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Abstract: The specific targeting of dendritic cells (DCs) using antigen-delivering antibodies has
been established to be a highly efficient protocol for the induction of tolerance and protection from
autoimmune processes in experimental autoimmune encephalomyelitis (EAE), a model of multiple
sclerosis (MS), as well as in some other animal disease models. As the specific mechanisms of
such induced tolerance are being investigated, the newly gained insights may also possibly help to
design effective treatments for patients. Here we review approaches applied for the amelioration
of autoimmunity in animal models based on antibody-mediated targeting of self-antigens to DCs.
Further, we discuss relevant mechanisms of immunological tolerance that underlie such approaches,
and we also offer some future perspectives for the application of similar methods in certain related
disease settings such as transplantation.
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1. Introduction

Over one hundred years ago, Paul Ehrlich coined the term “horror autotoxicus” to define an
immune attack against an organism’s healthy tissues [1]. Since then, our knowledge of the complex
mechanisms of the immune system as well as our understanding of the pathogenesis of specific
autoimmune diseases have grown tremendously. However, despite this progress, autoimmunity
continues to frustrate therapeutic efforts [2,3]. The mechanisms underlying the pathogenesis of
the various autoimmune processes are complex, and they may result in a plethora of different
morbidities, often displaying severe, debilitating symptoms. Such autoimmune diseases (including
multiple sclerosis (MS) and type 1 diabetes) have a severe impact on the well-being of the afflicted
individuals and also inevitably lead to broad socioeconomic costs [4,5]. The available treatments against
autoimmune diseases fall into two main categories: restoration of functions that were lost as a result of
specific disease processes (such as after a loss of nervous tissues or islet cells in MS or autoimmune
diabetes, respectively) and prevention of further tissue damage by blocking the underlying aberrant
functions of the immune system. Since the long-term success of any specific therapeutic approaches
ultimately depends on limiting the underlying autoimmune process, immunotherapies are at the
forefront of necessary treatments. However, currently available immunotherapy protocols are only
partially effective. Further, by lacking targeting specificity, these approaches are often burdened
by side effects. This necessitates the development of new approaches for immunomodulation that
specifically aim to alter the functions of offending lymphocytes [6,7]. By developing new approaches
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based on the targeting of specific antigens for presentation by dendritic cells (DCs) that are able to
elicit effective mechanisms of immunoregulation, one might envision treatments that selectively block
the autoimmune process without affecting beneficial immune responses.

2. Utilizing Induction of Tolerance Through Antigen Targeting to DCs for Protection Against
Autoimmunity

The common origins of most autoimmune responses depend on the aberrant activation of
self-reactive T cells remaining in the mature repertoire of peripheral lymphocytes [8]. Such presence
of self-reactive T cells is not necessarily a result of specific defects during the process of thymic
selection. In fact, almost all T cell receptors (TCRs) are cross-reactive to some degree and can
recognize multiple, sometimes even unrelated, peptides (known as “molecular mimics”) presented by
major histocompatibility complex (MHC) molecules, therefore expanding the useful T cell repertoire
against external and internal threats. However, these processes also inevitably increase the risk of
some peripheral T cells being reactive against self-antigens [9–14]. This self-reactivity is partially
attributed to the insufficient thymic deletion of T cells that are specific for tissue restricted antigens
(TRAs). Such TRAs can trigger autoimmune responses when they are presented by specialized antigen
presenting cells (APCs) in the peripheral immune system more efficiently than they are during their
initial presentation to developing thymocytes by medullary thymic epithelial cells (mTECs) [15].

The autoimmune activation of self-reactive T cells is usually avoided by complex mechanisms
of peripheral tolerance, including the crucial roles of thymically produced regulatory T cells (tTreg
cells) [16]. However, even in the presence of tTreg cells, specific self-reactive peripheral T cells can
still be primed by low-affinity self-antigens [13–15,17]. For example, in various relevant disease
models, the autoimmune process can be initiated through the priming of pre-existing self-reactive
T cells after the immunization of healthy animals with specific self-antigens in the context of an
introduced infectious agent or in the presence of adjuvants [14,18]. These results suggest that a
specific pro-inflammatory autoimmune activation can overwhelm the functions of tTreg cells. In some
individuals, genetic dispositions also further contribute to an autoimmune process by compromising
the specific development and functions of tTreg cells [13–15,19].

However, additional, extrathymically-induced mechanisms of antigen-specific tolerance help
to control the activation and functions of autoreactive T cells and to maintain immune homeostasis.
These mechanisms include crucial functions of peripherally induced Treg cells (pTreg cells) that may
be induced by specialized DCs, which function as APCs critical for the initiation and regulation of T
cell responses to foreign and self-antigens [20–22]. Some literature refers to such peripherally induced
Treg cells as induced Treg cells (iTreg cells), as these cells are induced to increase their expression of
the transcription factor forkhead box P3 (Foxp3). Currently, the term “iTreg cell” is usually used to
refer to Treg cells that are induced from naïve CD4+ T cells In Vitro and that may also be subsequently
transferred In Vivo to elicit desired responses [18,23–25]. In contrast, antigen-specific pTreg cells are
induced In Vivo, and the availability of peripheral antigens is the sine qua non to a generation of such
corresponding pTreg cells by DCs [18]. Generally, DCs efficiently collect and present to T cells diverse
antigens including those from apoptotic materials derived from normal tissues [26]. However, antigens
originating from organs that are insulated from the immune system under steady-state conditions,
defined by the absence of specific pro-inflammatory signals, are also less readily available to commence
the initial pTreg cell conversion, resulting in an overall weaker prevention of the subsequent specific
autoimmune responses [18]. Therefore, novel methods that were devised to increase the availability of
such specific self-antigens to pTreg cell-inducing DCs via their targeted delivery help to enhance the
relevant mechanisms of peripheral tolerance.

In the absence of specific acute pro-inflammatory stimuli (“steady state”), DCs generally promote
T cell tolerance that crucially relies on the induction of pTreg cells [18,27,28]. However, not all DCs
are equally capable of inducing pTreg cells, and some DCs may inevitably exacerbate the disease
state by priming autoimmune T cells [29]. The outcomes of antigen-specific interactions between DCs
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and T cells are governed by multiple factors including immunomodulatory molecules expressed by
each cell type [22,30]. Conventional DCs (cDCs) and plasmacytoid DCs (pDCs) are the two main
populations of DCs found in both humans and mice. cDCs and pDCs, which develop from bone
marrow progenitors, differentiate into various subsets in multiple tissues, and the total cDC population
may be further divided into the cDC1 and cDC2 subsets, which are characterized by some degree of
specialization [22,29,31,32]. The transcription factors interferon regulatory factor 8 (Irf8), inhibitor
of DNA-binding 2 (Id2), and basic leucine zipper transcription factor AFT-like 3 (Batf3) govern the
development of cDC1s, and DCs of this subset can be distinguished by the expression of the X-C
motif chemokine receptor 1 (XCR1). Importantly, some cDC1s also express B and T lymphocyte
associated (BTLA). In contrast, the transcription factor interferon regulatory factor 4 (Irf4) governs
the development of cDC2s; DCs of this subset are distinguished by the expression of CD172a (signal
regulatory protein alpha (SIRPα)) [22,29,32,33].

Although the developmental designation of DC subsets does not strictly overlap with distinct
immune functions, the specific subsets may be further characterized by a degree of functional
specialization. Whereas cDC2s can preferentially promote Th2, Th17, and follicular helper T cell
differentiation, cDC1s have crucial roles in the cross-priming of CD8+ T cells, the priming of Th1
cells, and, also, in the induction of CD4+CD25+Foxp3+ pTreg cells [21,29,30,34]. Therefore, a specific
delivery of antigens intended for stimulating pTreg cell conversion needs to be crucially targeted
towards DCs with the strongest capabilities to induce pTreg cells or to DCs that can expand other
Treg cell populations. Due to their inherent tolerogenic properties based on a constitutive expression
of key immunomodulatory molecules that govern tolerance (including BTLA, programmed death
ligand-1 (PD-L1), the T cell costimulatory ligand B7h, and CD80/CD86, as well as cytokines such as
transforming growth factor beta (TGF-β) and interleukin-10 (IL-10)), cDC1s are particularly good
inducers of pTreg cells [18,21,22,35]. Consequently, such BTLAhiXCR1+CD172a- cDC1s with specific
tolerogenic functions have also been referred to as natural tolerogenic DCs (ntDCs), and, in addition to
their high expression of BTLA, they also express DEC-205 [22].

Recent studies elucidated the specific mechanisms mediated by BTLA and its receptor, herpesvirus
entry mediator (HVEM), expressed in naïve T cells, that activate the ETS1 transcription factor, leading
to the increased expression of Cd5 in such T cells [33,35]. The roles of CD5 in governing tolerance
were initially considered in relation to its functions in the negative regulation of TCR signaling [36–39].
More recent studies, however, established that an increased expression of CD5 in CD4+ T cells
specifically facilitates pTreg cell conversion by modulating a resistance to effector-differentiating
cytokines [40]. Therefore, the specific upregulation of the expression and functions of CD5 in T cells
by BTLAhi ntDCs represents a key immunomodulatory mechanism operating complementarily to
other pathways dependent on PD-L1/programmed cell death protein 1 (PD-1), CD80/CD86/cytotoxic T
lymphocyte antigen 4 (CTLA-4), and B7h/inducible T cell costimulator (ICOS), which directly induce
Foxp3 expression in developing pTreg cells [18,30,35].

Given the preponderance of specific molecules present on DCs with tolerogenic functions, the use of
monoclonal antibodies has proven particularly successful among different methods of antigen delivery
to direct antigens to ntDCs with defined tolerogenic properties [7,21,41] (Figure 1). Two major types of
antigen-delivering antibodies have emerged: chimeric antibodies containing antigenic polypeptides as
fusion proteins within the constant regions of recombinantly-modified immunoglobulins; and chemical
conjugates between native antibodies and antigenic proteins [7] (Figure 2).
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Figure 1. The delivery of self-antigens to dendritic cells induces tolerance and ameliorates 
autoimmunity. Antibodies specific for cell surface molecules expressed by dendritic cells (DCs) are 
fused with or conjugated to self-antigens. Upon in vivo administration, these antibodies target the 
antigens to DCs. DCs then internalize, process, and present the delivered antigens to T cells. Natural 
tolerogenic DCs (ntDCs) are good inducers of peripheral regulatory T cells (pTreg cells) and are often 
selected for antigen targeting purposes. This results in the induction of pTreg cells and, ultimately, in 
immune tolerance to the specific self-antigens and amelioration of autoimmune disease symptom 
severity. Additionally, antigens presented by some tolerance-inducing DCs may also promote the 
expansion of pre-existing regulatory T cells (Treg cells) as well as the anergy or deletion of 
autoreactive T cells. 

 
Figure 2. Defined antigens are delivered to dendritic cells in vivo using recombinant chimeric and 
other types of antibodies. (a) Recombinant chimeric antibodies, which deliver defined peptide or 
protein antigens (shown in yellow in panels (a–c)) to specific dendritic cell (DC) cell surface molecules, 
are comprised of the variable (V) regions derived from monoclonal antibodies specific for cell surface 
molecules expressed on DCs and the species-specific heavy and light constant (C) regions derived 
from separate immunoglobulins. The peptide antigen of choice is genetically fused to the C regions. 
This recombinant chimeric antibody design enhances the targeting specificity in vivo by minimizing 
non-specific binding to Fc receptors, and it also helps to avoid stoichiometric differences in the 
amounts of antigenic materials present in such reagents. (b) Antibody–antigen conjugates are 
comprised of antigenic proteins chemically conjugated to native antibodies specific for cell surface 
molecules expressed on DCs. Such conjugates have been successfully used to deliver defined antigens 
to DCs, although they may lack some of the targeting specificity-enhancing modifications found in 
recombinant chimeric antibody designs. (c) Single-chain fragment variable (scFv) constructs provide 

Figure 1. The delivery of self-antigens to dendritic cells induces tolerance and ameliorates autoimmunity.
Antibodies specific for cell surface molecules expressed by dendritic cells (DCs) are fused with or
conjugated to self-antigens. Upon In Vivo administration, these antibodies target the antigens to DCs.
DCs then internalize, process, and present the delivered antigens to T cells. Natural tolerogenic DCs
(ntDCs) are good inducers of peripheral regulatory T cells (pTreg cells) and are often selected for antigen
targeting purposes. This results in the induction of pTreg cells and, ultimately, in immune tolerance to
the specific self-antigens and amelioration of autoimmune disease symptom severity. Additionally,
antigens presented by some tolerance-inducing DCs may also promote the expansion of pre-existing
regulatory T cells (Treg cells) as well as the anergy or deletion of autoreactive T cells.
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Figure 2. Defined antigens are delivered to dendritic cells In Vivo using recombinant chimeric and
other types of antibodies. (a) Recombinant chimeric antibodies, which deliver defined peptide or
protein antigens (shown in yellow in panels (a–c)) to specific dendritic cell (DC) cell surface molecules,
are comprised of the variable (V) regions derived from monoclonal antibodies specific for cell surface
molecules expressed on DCs and the species-specific heavy and light constant (C) regions derived
from separate immunoglobulins. The peptide antigen of choice is genetically fused to the C regions.
This recombinant chimeric antibody design enhances the targeting specificity In Vivo by minimizing
non-specific binding to Fc receptors, and it also helps to avoid stoichiometric differences in the amounts
of antigenic materials present in such reagents. (b) Antibody–antigen conjugates are comprised
of antigenic proteins chemically conjugated to native antibodies specific for cell surface molecules
expressed on DCs. Such conjugates have been successfully used to deliver defined antigens to DCs,
although they may lack some of the targeting specificity-enhancing modifications found in recombinant
chimeric antibody designs. (c) Single-chain fragment variable (scFv) constructs provide yet another
means of delivering antigen In Vivo. scFv constructs are comprised of a linker joining the corresponding
V regions genetically fused to the antigen for targeting.
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The recombinant chimeric antibodies applied the general design originally developed for the
anti-DEC-205 chimeric antibody [42]. Most importantly, the original constant regions are replaced
with engineered species-specific constant regions, which may include additional mutations introduced
to minimize their non-specific binding to Fc receptors. Overall, in addition to allowing for a better
specificity of targeting In Vivo, the use of such chimeric immunoglobulin fusion proteins also helps to
avoid unintentional stoichiometric differences in the amounts of antigenic molecules present in these
DC-targeting reagents [7,42].

Because of the strong pro-tolerogenic properties of DEC-205+BTLAhi ntDCs, it is not surprising
that antigen delivery methods based on targeting through DEC-205 have been successfully utilized
for the induction of tolerance [7,21,22]. The originally developed approach based on an antigenic
delivery through DEC-205 was subsequently extended to target other molecules expressed on DCs.
Particularly, in addition to DEC-205, Langerin (CD207), Trem-like 4 (Treml4), and DC NK lectin group
receptor-1/C-type lectin domain family 9A (DNGR-1/CLEC9A) have also been utilized for targeting
antigens to some cDC1s, whereas dendritic cell inhibitory receptor 2 (DCIR2) has been used to target
cDC2s [43–52]. As reviewed in [7], targeting antigens to the transmembrane protein Langerin, the cell
surface receptor Treml4, or the C-type lectin domain family member CLEC9A has been shown to elicit
antigen presentation to both CD4+ and CD8+ T cells, helping to alter disease severity in some models
of autoimmune disease. As mentioned below, although cDC2s are less potent inducers of pTreg cells
and tolerance, the targeting of antigens through DCIR2 present on these DCs has still been utilized for
various types of immunomodulation and immunotherapies, and such targeting to DCIR2 has been
shown to further increase the therapeutic potential of antigen targeting to DCs in a wide range of
immune-mediated diseases and conditions [7,49,53]. Further, delivering antigens through Siglec-H
and bone marrow stromal cell antigen 2 (BST2), both present on pDCs, further helped to extend the
range of therapeutically relevant applications [47,48].

In addition to proteins that are expressed on specific DC subsets, the CD11c integrin, which is
expressed by all murine cDCs, has also been targeted with antigens by various strategies In Vivo [54–56].
More recently, the recombinant chimeric anti-CD11c antibody was produced based on the design
containing murine immunoglobulin IgG1 constant regions, as in the case of the original chimeric
anti-DEC-205 antibody [33]. Since anti-CD11c delivers antigens to all DCs, irrespectively of subsets,
the In Vivo administration of this chimeric antibody has been applied in genetically modified mice that
lack specific subsets of DCs to further advance the understanding of the functions of individual cDC1
and cDC2 subsets in the immunoregulation of autoimmune responses [21,33].

The specific functions of DCs also depend on the localization of such DCs within the organism
as well as on the overall immunological context of DC functions. Consistent with the emerging
concept of “homeostatic maturation” [57–60], many DCs present in the peripheral lymphoid organs do
not necessarily remain as “immature” immunological bystanders even in the steady state. Instead,
some DCs can still activate T cells, but this outcome of T cell activation by ntDCs can result in the
induction of pTreg cells and tolerance (as discussed above) [21,22,27]. Hence, these inherent tolerogenic
functions provide a very strong rationale for the development of approaches seeking to enhance the
antigen-specific immunoregulatory mechanisms mediated by ntDCs that reside in the peripheral
immune system and that may remain unaffected by the developing autoimmune process that is
limited to a specific site or organ. The induced pTreg cells or expanded Treg cells can then not only
block the priming of effector T cells in the periphery but can also disseminate throughout multiple
specific anatomical sites, helping to ameliorate the localized autoimmune responses mediated by
antigen-specific effectors. In addition to relying on the inherent tolerogenic functions of ntDCs, it
may also be possible to modify the functions of DCs present in localized pro-inflammatory settings.
Multiple pathways that can potentially induce tolerogenic functions in DCs under pro-inflammatory
conditions have been described, as we recently reviewed [22]. However, at present, it remains
challenging to deliver antigens specifically to DCs residing in defined anatomical locations and with
induced tolerogenic functions under generally pro-inflammatory conditions, and further research is
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necessary to achieve this goal [7]. Moreover, as reviewed in [61], the administration of DC vaccine
formulations employing carriers with specific physical properties (including molecular size, pH, charge,
or the inclusion of particular chemokines, cytokines, or adjuvants) can elicit desired tolerogenic or
pro-immunogenic responses of DCs in peripheral lymphoid organs (including draining lymph nodes),
although further work is necessitated to determine which specific carrier properties work best with
specific delivery methods and are most appropriate for specific diseases and conditions.

3. Antigen Targeting to DCs in Models of MS

The initial studies that paved the way for using antigen-delivering chimeric antibodies to
ameliorate autoimmunity were performed in an animal model of MS [41]. The mechanisms underlying
the autoimmune process in MS crucially involve activation of autoreactive encephalitogenic T cells
that attack components of the myelin sheath that surround the neuronal axons of the nerves of the
central nervous system (CNS), leading to severe neurological symptoms [62,63]. Therefore, therapeutic
approaches focused on limiting the activation of such self-reactive T cells are expected to play an
important role in mitigating the specific autoimmune process in MS [18,62,63]. While the specific
pathways leading to the activation of encephalitogenic T cells remain unclear, it is expected that
neuronal antigens present in the periphery may facilitate the initial priming of T cells that subsequently
migrate into the CNS and cause damage upon their reactivation [62,63]. Many crucial studies
investigating possible new treatments of MS have been carried out by inducing an activation of such
self-reactive T cells in an animal model of autoimmune CNS disease, experimental autoimmune
encephalomyelitis (EAE), which, in many ways, mimics progressive and relapsing–remitting forms of
MS. Acutely progressing EAE is induced by immunization with neuronal antigens such as myelin
oligodendrocyte glycoprotein (MOG), whereas immunization with proteolipid protein (PLP) leads
to the initiation of relapsing–remitting EAE [18,64–68]. Overall, the characteristic inflammation
seen in EAE (including perivascular CD4+ T cell and mononuclear cell infiltrations and clinical
presentation with ascending paralysis) makes EAE a relevant model for MS and a powerful model
with which to study T cell-dependent autoimmunity [69,70]. Particularly, these experimental models
offer an opportunity to study the impact of specific immune regulation on various mechanisms that
cumulatively contribute to a neuroimmune disease process [18].

Very early experiments showed that EAE can be effectively prevented by the pre-administration
of neuronal antigens in the non-inflammatory context [71]. Other early work further established that
lymph node cells transferred from rats that were treated with myelin basic protein (MBP) administered in
the absence of pro-inflammatory adjuvants protected the recipient rats from subsequently induced EAE,
indicating an induction of a dominant tolerance presently attributed to the functions of Treg cells [18,72].
Subsequently, additional lines of investigation established that various forms of antigens derived from
mouse spinal cord homogenates for their subsequent presentation In Vivo in a non-inflammatory
context, as well as various purified myelin-derived peptides, were able to confer immune tolerance
that prevented subsequently induced EAE [73–76].

In contrast to such treatments that lacked specificity in terms of the types of APCs responsible
for presentation of antigens to T cells, approaches based on the targeting of antigens using antibodies
specific for defined types of DCs allowed for the presentation of antigens in a specific tolerogenic
context. In the initial experiments, the treatment with an anti-DEC-205 chimeric antibody fused with
the MOG35–55 peptide resulted in a tolerogenic activation of MOG-specific T cells and, ultimately,
in tolerance that prevented both the symptoms of subsequently induced EAE and the accumulation
of encephalitogenic T cells in the CNS [41]. The capacity for effective immunomodulation and
amelioration of the symptoms of EAE via a targeted delivery of specific antigens to DCs was further
extended in subsequent studies that included the delivery of MOG to pDCs; in such studies, MOG
targeting prevented subsequently induced EAE, and an expansion of Treg cells was suggested as
a possible mechanism [47]. Similarly, the delivery of MOG to Langerin+ migratory DCs proved
efficacious in blocking specific autoimmune responses [44]. Single-chain fragment variable (scFv)
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constructs specific for DEC-205 and fused to MOG were also used to induce specific tolerance [26,77,78].
In addition to the immunomodulation achieved in acute MOG-mediated EAE, anti-DEC-205-mediated
delivery of the specific PLP139–151 peptide also ameliorated clinical symptoms in the relapsing–remitting
model of EAE [79]. Further, the use of anti-DCIR2 fusion proteins to target the PLP139–151 antigen to
DCIR2+ cDC2s was efficacious in the amelioration of EAE symptom severity in the relapsing–remitting
model through complex mechanisms, possibly including the expansion of pre-existing Treg cell
populations [53].

Multiple previous studies established the crucial roles of Foxp3+ Treg cells in the protection and
recovery from MS and EAE and showed that the absence of Treg cells or their abnormal functions
exacerbated the severity of disease both in patients and in animal models of MS [80–93]. These results
extended the rationale for Treg cell-mediated therapeutic approaches that was initially based on the
early findings that the course of disease could be mitigated by Treg cells actively arising during
the recovery stage of EAE [94–97]. However, in the early stages of MS, many patients have the
same frequency of Treg cells in their peripheral blood [86,92]. Similarly, the normal presence of a
Treg cell population predominantly consisting of tTreg cells in healthy animals cannot prevent the
development of EAE upon specific immunization [18]. Therefore, an induction of specific pTreg cells is
indispensable for the suppression of disease, and the de novo induction of pTreg cells was established
as a fundamental mechanism of long-term tolerance and protection from EAE induced by antigens from
nervous tissues that may be processed and presented to peripheral T cells by DCs [18,28]. However, in
healthy organisms, such antigens originating from the CNS usually remain insulated from the immune
system. Correspondingly, the numbers of neuronal antigen-specific pTreg cells are small, but such
pTreg cells can be further induced by the increased presence of specific peripheral antigens, made
available via antibody-mediated targeting In Vivo [18,28].

This DC-induced, pTreg cell-dependent tolerance is specifically abrogated in the absence of
homeodomain only protein (Hopx), a transcription cofactor required for the normal survival of pTreg
cells during an acute antigenic rechallenge under pro-inflammatory conditions [18,28,98]. Therefore,
genetic deficiencies interfering with the normal conversion or functions of pTreg cells affect the course of
the autoimmune process to the extent determined by the initial exposure to specific antigens promoting
the formation of corresponding pTreg cells [18,28,99].

4. Antigen Targeting to DCs in Models of Other Autoimmune Diseases

The targeting of antigens to DCs has also been effective in inducing tolerance to prevent
autoimmunity in models of other autoimmune diseases, such as type 1 diabetes. Type 1 diabetes, also
referred to as “autoimmune diabetes”, is a chronic autoimmune disease characterized by spontaneous,
aberrant T and B cell immune responses against pancreatic beta cells, whose physiological function
is to secrete insulin to regulate glucose metabolism [100,101]. It has been suggested that, over time,
such immune responses destroy the beta cells to the degree that they can no longer regenerate, thereby
nearly eradicating homeostatic glucose metabolism. Type 1 diabetes remains a major threat to patients,
as a specific cure is currently elusive and present treatment requires continuous glucose monitoring
and strict insulin therapy [101].

Though the non-obese diabetic (NOD) mouse has been the primary animal model of spontaneous
type 1 diabetes, important insights were also gained from studies using double transgenic mice, in
which TCR transgenic CD4+ T cells are specific for hemagglutinin (HA), which is expressed as a
neo-self antigen by pancreatic beta cells [102–106]. These studies employing the targeted delivery of
HA chemically conjugated to an anti-DEC-205 antibody demonstrated that tolerance induced by such
model islet-specific antigens could prevent disease development [105,107].

Correspondingly, other studies utilizing the highly relevant NOD model of spontaneous
autoimmune diabetes demonstrated that the chimeric antibody-mediated delivery of beta cell or
insulin antigens to various DC subsets resulted in the amelioration of ongoing autoimmune processes
and disease severity through the deletion of antigen-specific CD4+ and CD8+ T cells, as well as
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through an additional conversion of some autoreactive T cells into Foxp3+ pTreg cells [108–111].
These studies also underscored that the chimeric antibody-mediated delivery of antigen was markedly
more therapeutic than the administration of free synthetic peptide, which was actually found to
accelerate disease progression [110]. Overall, similar to its efficacy in MS models, the targeting of
antigens using antibodies is being considered as a possible, important therapeutic tool in the treatment
of autoimmune diabetes [111].

Though MS and type 1 diabetes currently represent the autoimmune diseases that have primarily
been implicated in studies involving antibody-mediated antigen targeting to tolerogenic DCs, this
targeting method has also been applied to other diseases. For instance, the targeted delivery of
antigens to DEC-205+ DCs has ameliorated disease severity in models of proteoglycan-induced
arthritis, inflammatory bowel disease (IBD), and spontaneous experimental autoimmune uveoretinitis
(EAU), a murine T cell-mediated model of ocular inflammation [112–115]. In such studies, decreased
disease severity was also associated with localized increases in the numbers of tolerance-promoting
CD4+CD25+Foxp3+ Treg cells. Interestingly, it was also found that, when antigen was targeted
to DCIR2+ DCs, EAU development was augmented, characterized by localized reductions in Treg
cells [115]. It is also interesting to speculate that the potential targeting of antigens to the small yet
varied populations of DCs found in the retina (as reviewed in [116]) may one day provide treatments
for some other ocular diseases sharing immune-related pathogenesis.

Although not a main focus of this review, inducing immune tolerance towards transplanted
tissues remains a crucial scientific and therapeutic concern. In patients with end-stage organ failure, the
transplantation of functional organs from living or deceased donors has been the treatment of choice for
nearly seventy years; however, the ongoing threat of immune-mediated rejection of the grafted tissue
remains dire, despite the lifelong administration of immunosuppressive drugs to tissue recipients [117].
Tolerance to the grafted tissue, often referred to as “transplantation tolerance”, occurs when a donor’s
transplanted tissue is functioning properly in the recipient and the recipient’s fully functional immune
system does not mount a pathogenic, destructive response to that tissue (particularly in the absence
of immunosuppressive drugs) [118,119]. Various obstacles resisting broad-spectrum transplantation
tolerance exist, including the lack of robust assays to measure tolerance, the translatability of findings
from animal studies into treatments for human patients, and, arguably most importantly, the need to
modulate the recipient’s T cell responses by amplifying tolerance to donor tissue alloantigens [118].

Notably, transplantation tolerance has been enhanced via the antibody-mediated delivery of
antigens to DCs, as reviewed in [120,121]. For example, the administration of intact MHC molecules
conjugated to anti-DCIR2 antibodies could promote the DC-mediated amelioration of alloresponses
toward alloantigens [122,123]. Moreover, as the targeting of collagen antigen to DEC-205+ DCs has
proven successful in the prevention of skin graft rejection, ongoing studies and clinical trials seek to
understand the efficacy of tolerogenic DC therapy in kidney and liver transplant recipients by using
various methods of DC modulation [124–127].

5. Conclusions

In conclusion, the induction and modulation of tolerance by targeting DCs with antigen-delivering
antibodies have proven successful in the amelioration of disease processes in a range of animal models
including MS and diabetes. It remains possible that the targeting of disease-specific antigens to DCs
may also be used to alleviate symptom severity in other diseases and their models. Therefore, as
research progresses, additional antigenic targets such as the ubiquitin–proteasome system and ubiquitin
ligase proteins may be considered for use in treatments of specific autoimmune disease pathologies
and in subsequent therapies involving antibody-mediated antigen targeting [128]. Most importantly,
such therapies may eventually become available to patients afflicted with specific autoimmune
diseases. As mentioned previously, many important similarities exist between human and mouse
DCs, particularly with regards to functional specialization of DC subsets and cell surface molecule
expression (including the expression of molecules that are commonly used for targeting). Therefore,
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such commonalities provide promise for future clinical translation and therapeutic application of the
methods of antigen targeting to DCs, although additional basic and clinical research is necessary to
clarify the specific functions of anti-disease tolerance promoted by such DCs [22,129,130].
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