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Abstract

Engineered model substrates are powerful tools for examining interactions between stem cells and their microenvironment.
Using this approach, we have previously shown that restricted cell adhesion promotes terminal differentiation of human
epidermal stem cells via activation of serum response factor (SRF) and transcription of AP-1 genes. Here we investigate the
roles of p38 MAPK and histone acetylation. Inhibition of p38 activity impaired SRF transcriptional activity and shape-induced
terminal differentiation of human keratinocytes. In addition, inhibiting p38 reduced histone H3 acetylation at the promoters
of SRF target genes, FOS and JUNB. Although histone acetylation correlated with SRF transcriptional activity and target gene
expression, treatment with the histone de-acetylase inhibitor, trichostatin A (TSA) blocked terminal differentiation on micro-
patterned substrates and in suspension. TSA treatment simultaneously maintained expression of LRIG1, TP63, and ITGB1.
Therefore, global histone de-acetylation represses stem cell maintenance genes independent of SRF. Our studies establish a
novel role for extrinsic physical cues in the regulation of chromatin remodeling, transcription, and differentiation of human
epidermal stem cells.
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Introduction

Cell-extracellular matrix (ECM) interactions are key regulators

of epidermal stem cell fate. Epidermal stem cells express high

levels of b1 [1,2] and a6 [3] integrins, and integrin-mediated

adhesion to the basement membrane maintains keratinocytes in an

undifferentiated state [4]. In vitro, loss of adhesion to the ECM

rapidly induces epidermal terminal differentiation [5]. We recently

developed novel micro-patterned substrates on which ECM

proteins are deposited in defined shapes and areas [6,7]. Using

this system to precisely control the level of adhesion and spreading

of single cells, we demonstrated that limited cell adhesion

promotes cortical actin polymerization and terminal differentia-

tion in human epidermal stem cells. Downstream of actin

polymerization, differentiation is regulated by serum response

factor (SRF) and AP-1 transcription factors. The SRF signaling

pathway therefore links extrinsic physical cues to a transcriptional

mechanism for controlling cell fate within the epidermis [6,8,9].

SRF is a transcription factor expressed in many tissues, and its

activity is modulated by interactions with various co-factors,

including myocardin-related transcription factor-A (MRTF-A; also

known as MAL, MKL1) [10]. Monomeric (G-) actin binds

MRTF-A and inhibits nuclear accumulation and activation of

SRF. F-actin polymerization releases MRTF-A to enter the

nucleus and co-activate transcription with SRF [10,11]. SRF

targets include several adhesion-related genes (ACTB, VCL) and

immediate early genes (FOS, JUNB, EGR1) [11,12]. In addition to

actin polymerization, SRF can be activated by the mitogen

activated protein kinase (MAPK), extracellular signal-related

kinase (ERK) [13]. This pathway stimulates a distinct set of co-

factors, which for some genes antagonize MRTF-A interactions

with SRF [14,15]. Thus, specific SRF target genes exhibit

differential sensitivity to cytoskeletal organization and MRTF-A

activation.

Several recent reports demonstrate that epigenetic changes in

chromatin remodeling can have a profound effect on epidermal

development and homeostasis. Polycomb repressive complexes

(PRCs) silence both senescence and terminal differentiation genes

by tri-methylating lysine 27 of histone H3 (triMeK27-H3) [16].

This specific mark aids chromatin packing and limits transcription

[17]. In contrast, histone tail acetylation promotes an open

chromatin structure and allows transcription factors to more easily

access the DNA [17]. Histone deacetylases (HDAC) 1 and 2 are

required for normal terminal differentiation and repression of

p16/Ink4a in the developing mouse epidermis [18]. In adult

epidermis, histone acetylation also promotes exit from the hair

follicle stem cell compartment, and epidermal stem cells display

hypo-acetylated H3 and H4 [18,19]. While it is clear that

chromatin remodeling plays an important role in epidermal

homeostasis, little is known about the upstream or extrinsic signals
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that control the activation and specificity of chromatin remodeling

complexes.

In the present study, we sought to determine whether the

physical regulation of human keratinocyte differentiation depends

on intrinsic signaling pathways in addition to actin polymerization.

Since SRF activity is sensitive to both cytoskeletal organization

and MAPK signaling, we examined how various MAP kinases

influence terminal differentiation using micro-patterned substrates

and whether chromatin modification is involved.

Results

p38 signaling is required for shape-induced
differentiation

To investigate the role of MAP kinase signaling in shape-

induced terminal differentiation, primary human keratinocytes

were seeded onto 20 mm or 50 mm diameter collagen-coated

circular islands. Cells were cultured on the substrates for 24 h in

the presence or absence of p38, JNK, and ERK inhibitors.

Consistent with our previous findings [6], cells on 20 mm islands

were unable to spread and approximately 50% initiated expression

of the terminal differentiation marker, involucrin, whereas fewer

than 10% of cells on 50 mm islands expressed involucrin (Fig. 1A,

B).

Treatment with both p38 inhibitors, PD169316 and SB202190,

significantly reduced the number of involucrin positive cells, but

inhibiting ERK activity with PD98059 did not affect involucrin

expression (Fig. 1A, B). Similarly, we observed no effect of the

MEK inhibitor, U0126, on shape-induced differentiation [6]. The

decrease in the absolute number of involucrin-positive cells in the

presence of the JNK inhibitor, SP600125, was not statistically

significant (Fig. 1A–B); however, when normalized to involucrin

expression in carrier-treated cells there was a small but significant

reduction (Fig. 1C). Inhibition of p38 MAPK not only inhibited

Figure 1. Effect of MAPK inhibitors on shape-induced terminal differentiation. (A) Representative images of keratinocytes on micro-
patterned substrates comprising 20 mm diameter collagen islands. Cells were cultured for 24 h in medium containing carrier (0.1% DMSO), 10 mM
PD169316, 2 mM SB202190, 10 mM SP600125, or 10 mM PD98059. Immunofluorescence staining for involucrin (green) shows terminally differentiating
cells, and nuclei are labeled with DAPI (blue). Scale bar = 50 mm. Quantification of (B-C) involucrin, (D) transglutaminase I, and (E) Ki67 positive cells
after 24 h on 20 mm or 50 mm substrates. In (C), the proportion of involucrin positive cells was normalized to carrier-treated cells on 20 mm islands.
Data are means 6 SEM of 3 experiments. *P,0.05 compared to carrier.
doi:10.1371/journal.pone.0027259.g001
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Figure 2. Effect of p38 inhibition on SRF signaling. (A) SRF transcriptional activity in human keratinocytes expressing the SRF luciferase
reporter and TK renilla control. Cells were treated overnight with 2 mM SB202190 or carrier, then 1 mM cytochalasin D or carrier for 7 h. Data are
means 6 SEM of 4 replicates from one experiment (representative of 3 independent experiments). *P,0.05 compared to carrier. (B) ChIP for SRF
following 24 h treatment with 2 mM SB202190. SRE regulatory elements in the FOS and JUNB genes were detected by real-time RT-PCR, and the
centromeric region of chromosome 11 (SATCEN11) was used as a negative control. Enrichment of the anti-SRF IP is compared to anti-FLAG control,
then normalized to FOS carrier condition. Data are means 6 SEM of 3 experiments. *P,0.05 compared to carrier. (C) Expression of endogenous SRF
target genes measured by real-time RT-PCR. Cells were serum-starved overnight with or without 2 mM SB202190, then stimulated with 10% FBS-
containing medium for 24 h 62 mM SB202190. Data are means 6 SEM of 3 experiments. (D) Expression of endogenous FOS and JUNB on micro-
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involucrin expression, but also inhibited shape-induced expression

of transglutaminase I (Fig. 1D). We previously showed that cell

shape-induced differentiation is independent of inhibition of

proliferation [6,20]; consistent with those results, p38 inhibition

did not affect the proportion of Ki67 positive cells (Fig. 1E). We

conclude that p38 activity is required for shape-induced

differentiation in human keratinocytes.

p38 mediates SRF transcriptional activity
Since SRF promotes keratinocyte terminal differentiation in

response to restricted adhesion, we investigated whether p38

inhibition influenced SRF signaling. SB202190 treatment of

keratinocytes on non-patterned surfaces significantly inhibited

SRF reporter activity in dual luciferase assays (Fig. 2A) and

reduced the amount of SRF bound to the promoters of the SRF

target genes, FOS and JUNB (Fig. 2B). To understand how p38

regulates the expression of endogenous SRF target genes,

keratinocytes were serum starved overnight in the presence or

absence of SB202190, then stimulated with 10% FBS-containing

medium for 24 h. Under control conditions, each of the SRF

target genes, FOS, JUNB, EGR1, and CTGF, peaked at 1 h

following stimulation (Fig. 2C). Despite reducing SRF binding to

the FOS promoter, treatment with SB202190 had no effect on FOS

expression (Fig. 2C). SB202190 delayed the activation of JUNB

and CTGF (Fig. 2C). While the kinetics of EGR1 activation were

unaffected by p38 inhibition, the peak level increased significantly

(Fig. 2C).

We also examined expression of AP-1 and stem cell regulatory

genes during shape induced differentiation on the micro-patterned

substrates. When keratinocytes were cultured on 20 mm islands,

SB202190 treatment had little effect on FOS expression; however,

p38 inhibition reduced JUNB activation by approximately 50% at

4 and 24 hours after seeding (Fig. 2D). The stem cell markers

LRIG1 [21], DLL1 [22], and TP63 [23] were all down regulated

24 hours after seeding onto 20 mm islands, and inhibition of p38

had little effect on expression of these genes (Fig. 3A–C). Given

that ITGB1 is a direct SRF target [24], it is interesting to note that

ITGB1 levels were maintained over 24 hours, with or without

patterned substrates. Cells were seeded onto 20 mm islands and allowed to adhere for 1 h before rinsing and treating with carrier or 2 mM SB202190
for an addition 23 h.
doi:10.1371/journal.pone.0027259.g002

Figure 3. Effect of p38 inhibition on epidermal stem cell gene expression. Real-time RT-PCR detection of (A) LRIG1, (B) TP63, (C) DLL1, and
(D) ITGB1 mRNA levels for cells on micro-patterned substrates. Cells were seeded onto 20 mm islands and allowed to adhere for 1 h before rinsing and
treating with carrier or 2 mM SB202190. Expression levels were normalized to the 1 h time point and represent the means 6 SEM of 3 experiments.
doi:10.1371/journal.pone.0027259.g003
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SB202190 (Fig. 3D). Taken together, these results indicate that

during shape-induced differentiation, p38 specifically regulates

JUNB, but not the stem cell markers LRIG1, DLL1, and TP63.

The SRF target genes that were affected by SB202190, JUNB

and CTGF, are both regulated by the actin cytoskeleton and

MRTF-A [25]. We therefore investigated whether p38 signaling

directly affected cytoskeletal organization and MRTF-A localiza-

tion. On non-patterned surfaces, inhibition of p38 activity with

SB202190 did not alter the formation of paxillin containing focal

adhesions or the assembly of F-actin fibers (Fig. 4A). Furthermore,

MRTF-A nuclear translocation in response to cytochalsin D

treatment [6] was not affected by p38 inhibition (Fig. 4B). These

results suggest that p38 influences transcription via altered

interactions between SRF and MRTF-A inside the nucleus.

Histone acetylation influences SRF transcriptional activity
and is regulated by p38

Global changes in histone acetylation influence epidermal stem

cell self-renewal and terminal differentiation [18], and p38 has

recently been linked to SRF signaling and histone acetylation [26].

We therefore examined the effect of histone acetylation on SRF

transcriptional activity in human keratinocytes. Treatment for

24 h with the histone de-acetylase inhibitor, trichostatin A (TSA)

significantly enhanced SRF transcriptional activity in luciferase

assays (Fig. 5A). Similarly, we observed a 1.5–2 fold increase in

FOS, EGR1, and JUNB expression following TSA exposure

(Fig. 5B). Cytoskeletal disruption with cytochalasin D or p38

inhibition with SB202190 had little effect on global histone

acetylation (Fig. 5C). However, SB202190 treatment specifically

reduced histone acetylation at the FOS and JUNB promoters

(Fig. 5D). Based on these results, we conclude that histone

acetylation promotes SRF transcriptional activity and is mediated

by p38 signaling.

Global histone de-acetylation is required for shape-
induced differentiation

To directly determine the effects of restricted adhesion on

histone acetylation we next examined global H3 and H4

acetylation by immunofluorescence labeling of cells on micro-

patterned substrates. We observed a significant reduction in the

number of keratinocytes with hyper-acetylated H3 and H4 on the

20 mm islands compared to the 50 mm islands (Fig. 6A, B). In

addition, TSA treatment completely blocked shape-induced

involucrin expression on 20 mm islands (Fig. 6C). We conclude

that restricted adhesion leads to global histone de-acetylation and

this chromatin modification is required for terminal differentia-

tion.

The inhibitory effects of TSA on involucrin expression were

surprising given that it also stimulated FOS and JUNB gene

expression, which are required for terminal differentiation. We

hypothesized that up-stream regulatory genes were also activated

by histone acetylation to suppress differentiation. We therefore

examined the effect of TSA on LRIG1, TP63, and ITGB1. When

keratinocytes were disaggregated and placed in suspension,

mRNA levels of the differentiation markers involucrin (IVL) and

transglutaminase I (TGM1) were significantly upregulated after

24 h (Fig. 7A, B). This response was completely blocked by TSA,

consistent with the effects of TSA on cells on micro-patterned

substrates. During suspension-induced differentiation LRIG1,

TP63, and ITGB1 mRNAs were down-regulated in untreated

cells; however, TSA treatment maintained expression of these

genes at nearly 0 h levels (Fig. 7C–E). These findings suggest that

histone deacetylation in human keratinocytes is required to repress

stem cell genes during terminal differentiation.

Discussion

Our study demonstrates that keratinocyte terminal differentia-

tion requires a coordinated program of histone acetylation and de-

acetylation (Fig. 7F). Histone acetylation enhances SRF transcrip-

tional activity and expression of AP-1 factors, which are required

for differentiation, and this response is mediated by p38 MAPK.

At the same time, we observe a global reduction in histone

acetylation upon shape-induced differentiation. Inhibiting HDACs

completely blocked involucrin expression while maintaining

expression of known markers of epidermal stem cells. Further-

more, p38 inhibition did not affect LRGI1, DLL1, or TP63

expression and reduced SRF transcriptional activity even in the

presence of TSA. Histone acetylation therefore appears to play a

dual role in gene silencing and activation during terminal

differentiation and is regulated by at least two independent

pathways.

Cellular stresses, such as ultra-violet light [27] or loss of

adhesion [28], can stimulate p38 phosphorylation in human

keratinocytes. Consistent with our findings, several reports

describe a role for p38 in keratinocyte terminal differentiation

[29,30]. While the SB202190 compound only targets the a and b

Figure 4. Effect of p38 inhibition on cytoskeletal organization
and MRTF-A localization. (A) Representative images of paxillin
(green) and F-actin (red) localization in keratinocytes treated with
carrier or 2 mM SB202190 for 24 h. Scale bar = 20 mm (B) Representative
image of MRTF-A localization in keratinocytes transfected with FLAG-
MRTF-A construct, treated overnight with or without SB202190 and
then stimulated with 1 mM cytochalasin D for 1 h. MRTF-A was detected
by immunofluorescence staining for the FLAG tag. N = 20 cells
examined per condition. Scale bar = 50 mm.
doi:10.1371/journal.pone.0027259.g004
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isoforms, some reports suggest that the d isoform is primarily

responsible for regulating involucrin expression [9]. It will be

interesting to explore the specific role of each isoform in SRF

signaling and histone acetylation in future studies.

The SRF target genes we examined displayed differential

sensitivity to p38 inhibition during serum-stimulation and

restricted adhesion. While serum stimulation of JUNB and CTGF

was delayed by SB202190, FOS was unaffected and EGR1 actually

increased. Similarly, JUNB but not FOS was inhibited by

SB202190 on the micro-patterned substrates. It is interesting to

note that p38 inhibition had a greater effect on JUNB expression

on the patterned substrates compared to serum stimulation. It has

also been reported that p38 mediates FOS expression in response

to UVB exposure, but not in response to serum stimulation [31].

These context dependent differences in gene regulation highlight

how specific stimuli can activate AP-1 expression by different

pathways and the complexity of their regulatory mechanisms.

In a recent study, p38 stimulated expression of the SRF target

gene CCN1 via the histone acetyl transferase activity of CREB

binding protein (CBP) [26]. Genome wide analyses have also

mapped CBP bindings sites to SRF and AP-1 genes [32]. Thus,

CBP may connect p38 activity with histone acetylation of SRF

target genes. Interestingly, the CBP homolog p300 is required for

keratinocyte terminal differentiation and influences p21 expression

by histone acetylation; however, this response is not affected by

CBP knockdown [32]. While it is clear from our studies and others

that CBP and p300 play important roles in histone acetylation and

keratinocyte differentiation, further work is needed to elucidate

their specific functions and regulatory mechanisms.

In the present study we employed micro-patterned substrates to

manipulate keratinocyte shape and adhesion. While this system

has the advantage of precisely controlling single cell behavior, it is

by nature highly synthetic and in some cases not representative of

the in vivo situation. For example, we observe a direct transition

from stem cells to terminal differentiated keratinocytes while

maintaining adhesion to a basal ECM. In contrast, cells in vivo

lose contact to the basement membrane before turning on late

terminal differentiation markers, such as involucrin. While it is

important to keep these differences in mind when interpreting the

results of our studies, this model system has allowed us to identified

SRF as a key regulator of terminal differentiation [6]. This result

has been corroborated by two different mouse models [8,33] and

demonstrates that our approach can provide new and physiolog-

ically relevant insights into keratinocyte terminal differentiation.

Histone acetylation regulates the differentiation and self-renewal

of multiple types of stem cells. In embryonic stem cells, the

Figure 5. Role of histone acetylation in SRF signaling. (A) SRF transcriptional activity in human keratinocytes expressing the SRF luciferase
reporter and TK renilla control. Cells were treated overnight with or without 2 mM SB202190 or 200 nM TSA, then stimulated for 7 h with 10% FBS.
Data are means 6 SEM of 4 replicates from one experiment (representative of 3 independent experiments). *P,0.05 for effect of SB202190, +P,0.05
for effect of TSA. (B) Expression of endogenous SRF target genes measured by real-time RT-PCR. Cells were serum-starved overnight with or without
200 nM TSA, then stimulated with 10% FBS-containing medium for 1 h. Data are means 6 SEM of 3 experiments. *P,0.05 compared to carrier.
(C) Western blot of total and acetylated histone H3 in cells after 24 h treatment with carrier, 1 mM cytochalasin D, 2 mM SB202190, or 200 nM TSA.
(D) ChIP of acetylated H3 in cells following 24 h treatment with 2 mM SB202190. DNA sequence flanking the SRE regulatory elements in the FOS and
JUNB genes were detected by real-time RT-PCR, and the centromeric region of chromosome 11 (SATCEN11) was used as a negative control.
Enrichment from the anti-AcH3 IP is reported relative to anti-FLAG control.
doi:10.1371/journal.pone.0027259.g005
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nucleosome remodeling and de-acetylation (NuRD) complex, is

required for maintaining pluripotency [34], and loss of HDAC1

causes spontaneous differentiation along cardiac and neuronal

lineages [35]. In contrast, deletion of HDAC 1 and 2 in mice

inhibits the differentiation of neural pre-cursers into differentiated

neural lineages [36]. These findings indicate that the role of histone

acetylation in differentiation depends on the specific cell type and

stage of development. Interestingly, Myc-stimulated differentiation

in the mouse epidermis is associated with histone acetylation [19],

yet deletion of HDAC1 and 2 in vivo [18] or TSA treatment in our

in vitro model blocks terminal differentiation. Together, these

findings further suggest that histone acetylation has distinct effects

on cell behavior at different stages of epidermal differentiation.

Although the functions of several chromatin remodeling

complexes have been described in the skin [16,18], we still know

very little about the upstream signals governing their activity. Cell

rounding has previously been shown to promote global histone de-

acetylation in mammary epithelial cells [37] and tensile stretching

can stimulate CBP acetyl-transferase activity in fibroblasts [26].

Our work is the first to implicate extrinsic physical cues in

regulating chromatin modifications that are essential for stem cell

differentiation. The mechano-transduction mechanisms leading to

chromatin remodeling are likely to be important regulators of

transcription during other physical processes, including wound

healing, neuronal out-growth, and tumor invasion.

Materials and Methods

Generation of micro-patterned, polymer brush substrates
Patterned poly-oligo(ethylene glycol methacrylate) (POEGMA)

brushes were generated as previously described [6,7,38]. Briefly,

master silicon molds were created by photolithography and used to

Figure 6. Role of global histone acetylation in shape-induced differentiation. (A) Representative immuno-fluorescence images of
acetylated H3 (Ac-H3) and H4 (Ac-H4) in cells after 24 h on micro-patterned substrates containing 20 mm or 50 mm diameter islands. (B)
Quantification of Ac-H3 and Ac-H4 on patterned substrates. Data are means 6 SEM of 3 experiments. *P,0.05 compared to 50 mm islands. (C)
Quantification of involucrin positive cells 24 h after plating on patterned substrates and treatment with carrier or 200 nM TSA. Data are means 6 SEM
of 3 experiments. *P,0.05 compared to carrier.
doi:10.1371/journal.pone.0027259.g006
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cast poly-dimethylsiloxane (PDMS) stamps. The micro-patterned

stamps were inked with the thiol initiator, v-mercaptoundecyl

bromoisobutyrate, and brought into conformal contact with gold-

coated coverslips to deposit the initiator as a self-assembled

monolayer. Atom transfer radical polymerisation (ATRP) of oligo

ethylene glycol methacrylate (MW 300) was carried out in a

water/ethanol (4:1) solution of OEGMA (1.6 M), Cu(II)Br2

(3.3 mM), bipyridine (82 mM), and Cu(I)Cl (33 mM). The

reaction was performed at room temperature for 15 minutes,

resulting in an estimated 20 nm thick brush. The patterned

substrates were rinsed with water and ethanol, dried, and stored

under N2. Immediately before cell seeding, patterned substrates

were coated with 20 mg/ml of rat type I collagen (BD Biosciences)

in phosphate-buffered saline (PBS) for 1 h at 37uC. Substrates

were rinsed three times with 1 mM HCl and twice with PBS.

Culture of primary human keratinocytes
Primary human keratinocytes were isolated from neonatal

foreskin. All the cells used in this study were obtained prior to the

Human Tissue Act 2006, and the patients were kept anonymous.

Keratinocytes (KY strain passage 2–8) were cultivated on a feeder

layer of J2 3T3 fibroblasts as previously described [39]. Following

Figure 7. Effect of TSA on suspension-induced differentiation. Keratinocytes were cultured for 24 h in 1% methylcellulose with or without
200 nM TSA. Expression of (A) IVL, (B) TGM1, (C) LRIG1, (D) TP63, and ITGB1 mRNA levels were measured by real-time RT-PCR at 0, 4, and 24 h. Data are
means 6 SEM of 3 experiments. *P,0.05 compared to carrier. (E) Proposed model for the role of histone acetylation during shape-induced terminal
differentiation of human keratinocytes.
doi:10.1371/journal.pone.0027259.g007
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removal of the feeder layer, keratinocytes were trypsinized and re-

seeded onto the micro-patterned substrates at a density of 25,000/

cm2 in complete FAD (1 part Ham’s F12, 3 parts DMEM, 1024 M

adenine, 10% FBS, 0.5 mg/ml hydrocortisone, 5 mg/ml insulin,

10210 M cholera toxin, 10 ng/ml EGF) medium. Cells were

allowed to adhere for 1 h and rinsed three times with fresh

medium. For some experiments, inhibitor supplemented medium

was added at the indicated dose immediately after rinsing. For

suspension culture experiments, keratinocytes were resuspended in

complete FAD supplemented with 1% methylcellulose and

cultured for to 24 h before recovery by centrifugation.

Antibodies and inhibitors
Rabbit anti-Ki67 was purchased from Abcam (Cambridge, UK).

Mouse anti-involucrin (SY5), and mouse anti-transglutaminase I

(BC1) were prepared by Cancer Research UK central services.

Rabbit anti-AcH3, anti-AcH4, and anti-total H3 were purchased

from Millipore,. Cytochalasin D, PD98059, PD169316, SB202190

and SP600125 were obtained from Calbiochem (La Jolla, CA), and

Trichostatin A was from Sigma Aldrich (St. Louis, MO).

Transfections and luciferase assays
Keratinocytes were cultured in KSFM (Gibco) on collagen-coated

dishes for 24 h prior to transfection. Cells were transfected for 3 h

using 1 ml Lipofectamine 2000 (Invitrogen) and 1 mg of DNA per 105

cells. The FLAG-MAL and SRF reporter (p3DA.luc) constructs were

kindly provided by Richard Treisman and have been described

previously [10]. Thymidine kinase (TK) driven Renilla was used as an

internal control and transfected 1:1 with p3DA.luc. Following DNA

transfection, cells were rinsed and cultured for 24 to 48 h before

treating with FBS or inhibitors. Luciferase assays were carried out in

24-well plates (n = 4 wells). Cells were treated for 7 h with FBS and

the indicated doses of inhibitors, then harvested and analyzed using

the dual luciferase assay (Promega). SRF activity was reported relative

to thymidine kinase levels, except in the TSA experiments. In this

case, TSA significantly affected the control reporter and only raw

SRF activity was reported.

Immunofluorescence staining and quantification
Cultured cells were fixed in 4% PFA for 10 minutes and

permeabilized with 0.2% Triton-X100 for 5 minutes at room

temperature. Samples were blocked for 1 h in 10% FBS plus

0.25% gelatin, incubated with primary antibodies for 1 h at room

temperature or overnight at 4uC, and incubated with Alexafluor

(488 and 555)-conjugated secondary antibodies for 1 h at room

temperature. TRITC-phalloidin and DAPI were included in the

secondary antibody solution where indicated. Fixed and stained

coverslips were mounted on glass slides with Mowiol reagent, and

images were acquired with a Leica DMI4000 fluorescence

microscope or Leica TCS SP5 confocal microscope. For scoring

involucrin, transglutaminase 1, and AcH3/4 expression at least 6

fluorescence images were taken per condition (approximately 50

cells) per experiment and analyzed with Image J software. Cells

with intensities above background levels (normal mouse serum)

were scored as positive.

Western blotting
Keratinocytes were lysed in ice cold RIPA buffer with protease

inhibitor tablets (Roche). Insoluble material was removed by

centrifugation, and the supernatent was diluted with a loading

buffer (Invitrogen) containing 1% 2-Mercaptoethanol. Equal

amounts of lysate were separated by SDS-PAGE on a 4–12%

gradient gel (Invitrogen), and transferred to PVDF membranes.

Membranes were blocked with 5% non-fat dry milk, and

incubated overnight with primary antibodies for Ac-H3 (1:1000)

or total H3 (1:1000). Secondary detection was performed with a

HRP-conjugated anti-rabbit antibody (1:5000) at room tempera-

ture for 1 h. Blots were treated with ECL reagent (GE Healthcare)

for 1 min and developed on X-ray film.

Chromatin immunoprecipitation
Chromatin immunoprecipitation was performed as described

previously [6]. Keratinocytes (107) were cultured overnight in

KSFM with or without inhibitors and fixed with 1% PFA for

10 min. Chromatin was sonicated to an average length of 1 kb,

incubated overnight with 10 mg of anti-FLAG, anti-SRF, or anti-

AcH3 antibodies at 4uC, and precipitated with G-protein coupled

Dynabeads (Invitrogen) for 4 h at 4uC. Cross-links were reversed

by incubating at 65uC overnight, and DNA was isolated with a

PCR purification kit (Qiagen). Quantitative RT-PCR was

performed with Sybr Green (Sigma) and custom primers for

regions around JUNB, FOS, SATCEN11. Data are reported as the

fold enrichment compared to the anti-FLAG control.

Real-time RT-PCR
Total RNA was isolated using a Purelink RNA kit (Invitrogen)

and reverse transcribed to cDNA using a Superscript III kit

(Invitrogen). PCR reactions were carried out with Taqman Gene

Expression Assays for FOS, JUNB, CTGF, EGR1, IVL, TGM1,

LRIG1, DLL1, TP63, and ITGB1 (Applied Biosystems), and all data

were normalized to GAPDH or 18S expression.

Statistical Analyses
All data were analyzed by one or two factor ANOVA and Tukey’s

test for posthoc analysis. Significance was determined by P,0.05.
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