collected from heavily infested
unidentified wood removed from the intertidal zone around the Isle of Wight, UK.
Both species were used to set up laboratory cultures in seawater tanks.

Mass balance experiment. Ten batches of 10 animals (L. quadripunctata) were
each fed for 28 days on a stick of willow wood or Scots pine sapwood (20 × 5 ×
3mm) previously leached for 1 week in water, dried for 48 h at 105 °C and
accurately weighed. Fecal pellets produced during the experiment were collected
from each batch by filtration. After the feeding period, animals were flash frozen,
and the fecal pellets and remaining wood were washed and dried at 105 °C for 48 h
before being weighed. Mass loss was calculated by subtracting the sum of weights of
fecal pellets plus the remaining wood, from which the pellets had been generated,
from the original weight of the wood before feeding.

Biomass fraction analysis. For biomass analysis the same ten samples of willow
wood, Scots pine sapwood and fecal pellets (of 10 animals each) from the mass
balance experiment were used. One aliquot of (3–4 mg accurately weighed) milled
wood and fecal pellets per sample was used for the determination of acetyl
bromide-soluble lignin (ABSL)63; a second aliquot of each sample was used for the
sequential sugar composition analysis of the matrix and crystalline polysaccharides
using TFA and H2SO4. For lignin extraction, 250 µL of acetyl bromide solution
(25% v/v acetyl bromide in glacial acetic acid) were added to the biomass and
heated at 50 °C for 3 h mixing every 15 min. Cooled samples were transferred to 5
mL volumetric flasks, 1 mL of 2 M sodium hydroxide used to rinse the original
tubes and 175 µL of 0.5 M hydroxylamine HCl added, and flasks filled up to 5 mL
with glacial acetic acid. Before measuring absorbance at 280 nm spectro-
photometrically, 100 µL of each sample were diluted with 900 µL glacial acetic acid.
The amount of lignin was calculated using the following formula: % ABSL=
(absorbance/(coefficient×path length)) × ((total volume × 100%)/biomass weight))
× dilution, where coefficient= 18.21 (poplar)64. For sequential extraction of
monosaccharides from matrix and crystalline polysaccharide fractions, samples
were washed with absolute ethanol and dried at 35 °C. Standards comprised a
mixture of nine monosaccharides (arabinose, fucose, galactose, galacturonic acid,
glucose, glucuronic acid, mannose, rhamnose, and xylose) each at 100 µM and were
dispensed at 250, 500, and 700 µL into tubes in duplicates before drying in a speed
vacuum concentrator (SPD131DDA, Thermo Scientific), used for all drying steps
mentioned hereafter. One set of standards was hydrolyzed with TFA and the other
with H2SO4 in the same way as the biomass samples. All samples were partially
hydrolyzed by adding 0.5 mL of 2 M TFA to extract matrix polysaccharides first.
Samples were flushed with dry argon and heated at 100 °C for 4 h with periodical
mixing. Cooled samples were dried overnight, the pellets washed twice with 500 µL
of 2-propanol and dried before TFA-soluble sugars were removed in two extrac-
tions with 500 µL of dH2O each at 35 °C. The combined TFA-extracts were dried
along with the pellets, which were then used in the second hydrolysis step to extract
crystalline polysaccharides. TFA-pellets were totally dissolved in 50 µL of 72% (w/
w) H2SO4 and incubated at room temperature for 4 h, mixing every 15 min, then
1.05 mL of dH2O was added to reduce the H2SO4 concentration to 3.42% and
incubated at 120 °C for 4 h. After cooling 1 µL of 1% bromophenol blue was added,
samples were centrifuged and a 550 µL aliquot partially neutralized by adding
500 µL of 150 mM Ba(OH)2. Complete neutralization was achieved by adding
BaCO3 powder until the solution turned blue, before samples were centrifuged to
eliminate the precipitated BaSO4 and supernatants were dried to be used as H2SO4-
extracts for the quantification of monosaccharides. All dried TFA- and H2SO4-
extracts of samples and standards were re-suspended in 200 µL of dH2O, filtered
with 0.45 µm PTFE filters, and analyzed by High-Performance Anion-Exchange
Chromatography (HPAEC Dionex) using the monosaccharide program (see
below). The amounts of all three biomass fractions analyzed (lignin, matrix and
crystalline polysaccharides) were added together and the percentage of each frac-
tion calculated from the total. The total mass of fecal pellets from all three fractions
was set to 78% to represent the 22% mass loss during digestion.

High-performance anion-exchange chromatography (HPAEC). Mono- and
oligosaccharides were analyzed via HPAEC using an ICS-3000 PAD system with an
electrochemical gold electrode, a CarboPac PA20 3 × 150mm analytical column and
a CarboPac PA20 3 × 30mm guard column, operating with Chromeleon 6.8
Chromatography Data Systems software (Dionex). Sample and calibration standard
aliquots of 5 μL were injected and separated at a flow rate of 0.4–0.5mLmin−1 at a
constant temperature. Parameters for the monosaccharide separation were as fol-
lows: after equilibration of the column with 100% H2O, samples were injected and
separated at a temperature of 25 °C in a linear gradient of 100% H2O to 99%–1% of
H2O–0.2 M NaOH in 5min, then constant for 10min, followed by a linear gradient
to 47.5%–22.5%–30% of H2O–0.2 M NaOH–0.5 M NaOAc/0.1 M NaOH in 7 min and
then kept constant for 15min. After washing the column with 0.2 M NaOH for
8min it was re-equilibrated with 100% H2O for 10min before injection of the next
sample. Parameters for the oligosaccharide separation at 30 °C were as follows: after
equilibration of the column with 50%-50% of H2O–0.2 M NaOH, a linear gradient
was started from 0 to 20% with 0.5 M NaOAc/0.1 M NaOH over 40min and then
kept constant for 6 min before being reverted to 50%–50% of H2O–0.2 M NaOH

over 4 min before the next sample injection. Carbohydrates were identified by
comparison with retention times of external standards and quantified by comparing
integrated peak areas of samples to those of monosaccharide calibration standards,
prepared as described above, and to oligosaccharide standards (glucose, cellobiose,
cellotriose, cellotetraose, cellopentaose, cellohexaose) each at 125, 250, and 350 µM.

Solid-state 13C NMR on willow and fecal pellets. Specimens of L. tripunctata
were kept in seawater on willow sticks for 2 weeks and fecal pellets were collected
daily by centrifugation and then kept in freshwater with 0.02% Na-azide at 4 °C.
Control wood was milled using a cyclone mill (Retsch) with a 0.5 mm mesh and
soaked in seawater before being transferred into H2O/azide and kept in the same
way as the fecal pellets. Magic Angle Spinning (MAS) ssNMR experiments on
wood and fecal pellets were performed on a Bruker Advance III NMR spectrometer
operating with TopSpin software version 3.5 at 1H and 13C Larmor frequencies of
398.8 and 100.3 MHz, respectively, using a 4.0 mm double-resonance MAS probe.
Experiments were conducted at room temperature and a MAS frequency of
12 kHz. The 13C chemical shift was determined using the carbonyl peak at 177.8
ppm of L-alanine as an external reference with respect to tetramethylsilane; the π/2
pulse lengths were 2.5 μs (1H) and 4.2 μs (13C). 1H-13C cross-polarization (CP)
with ramped (70–100%) 1H RF amplitude was used to obtain the spectra with 100
kHz 1H decoupling during acquisition and a contact time of 1 ms. The recycle
delay was 5 s with two blocks of 12,000 acquisitions added for each sample.

ATR-FTIR spectroscopy. Fecal pellets from balau wood colonized by L. quad-
ripunctata were collected by centrifugation and dried, uncolonized parts of the
same wood were shaved off and dried before being milled to fine powder using a
ball mill with three cycles of 5 min milling each. ATR-FTIR spectra of wood
powders and fecal pellets were obtained between 850–1850 cm−1 using a Spectrum
One spectrometer equipped with a diamond that allows collection of spectra
directly on the sample without any sample preparation (Perkin-Elmer). Three
spectra for each sample were acquired with Spectrum version 5.0.1 using 256 scans
at a resolution of 4 cm−1, and the triplicate-averaged spectrum was used for
principal component analysis (PCA) of three wood and fecal pellet samples,
respectively. PCA was carried out using The Unscrambler X software v 10.5
(CAMO) after peak normalization, linear baseline correction, and area normal-
ization. Spectral assignments were made according to the literature (see Supple-
mentary Table 2).

Scanning electron microscopy (SEM). Fecal pellets were obtained from a
laboratory culture of L. quadripunctata and hindguts were removed by dissection
and promptly incubated in fixative for 1 h. Fecal pellets were fixed in 4% glutar-
aldehyde in 0.2 M sodium cacodylate and 2 mM calcium chloride at pH 7.4.
Hindguts were fixed in 0.1 M sodium cacodylate, 3% paraformaldehyde and 0.5%
glutaraldehyde pH 7.4. Tissues were rinsed in 0.2 M sodium cacodylate pH 7.4
before post-fixation with 1% (w/v) aqueous osmium tetroxide for 1 h. After 3 ×
30 min rinses in Reverse Osmosis water, the samples were dehydrated through a
graded ethanol series, into acetone and transferred into hexamethyldisilazane, then
dried by evaporation. They were placed onto adhesive carbon tabs and sputter
coated with gold. SEM images were obtained with a JEOL 6060 LV microscope
operating at 15 kV in secondary electron mode.

Transmission electron microscopy (TEM). Hepatopancreases were removed
from L. quadripunctata by dissection and fixed and dehydrated as described for
fecal pellets used for SEM (s.a.) before infiltration with low viscosity resin (Agar
Scientific) and polymerization at 60 °C for 16 h. For TEM, gold sections (70 nm)
were cut using a Leica Ultracut UCT and mounted on 200 mesh copper grids.
Sections were post-stained with 2% aqueous uranyl acetate (10 min) and lead
citrate (5 min in a carbon dioxide-depleted chamber). Sections were viewed with an
FEI Technai G2 TEM operating at 120 kV.

Measurement of pH values within the digestive tract. Animals (L. quad-
ripunctata) were kept in sticks of pine wood (Pinus sylvestris) (20 × 2 × 4mm) at
18–20 °C in seawater (taken from Langstone Harbour, Portsmouth, UK) for a
month. At the day of the experiment, the animals were removed from the sticks
and fixed by the cephalon and the telson with acupuncture needles to agarose plates
(2% in Langstone Harbour seawater). The thoracic segments were removed with
the help of tweezers to expose the hindgut and then the plate was filled up with
seawater. Immediately afterwards, a 25 µm-tip pH microsensor (Unisense, Den-
mark) was introduced from above into the hindgut lumen. A pH profile was set up
to measure the pH every 25 µm, with 3 s of acquisition and 3 s of rest between
measurements, starting inside the hindgut lumen going onwards into the agarose
plate, with a motorized micromanipulator (MM33 Unisense, Denmark). The
profiles were acquired using the SensorTrace Suite software (Unisense, Denmark).
Hepatopancreases were dissected and embedded in 12% gelatin then placed on top
of agarose plates. A 25 µm tip pH microsensor (Unisense, Denmark) was used to
measure the pH in the four hepatopancreas lobes. Measurements were made in the
proximal region of the small and large lobes, near the connection to the hindgut,
and in a more distal region in the larger lobes. The sensor tip was introduced into
the tissue and the pH was recorded after the signal was stable.
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Measurements of pH were compared by Welch’s one-way analysis of variance
with region of measurement as the factor (distal region of large lobe of
hepatopancreas, proximal region of large lobe, proximal region of small lobe,
hindgut, seawater/agarose support for hindgut). Comparisons were made without
assuming equality of variances using the Games-Howell multiple comparison
method. Comparisons between the measurements in various regions in the
hepatopancreas lumen were made with Tukey’s multiple comparison method
applied to a generalized linear model model using factors of region of
measurement, left or right and individual animal. Tests were conducted using
Minitab version 17.3.1.

Measurement of oxygen levels within the digestive tract. Oxygen levels were
measured in situ in the hindgut of live individuals of L. quadripunctatamounted in
a Petridish on a layer of agar covered with seawater. Individuals were placed
dorsally on the agar surface and suspended in a cool layer of 12.5% (w/v) aqueous
gelatin. The oxygen microelectrode was calibrated against a mixture of 0.1 M

ascorbic acid and 0.1 M sodium hydroxide to provide a depleted oxygen standard,
as well as against air-saturated dH2O, which had been vigorously bubbled for 5
min. Using a micromanipulator, the 10 µm-tip of the microelectrode was passed
through the cuticle of the ventral surface into the hindgut and then stepwise
withdrawn with 3 s each of data acquisition and of rest between measurements at
21 °C. After removal of the electrode and release, the live specimens were observed
to swim and feed normally.

Transcriptomics of the digestive system and whole animals. Three times, 25
whole animals (L. tripunctata) were collected in seawater on ice, liquid removed
and flash frozen in liquid nitrogen before homogenization with a micropestle and
total RNA extraction with the TRIzol® Reagent (Thermo Fisher Scientific). Tri-
plicate biological samples were prepared from hindgut and hepatopancreas by
dissection of 50 animals per sample, which were collected in TRIzol® Reagent
(Thermo Fisher Scientific) on ice, ground with a micropestle and total RNA
extracted according to the manufacturer’s protocol. Total RNA was treated with
RQ1 DNase (Promega) to remove genomic DNA, cleaned with RNA Clean &
Concentrator™-5 (Zymo Research), then quantified spectrophotometrically
(NanoDrop 2000, Thermo Scientific) and its integrity evaluated using the Bioa-
nalyzer2100 (Agilent). The transcriptomic library was constructed after poly-A
selection using the TruSeq® Stranded mRNA Sample Preparation Kit (Illumina)
according to the library protocol. The 150 bp paired end sequencing was performed
with HiSeq3000 using Illumina Technology (The Next Generation Sequencing
Facility, University of Leeds). A total of 377,501,758 raw EST read pairs
(PRJNA453115; SRP142516) were trimmed to remove adaptors, cleaned of low-
quality reads and then assembled into contigs (represented with 478,804,012 total
assembled bases in 1,062,392 Trinity transcripts) with an average contig length of
451 bp using the Trinity software v2.5.165. Raw reads from each library were
mapped onto this assembly and mapped reads were counted with SAMtools. The
final transcriptome of 767,816 sequences was generated after filtering out contigs
with fewer than five reads mapped in all libraries and used as a reference database
for Mascot searches in our proteomic study.

Annotation of the contigs identified in our proteomic study was performed by
BlastX searches against the non-redundant database of NCBI. Additional CAZyme
annotation was carried out using the online software dbCAN (DataBase for
automated Carbohydrate-active enzyme ANnotation) after the contigs were
converted into ORFs using the online tool Emboss (http://www.bioinformatics.nl/
cgi-bin/emboss/getorf).

Label-free quantitative proteomic analyses. For digestome analysis triplicate
biological samples were prepared from hindgut and hepatopancreas by dissection
of 100 animals (L. tripunctata) per sample and separation of tissue and solid
content from the digestive fluids by mild centrifugation at 3000×g for 5 min in 0.04
M NaPO4 pH 7, containing 1× Halt protease inhibitor cocktail ethylene diamine
tetra-acetic acid (EDTA)-free (Pierce) and 0.01% TritonX100. Fluid samples were
dried in a speed vacuum concentrator (SPD131DDA, Thermo Scientific) and tis-
sue/solid samples were ground with a micropestle before being solubilized in
NuPAGE LDS sample buffer (Life Technologies) with heating at 70oC for 10 min
and running into a 7 cm NuPAGE Novex 10% Bis-Tris gel (Life Technologies) at
200 V for 6 min. For analysis of purified hemocyanin, native hemocyanin extract
was mixed with sample loading buffer and treated as described above. Gels were
stained with SafeBLUE protein stain (NBS biologicals) for a minimum of 1 h before
de-staining with ultrapure water for a minimum of 1 h.

In-gel tryptic digestion of proteins was performed after reduction with
dithioerythritol and S-carbamidomethylation with iodoacetamide. Gel pieces were
washed two times with aqueous 50% (v/v) acetonitrile containing 25 mM

ammonium bicarbonate, then once with acetonitrile and dried in a vacuum
concentrator for 20 min. Sequencing-grade, modified porcine trypsin (Promega)
was dissolved in 50 mM acetic acid, then diluted fivefold with 25 mM ammonium
bicarbonate to give a final trypsin concentration of 0.02 µg µL−1. Gel pieces were
rehydrated by adding 25 µL of trypsin solution, and after 10 min enough 25 mM

ammonium bicarbonate solution was added to cover the gel pieces. Digests were
incubated overnight at 37oC before extraction of peptides by washing three times
with aqueous 50% (v/v) acetonitrile containing 0.1% (v/v) trifluoroacetic acid, and

drying in a vacuum concentrator and reconstituting in aqueous 0.1% (v/v)
trifluoroacetic acid. A common sample pool was created by taking equal aliquots of
all samples.

For LC-MS/MS analysis, samples were loaded onto an UltiMate 3000 RSLCnano
HPLC system (Thermo) equipped with a PepMap 100 Å C18, 5 µm trap column
(300 µm×5mm, Thermo) and a PepMap, 2 µm, 100 Å, C18 EasyNano nanocapillary
column (75 µm×500mm, Thermo). The trap wash solvent was aqueous 0.05% (v/v)
trifluoroacetic acid and the trapping flow rate was 15 µLmin−1. The trap was
washed for 3 min before switching flow to the capillary column. Separation used
gradient elution of two solvents: solvent A, aqueous 1% (v/v) formic acid; solvent B,
aqueous 80% (v/v) acetonitrile containing 1% (v/v) formic acid. The flow rate for
the capillary column was 300 nLmin−1 and the column temperature was 40 °C.
Analyses were performed over 1 h (hemocyanin extracts) or 3 h (tissue and fluid
extracts) acquisitions. For 1 h runs the linear multi-step gradient profile was: 3–10%
B over 7 min, 10–35% B over 30 min then 35–99% B over 5 min. For 3 h
acquisitions the gradient profile was: 3–10% B over 7 min, 10–35% B over 30min,
35–99% B over 5 min and in both cases then proceeded to wash with 99% solvent B
for 4 min. The column was returned to initial conditions and re-equilibrated for
15 min before subsequent injections. The nanoLC system was interfaced with an
Orbitrap Fusion hybrid mass spectrometer (Thermo) with an EasyNano ionization
source (Thermo). Positive ESI-MS and MS2 spectra were acquired using Xcalibur
software (version 4.0, Thermo). Instrument source settings were: ion spray voltage,
1,900 V; sweep gas, 0 Arb; ion transfer tube temperature; 275 °C. MS1 spectra were
acquired in the Orbitrap with: 120,000 resolution, scan range: m/z 375–1500; AGC
target, 4e5; max fill time, 100ms. Data dependent acquisition were performed in top
speed mode using a fixed 1 s cycle, selecting the most intense precursors with charge
states 2–5. Easy-IC was used for internal calibration. Dynamic exclusion was
performed for 50 s post precursor selection and a minimum threshold for
fragmentation was set at 5e3. MS2 spectra were acquired in the linear ion trap with:
scan rate, turbo; quadrupole isolation, 1.6m/z; activation type, HCD; activation
energy: 32%; AGC target, 5e3; first mass, 110m/z; max fill time, 100ms.
Acquisitions were arranged by Xcalibur to inject ions for all available parallelizable
time.

For the data analysis, peak lists were converted from.raw to.mgf format using
MSConvert (ProteoWizard 3.0.9974) before submitting to a locally-running copy
of the Mascot program using Mascot Daemon (version 2.5.1, Matrix Science). Data
were searched against an in-house Limnoria transcriptomic database (see above;
PRJNA453115; SRP142516) with the following criteria specified: Enzyme, trypsin;
Max missed cleavages, 2; Fixed modifications, Carbamidomethyl (C); Variable
modifications, Oxidation (M), Peptide tolerance, 3 ppm; MS/MS tolerance, 0.5 Da;
Instrument, ESI-TRAP. Search results were passed through Mascot Percolator to
achieve a 1% peptide false discovery rate and filtered to require a minimum expect
score of 0.05 for individual matches. Protein identifications were filtered to require
a minimum of two peptide matches in the purified hemocyanin extract, and at least
in one sample when comparing organ-specific abundances, with samples being
triplicates each of gut tissue/solids, gut fluids, hepatopancreas tissue/solids, and
hepatopancreas fluids. Relative protein molar abundances were calculated from
Mascot derived emPAI scores as described by Ishihama et al.66.

Protein ID. The digestion was the same as for LC-MS/MS workflow (see above,
Label-free quantitative proteomic analysis), but protein ID used MALDI-MS/MS
for analysis. A 1 µL aliquot of each peptide mixture was applied directly to the
ground steel MALDI target plate, followed immediately by an equal volume of a
freshly-prepared 5 mgmL−1 solution of 4-hydroxy-α-cyano-cinnamic acid (Sigma)
in 50% aqueous (v/v) acetonitrile containing 0.1% trifluoroacetic acid (v/v).
Positive-ion MALDI mass spectra were obtained using a Bruker ultraflex III in
reflectron mode, equipped with a Nd:YAG smart beam laser. MS spectra were
acquired over a mass range of m/z 800–4000. Final mass spectra were externally
calibrated against an adjacent spot containing six peptides of known mass. For each
spot the 10 most intense ions, with S/N > 30, were selected for fragmentation,
which was performed in LIFT mode without the introduction of a collision gas.
The default calibration was used for MS/MS spectra, which were baseline-
subtracted and smoothed (Savitsky-Golay, width 0.15 m/z, cycles 4). Bruker flex-
Analysis software (version 3.3) was used for spectral processing and peak list
generation. Monoisotopic masses were obtained using a SNAP averaging algorithm
(C 4.9384, N 1.3577, O 1.4773, S 0.0417, H 7.7583) and a S/N threshold of 2 for MS
and 6 for MS2. Tandem mass spectral data searched against an in-house Limnoria
database (73,986 sequences; 9,177,896 residues)21 using a locally-running copy of
the Mascot program (Matrix Science Ltd., version 2.4), through the Bruker Pro-
teinScape interface (version 2.1). Search criteria specified: Enzyme, Trypsin; Fixed
modifications, Carbamidomethyl (C); Variable modifications, Oxidation (M);
Peptide tolerance, 100 ppm; MS/MS tolerance, 0.5 Da; Instrument, MALDI-TOF-
TOF. Peptide matches were filtered to require an expect score of 0.05 or lower.

Gene expression analysis. Three sets of five L. quadripunctata (for hemocyanin
Hc) or one set of 50 animals (for GHs) each were dissected to separate their
hindgut, hepatopancreas, and the rest of the body, which were placed immediately
into TRIzol® Reagent (Thermo Fisher Scientific) to extract total RNA according to
the manufacturer’s protocol. The RNA concentration was determined spectro-
photometrically (NanoDrop 2000, Thermo Scientific) and its integrity evaluated
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using the Bioanalyzer (Agilent). Total RNA (400 [GHs]–500 [Hc] ng) was treated
with RQ1 DNase (Promega) to remove genomic DNA, and subjected to reverse
transcription (RT) using oligo dT primers and SuperScriptII RT (Life Technolo-
gies) according to the manufacturer’s instructions. Quantitative polymerase chain
reaction (qPCR) of diluted cDNA and no-RT controls (equivalent to 10 ng total
RNA per reaction) was performed with Fast SYBR® Green Master Mix according to
the manufacturer’s protocol on a StepOnePlus™ Real-Time PCR System (Life
Technologies) as technical triplicates. Specific primers for L. quadripunctata genes
coding for hemocyanin (GenBank accessions: GU166295 [Hc1], GU166296 [Hc2],
GU166297 [Hc3], GU166298 [Hc4]), GH family 5, 7 and 9 (GenBank accessions:
GU066826 [GH5A], GU066827 [GH5C], FJ940756 [GH7A], FJ940757 [GH7B],
FJ940759 [GH9A], FJ940760 [GH9B]), ubiquitin (Ubi), and glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) were used: Hc1, TCTGCTATTGTTTCAC
GACTTAATCAT, TAGCGAAGACATCTGCTGCATT; Hc2, CACATTACCAG
GAAATCAAAGGATACT, ACGGCAGCGTCAGCTTGT; Hc3, GATCTAACCA
CATAACACGAAAATCAT, GAATAAGCGGACAAATCCAAA
TCT; Hc4, AACCACGTAACCCGAAAATCAT, TGAATAAGCAGACAAGTC
CAAATCC; GH5A, CGGTATGGTAACTTCTTGCGATAGTAG, GTCGCTT
TGCTGGGCACTA; GH5C, GCTTCAATCTTACCTTGATAACTGTTTG, CAT
GCTCCTAAAGCTGGATGGT; GH7A, CCAAATGCAGGAACTGGTGAT, GC
CATGCTATTAGCTTCCCAAATA; GH7B, TTGCTGGCAAAGCTAATTCTG
AT, GCAGCAGGCTCCCATTTGT; GH9A, TGCATCAGCTCCAGGTACTGA
T, GCGTATGAACCCGAATGGA; GH9B, CACCAAACATCCTACGTCAACA
GT, CCCCAGCCTAATTCATCTTGAA; Ubi, GGTTGATCTTTGCCGGAAAG,
TCTCAAAACGAGGTGAAGTGTTG; GAPDH1, TGTAATTTTCCTTCCATC
GACAAC, CTCCACACACGGTCGCTACA; GAPDH2, CTCTACCTCCGCGC
CAATC, CGCTGTAACGGCTACTCAGAAGA. Quality controls have been
employed according to the MIQE-guidelines67 and included verification of primer
specificity, testing for contamination of RNA with genomic DNA and of the PCR
mix and evaluation of consistency of cDNA synthesis, all as previously described22.
Gene expression levels are shown as previously described relative ubiquitin-
normalized efficiency-corrected values22.

SDS–PAGE and western blot analysis. For tissue-specific immunoblot detection
50 L. quadripunctata specimens were dissected to remove hepatopancreases and
hindguts from which proteins were extracted by grinding material in 50 mM Tris-
HCl pH 8, 300 mM NaCl, 0.1% Tween 20, 1 × Halt protease inhibitor cocktail
(Pierce) before pelleting any cell debris by centrifugation. The protein concentra-
tion was estimated using Bradford reagent (Pierce). After separation of 5 µg protein
(organ and solid content) alongside a molecular weight marker (PageRuler Plus
Prestained Protein Ladder, Thermo Fisher Scientific) on polyacrylamide gels using
standard denaturing discontinuous SDS–PAGE, proteins were either visualized by
Coomassie stain with InstantBlue (Expedeon) or transferred onto Protran85
nitrocellulose membranes (Whatman) by semidry blotting in Towbin buffer for
western analysis. Fractions from gel filtration of native Limnoria extracts were
separated on SDS–PAGE gels and blotted as described above. Primary polyclonal
antibodies for detection of Limnoria epitopes of hemocyanin (used at 1:1000
dilution) and GH9 (used at 1:500 dilution) were raised in rabbit and for GH5 (used
at 1:500 dilution) and GH7 (used at 1:5000 dilution) in sheep (see below) and
detected by stabilized goat anti-rabbit IgG (H+ L) secondary antibody, horseradish
peroxidase (HRP) (Invitrogen, 32460; used at 1:1250 dilution) or by secondary
rabbit anti-sheep IgG antibody, HRP conjugate (Sigma, AP147P; used at 1:10,000
dilution), respectively. SuperSignal West Pico Chemiluminescent Substrate (Pierce)
was added before exposure to ECL Hyperfilm (GE Healthcare) to visualize protein
accumulation. All uncropped gel and blot images are shown in Supplementary
Fig. 12.

Antibody production and purification. The sequences encoding LqGH5A
(GU066826), LqGH7A (FJ940756), and LqGH9A (FJ940759) lacking their signal
peptide were inserted into the NheI/EcoRI sites of the vector pET28A as a C-
terminal 6 × His-tagged fusion. The resulting constructs were transformed into
BL21 Escherichia coli strain and fresh colonies were picked from Lysogeny broth
plates containing chloramphenicol 34 mg L−1 and kanamycin 50 mg L−1. A 5 mL
culture of three colonies per construct was set up in the same medium and grown
overnight at 37 °C under agitation. Two mL of these pre-cultures were used to
inoculate 200 mL of 2YT medium and cultures were grown to early exponential
phase (OD600= 0.5–0.6), induced with 1 mM isopropyl β-D-1-thiogalactopyrano-
side and then grown overnight at 30 °C. Cells were harvested by spinning cultures
down at 3000 g for 5 min and re-suspended in 100 mM NaH2PO4, 10 mM Tris-Cl, 8
M urea following manufacturer instructions (Qiagen). Preparation of clarified cell
extracts and purifications of LqGH5A, 7 A and 9 A under denaturing conditions
were performed using a Nickel-NTA column (Qiagen). Preparation purity was
assessed by SDS–PAGE and sample concentration was determined by Bradford
(Pierce). About 1 mg of recombinant proteins LqGH5A and 7 A was used to raise
polyclonal antibodies in sheep (Scottish National Blood Transfusion Service,
Penicuik, UK) and ~ 500 µg of recombinant LqGH9A were used to raise polyclonal
antibodies in rabbit (Covalab S.A.S., France).

The sequence encoding LqHc1 (GU166295) lacking the signal peptide was
inserted into the AgeI/KpnI sites of the vector pHLsec by In-Fusion cloning
(Clontech) as a C-terminal His6-tagged fusion68. The resulting construct was

transiently transfected into an adherent human embryonic kidney cell culture
(HEK-293T) using purified plasmid DNA and lipofectamine 2000 (Life
Technologies). Prior to transfection, cells were grown at 37 °C, 5% CO2, 90% RH in
Dulbecco's modification of Eagle medium containing 10% fetal bovine serum (FBS)
and supplemented with L-glutamine and non-essential amino acids to achieve
90–95% confluency. For transfection, the medium was exchanged to contain 1.5%
FBS and cells were further incubated as described above. After 3 days cells were
harvested by pelleting at 700 g for 5 min at 4 °C and re-suspended in denaturing
lysis buffer (50 mM Tris-Cl pH 8, 150 mM NaCl, 8 M GuHCl) before the addition of
DTT to 1 mM and sonication. For His-purification, the lysate was incubated
sequentially with two aliquots of Ni-NTA agarose (Qiagen) and purified according
to The QIAexpressionist protocol using denaturing buffer B containing 20 mM

imidazole for washing and 500 mM imidazole for elution of recombinant proteins.
The purified LqHc1 was dialyzed against PBS and ~ 200 µg of protein was used to
raise polyclonal anti-hemocyanin antibodies in rabbits (Covalab S.A.S., France).

To enrich the sera for antigen-specific antibodies, affinity columns were made
using recombinant LqGH5A and LqGH9A purified as described above, LqGH7B
purified from Aspergillus oryzae culture supernatants as described in Methods
Expression and Purification22 or using recombinant His-tagged LqHc3
(GU166297) purified from a bacterial culture under denaturing conditions on Ni-
NTA resin using decreasing pH for wash and elution steps (The QIAexpressionist).
Recombinant protein preparations were dialyzed against coupling buffer (0.1 M

NaHCO3, 0.5 M NaCl, pH 8.3) and bound to CNBr-activated Sepharose™ 4 Fast
Flow resin (GE Healthcare Life Sciences) followed by affinity purification of an
aliquot of each crude antibody serum according to the resin manufacturer’s
instructions. Purified antibody fractions were characterized for their affinity to each
Lq antigen by dot and western blot using both recombinant Lq protein and L.
quadripunctata whole body extracts. Fractions showing the highest titer and no
unspecific binding were selected for western blot experiments.

Purification of native Limnoria hemocyanin. Fifty animals (L. spp.) were
homogenized in 0.05 M NaPO4 buffer pH 7, containing 1× Halt protease inhibitor
cocktail EDTA-free (Pierce), centrifuged 5 min at 17,000 g and filtered (0.45 µm).
The (concentrated) extract was analyzed by gel filtration chromatography using the
ÄKTApurifier UPC10 with UNICORN 5.31 workstation and a Superose 6 Increase
10/300 GL column (GE healthcare) pre-equilibrated with filter-sterilized seawater
or 0.05 M NaPO4 pH 7 at a flow rate of 0.2–0.4 mLmin−1, and fractions (0.5 mL)
were collected after 0.3–1 CV. Fractions of peak 1 and 2 containing hemocyanin
were pooled and concentrated before protein concentration was estimated using
Bradford reagent (Pierce) or before proteins were subjected to LC-MS/MS analysis.

Uranyl acetate negative stain. A few µL of native Limnoria hemocyanin extract
were left on a copper grid (with formvar/carbon support film) for 4 min then
negative stained with 1% uranyl acetate in water before being imaged with a FEI
Tecnai 12 TEM, operating at 120 kV, and using a Ceta camera.

UV-Vis spectroscopy. Native Limnoria hemocyanin (160 µg mL−1, 2.2 µM) or
Trametes versicolor laccase (184 µg mL−1, 3.3 µM, equivalent to 1U; Sigma) were
incubated with 1 mM pyrogallol in 100 µL of 0.1 M NaPO4 pH 6.8 at room tem-
perature for up to 45 min. Enzyme activity of hemocyanin was induced with
2.75 mM SDS and buffer controls only lacked the protein. Ultra violet-Visible
absorbance spectra of aliquots were scanned from 220 to 750 nm in a NanoDrop
8000 Microvolume UV-Vis spectrophotometer (Thermo Scientific) at regular
intervals.

To monitor the effect of chelators on oxygen binding to the copper center of
hemocyanin, 50 mM of either ethylene diamine tetra-acetic acid (EDTA), ethylene
glycol-bis(2-aminoethylether)-N,N,N′,N′ tetra-acetic acid (EGTA), or diethylene
triamine penta-acetic acid (DTPA) was mixed with hemocyanin extract in seawater
and scanned as above.

Solid-state 13C NMR spectroscopy of lignin. After incubation of 3% (w/v) alkali
lignin (Sigma #471003 low sulfonate content, 3.3% sulfur and 50.1% carbon) in
seawater supplemented with 0.18 mM FeSO4 and with or without 50 mM DTPA
with native Limnoria hemocyanin (∼ 14 µM) or seawater (control) in triplicates
each for 1 h at room temperature, reactions were freeze-dried before analysis by
ssNMR. Experiments were performed using a Bruker Avance 400 spectrometer,
equipped with a Bruker 4.0 mm double-resonance MAS probe, at 13C and 1H
frequencies of 100.5 and 400.0 MHz, respectively. The spinning frequency at 14
kHz was controlled by a pneumatic system that ensures rotation stability higher
than ~ 1 Hz. Typical π/2 pulse lengths of 4 and 3.5 µs were applied for 13C and 1H,
respectively. 1H decoupling field strength of γB1/2π= 100 kHz was used. 13C
Cross-Polarization (CP)-MAS NMR spectra was measured using Multi-CP exci-
tation69,70 with nine cross-polarization blocks of 1 ms and one last cross-
polarization of 0.8 ms, 90–100% increment in the RF amplitude, repolarization
period tz of 0.9 s, and recycle delay of 2 s. The same experimental conditions were
used in all experiments. Bruker TopSpin software version 3.5 was used for data
collection, and OriginLab OriginPro 9.0.0 SR2 for data analysis. Chemical shifts
were assigned based on literature data (Supplementary Note 1).
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Thermal shift assays (thermofluor). Thermal shift assays were conducted on
purified proteins with SYPRO™ Orange Protein Gel Stain (Life Technologies) using
an Mx3005P qPCR System (Agilent Technologies). The intensity of the fluores-
cence was measured against a temperature gradient of 25–95 °C and values plotted
to determine the melting temperature (Tm) by curve fitting using a five parameter
sigmoid equation with the Tm measured as the midpoint at http://paulsbond.co.uk/
jtsa71.

Digestibility assays. Willow wood and Scots pine sapwood was ground using a
cyclone mill (Retsch) with a 1 mm mesh and a ball mill with three cycles of 5 min
milling each and then 10 mg were aliquoted into 2 mL screw cap tubes. After
shaking incubation of wood powder (10% w/v) or phosphoric acid swollen cellu-
lose (PASC; 4% w/v) in seawater supplemented with or without 50 mM DTPA, or
50 mM sodium dithionite, with native Limnoria hemocyanin (∼14 µM), horse spleen
ferritin (Sigma; 1.9 µM) or seawater alone (control) for 10–20 min at room tem-
perature, the solids were pelleted and pretreatment solutions removed. For pre-
treatments of wood powder with 14 µM Trametes versicolor laccase (Sigma) or
Agaricus bisporus mushroom tyrosinase (Sigma) the reactions were incubated and
processed as above but in 0.05 M NaPO4 at pH 6. For hemocyanin re-use experi-
ments, the hemocyanin- or seawater-containing pretreatment solutions were
removed from replicates after pelleting the solids, then pooled and re-aliquoted
onto new willow wood samples in equal volumes for the new pretreatment reac-
tion; as some of the liquid had been taken up by the wood the total volume applied
in the re-use experiment was slightly less than in the previous one (86 µL instead of
100 µL). Mild thermochemical pretreatments consisted of incubation of wood
powder with 0.5 N NaOH for 45 min at 90 °C followed by extensive washing in
buffer to adjust the pH. For saccharification reactions, the pretreated wood pow-
ders and PASC were incubated with 10 µg (10% w/v) recombinant cellobiohy-
drolase I from Hypocrea jecorina (HjCBH I or Cel7A, Sigma) or L. quadripunctata
cellobiohydrolase Cel7B (LqGH7B, Novozymes22) in 0.05 M NaPO4 at pH 6–7, or
with buffer only as no GH controls, for 5 h (wood) or 2 h (PASC), respectively, at
37–40 °C with shaking. Carbohydrate composition of the hydrolysis reaction was
determined by HPAEC as described above after removal of solids by centrifugation,
precipitation with 80% ethanol, drying of the supernatant containing mono- and
oligosaccharides, resuspension in water and filtering through 0.2 µm polytetra-
fluoroethylene (PTFE) filters.

Cellulase binding to hemocyanin-pretreated biomass. Pretreatment and sach-
harification reactions were performed as described above for digestibility experi-
ments, using 10 mg willow wood powder, native Limnoria hemocyanin (∼ 14 µM)
or seawater for 10 min in pretreatment reactions at room temperature, followed by
5 h saccharfication with 10 µg (10% w/v) recombinant cellobiohydrolase I from
Hypocrea jecorina (HjCBH I or Cel7A, Sigma) in 100 µL 0.05 M NaPO4 pH 6 at
37 °C. Aliquots 20 µL in SDS-loading buffer of hydrolysate (16 µL aliquoted from
100 µL hydrolysate after removal from biomass plus 4 µL of 5× SDS-loading buffer)
or biomass (100 µL 1× SDS-loading buffer added to the biomass after pelleting and
removal of hydrolysate) compared with the pretreatment and saccharification
solutions prior use (16 µL plus 4 µL 5× SDS-loading buffer each) were loaded onto
4–20% Mini-PROTEAN ® TGX™ Precast Protein Gels (Bio-Rad) alongside a
molecular weight marker (PageRuler Plus Prestained Protein Ladder, Thermo
Fisher Scientific) after boiling at 100 °C for 5 min. Proteins were visualized by
Coomassie stain with InstantBlue (Expedeon).

NMR relaxometry of hemocyanin-treated wood. Ten 10 mg willow samples were
pretreated with either 100 µL seawater or hemocyanin (∼14 µM) each for 3 h at
room temperature and solutions removed after pelleting the biomass, which was
then dried, pooled and analyzed according to the following methodology.

To assess the pore structure of the materials, we used N,N-Dimethylacetamide
(DMAc, high-performance liquid chromatography grade) as a molecular probe.
Although water is often used to determine pore structure in relaxometry
experiments, it alters the pore distributions in biomass samples. As the interaction
of DMAc and the cell wall is rather weak, the use of this molecule does not
significantly change the pore structures41. The samples were dried in a vacuum
oven at 510 mm Hg and 80 °C during 24 h. Then, they were soaked with DMAc
that had been dried of water using molecular sieves (Sigma-Aldrich 3 Å, beads 4–8
mesh) and pumped at 570 mm Hg during 20 min to fill the sample pores, after
which excess DMAc was removed with a micropipette.

Carr-Purcell-Meiboom-Gill NMR experiments (CPMG decays) were performed
using a Bruker Minispec MQ-20 spectrometer operating with a magnetic field of
0.5 T (1H Larmor frequency of 20MHz). In total, 50,000 echoes were acquired with
echo times of 70 μs and recycle delays of 15 s. Data were acquired using the Bruker
minispec software v2.59 and measured in 32 repeated scans with signal-to-noise
ratios of 199 (control sample) and 367 (hemocyanin-treated sample). The CPMG
decay curves were processed in MathWorks MATLAB R2015a to obtain the T2

distribution using a non-negative least square procedure also known as a numerical
Inverse Laplace Transform, ILT72,73, with the ILT MATLAB code from
Schlumberger Doll Inc.74. The obtained T2 distributions were deconvoluted using
log-Gaussian functions to provide the contribution of each component in the pore
structure. To make the deconvolutions, the distributions were normalized to have

unit area, and the logarithm of the T2 axis of the distribution of each sample was
calculated and then fitted, using the Curve Fitting Toolbox of MATLAB, with three
Gaussian functions given by

f xð Þ ¼ ae� x�bð Þ2=2c2 ð1Þ

From the model, the relative areas are obtained from the relation

A ¼ ffiffiffiffiffi

2π
p

ac ð2Þ

and the error bars defined using error propagation from the standard deviations of
the fitted parameters a and c. The fluid enclosed in a pore interacts with the pore
surface, restraining the molecular mobility of the fluid. As the surface-to-volume
ratio S/V, defined as the inverse of the characteristic pore size, increases, the
stronger is the interaction. The restriction on mobility is reflected by a decrease on
the transverse relaxation time T2 and can be quantified, on the fast diffusion
regime, by the relation75,76

1=T2 ¼ ρ S=Vð Þ ¼ 2ρ=r ð3Þ

where rho is the surface relaxivity and S and V are the pore surface area and the
volume, respectively. The surface relaxivity constant depends on the particular
porous material77, with its surface properties such as magnetic susceptibility and
affinity to the enclosed fluid defining its ability to produce spin relaxation of the
DMAc protons. This parameter is usually unknown, turning the estimation of the
actual pore sizes, or interstitial scales in this case, into a daunting challenge. In a
realistic scenario, the distribution of pore sizes and differences in the fluid mobility
within the pores result in a multi-exponential decay of the CPMG signal, i.e., a
distribution of T2 times. For DMAc in cotton cellulose T2 relaxation times ranging
from 10–4 to 1 s have been reported, corresponding to pore sizes of few nanometers
to few micrometers41. Larger T2 values on the distribution profile correspond to
larger pores77.

Data availability
All transcriptomic raw sequence data were deposited in the NCBI BioProject
database (PRJNA453115) and Sequence Read Archive (SRA) (SRP142516). All
proteomic data sets, including raw data files, processed peak lists, and database
search results have been deposited to the ProteomeXchange Consortium via the
MassIVE partner repository with the dataset identifier PXD009486 and the Mas-
sIVE accession code MSV000082271. A reporting summary for this Article is
available as a Supplementary Information file. All other data are available from the
corresponding authors upon reasonable request.
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