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Abstract

Despite sharing much of their genomes, males and females are often highly dimorphic, reflecting at least in part the
resolution of sexual conflict in response to sexually antagonistic selection. Sexual dimorphism arises owing to sex
differences in gene expression, and steroid hormones are often invoked as a proximate cause of sexual dimorphism.
Experimental elevation of androgens can modify behavior, physiology, and gene expression, but knowledge of the role of
hormones remains incomplete, including how the sexes differ in gene expression in response to hormones. We addressed
these questions in a bird species with a long history of behavioral endocrinological and ecological study, the dark-eyed
junco (Junco hyemalis), using a custom microarray. Focusing on two brain regions involved in sexually dimorphic behavior
and regulation of hormone secretion, we identified 651 genes that differed in expression by sex in medial amygdala and 611
in hypothalamus. Additionally, we treated individuals of each sex with testosterone implants and identified many genes that
may be related to previously identified phenotypic effects of testosterone treatment. Some of these genes relate to
previously identified effects of testosterone-treatment and suggest that the multiple effects of testosterone may be
mediated by modifying the expression of a small number of genes. Notably, testosterone-treatment tended to alter
expression of different genes in each sex: only 4 of the 527 genes identified as significant in one sex or the other were
significantly differentially expressed in both sexes. Hormonally regulated gene expression is a key mechanism underlying
sexual dimorphism, and our study identifies specific genes that may mediate some of these processes.
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Introduction

Selection often favors different traits or trait values in males and

females, giving rise to sexually antagonistic selection [1–3]. These

sexually antagonistic patterns of selection have the potential to

constrain evolution [4], resulting in less fit intermediate pheno-

types [5–7], even in the face of strong selection [8]. As a

consequence, genetic, developmental and physiological mecha-

nisms that favor sex-specific phenotypes and sexual dimorphism

are expected to be favored, thus reducing sexual conflict.

One way to achieve sexual dimorphism and to relieve sexual

conflict is to regulate conflicting traits with signaling molecules that

circulate at different levels in the two sexes [9]. Specifically,

testosterone (T) is a steroid hormone that circulates at higher levels

in males than females in many species and regulates a number of

sexually dimorphic phenotypes including: sexual signals [10],

aggression [11], breeding state [12], and courtship behavior [13].

In many temperate-zone songbirds, males sing during the breeding

season and females do not, and the seasonal shift to singing

behavior is mediated by T in males [14,15]. In some species,

females exposed to experimentally elevated T develop male-like

neuroanatomy and can be induced to sing ([16]; reviewed in [17]),

suggesting that adult sex differences in hormone levels give rise to

some sexual dimorphisms.

Males and females share largely identical genomes, and sexually

dimorphic behavior in many species is thought to arise from

sexually dimorphic gene expression (reviewed in [18]). For

example, whole brains in songbirds show marked sex differences

in the expression of hundreds of genes [19], and differences in

gene expression between the sexes in the brains of cichlid fish

(Astatotilapia burtoni), outnumber those between two phenotypically
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divergent alternative male phenotypes [20]. Sex-biased gene

expression has been related to sex-biased behaviors including

sexual performance, aggression, and parental care [21], and

steroid hormone levels, including T, are known to affect sexually

dimorphic gene expression during development [21,22] and

adulthood [23].

Levels of T, however, appear to be correlated between males

and females across species, which creates the potential for conflict

over optimal circulating levels [24–26] given that traits that are

beneficial in males may be detrimental in females [17]. Following

this reasoning, selection might be expected to favor females with

reduced capacity to respond to T (sensitivity to T) through one of

many possible mechanisms [17,27]. For example, aggression is

influenced by (sensitive to) experimentally elevated T in female

tree swallows (Tachycineta bicolor) [28], zebra finches (Taeniopygia

guttata) [29] and red-winged blackbirds (Agelaius phoeniceus) [30], but

is insensitive to T in female European robins (Erithacus rubecula)

[31] and European starlings (Sturnus vulgaris) [32]. Such species

differences in female sensitivity to T suggest that evolution can

shield one sex from possible detrimental effects of selection on the

other sex. The mechanisms for this shielding are still unknown,

and changes in gene expression response to T may be important.

While past research has provided important insights into sexual

dimorphism and the role of hormones in regulating phenotype, far

less is known about the role of hormones in regulating the sex-

specific gene expression that underlies these phenotypes. By

bringing genomic tools to a system whose natural ecology is well

known, greater understanding of the production and maintenance

of sexual dimorphism should be possible.

We measured gene expression in two brain regions in males and

females of a songbird, the dark-eyed junco (Junco hyemalis) using a

species-specific microarray. We also measured the effect of

exposure to experimentally elevated testosterone on gene expres-

sion by comparing experimental animals to controls of each sex.

The junco is an avian system with mild sexual dimorphism [33],

and its behavior, ecology, and physiology have been extensively

studied over the past century [34–37]. Experimental and

correlative studies of natural populations of the junco have linked

hormonal variation to variation in phenotype [36,38] and natural

selection [39,40] in the wild. The hormonal treatment used here

has been utilized extensively in juncos [41–47] and other species

[12,16,48–52] to induce behavioral and physiological changes that

last several months [53,54].

While many traits are related to T in both sexes of the junco,

there are some traits for which females appear to be behaviorally

or physiologically insensitive to T (reviewed in [17]). In both male

and female juncos, higher T is related to higher aggression [43,55],

lower body-mass [45,56], and lower immune function [43,44]. In

contrast, several phenotypes that respond to experimentally

elevated T in males do not respond in females, including nestling

provisioning [41,45,46,57], which declines only in males, and

home range size [58,59], which increases only in males. Thus, in

the junco, the sexes differ in their phenotypic response to T for

some, but not all traits. We hypothesize that this difference may

arise partly because of differences in transcriptional response to T-

treatment.

Direct measurement of survival and reproductive success in

free-living juncos also suggests that the sexes may differ in the

fitness consequences of T [39,47,60]. In males, experimental

elevation of T reduces survival, but the reduction is more than

offset by an increase in extra-pair mating success [39,61] with the

result that fitness in T-treated males is greater than that of controls

[39]. These results suggest that selection would favor males with

higher T if such males were to occur naturally. However, females

treated with T have been shown to have lower fitness than controls

[47,60], suggesting that an elevation in T in females resulting from

an evolutionary response to selection on males could be

detrimental to females [17]. This dynamic is consistent with

sexual conflict in which the negative fitness consequences of higher

T in females might constrain the response of males to selection

favoring higher T [17,39].

To address the role of hormone-mediated and sexually

dimorphic transcriptional response in accounting for the behav-

ioral effects of T, we analyzed gene expression in two brain regions

related to these effects: the medial amygdala and the hypothal-

amus. The medial amygdala is associated with many social

behaviors, including sexually dimorphic aggressive and reproduc-

tive behaviors in birds and rodents [62–65]. The hypothalamus

regulates several aspects of homeostasis, hormone balance, and

seasonal behavior [66–69]. Both the medial amygdala and the

hypothalamus express high levels of androgen receptors [62,70],

and are thus likely to respond to experimental manipulation of T.

Importantly, these brain areas are also major sites of estrogenic

action, and many of the effects of sex steroids in these regions may

occur after local conversion of T to estradiol [71,72]. Furthermore,

the medial amygdala plays a key role in relaying and mediating

social signals between brain areas [73], and the hypothalamus is a

major control center of hormones and behavior with projections

extending throughout the brain [74]. Thus, transcriptional

changes in these brain areas are likely to reflect not just the direct

effect of sex steroids, but are also likely to be indirectly affected by

T-induced behavioral changes and T-induced changes in other

areas of the brain and body as well.

We first asked how baseline gene expression differed between

the sexes. We predicted that control males and control females

would differ in the expression of key genes related to known sex

differences, such as sexual and social behavior. We then assessed

the impact of experimental elevation of T within each sex. Here

we predicted that T-treatment would influence genes related to

traits known to respond to T-treatment in both sexes, such as

immune function, metabolism, and several behaviors. Because

some traits are insensitive to T in one sex, we also predicted that T

would affect the sexes in contrasting ways, such that at least some

of the genes that were differentially expressed between T-treated

individuals and controls would differ by sex.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with all

regulations and guidance of the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All

animal methods were reviewed and approved by the Institutional

Animal Care and Use Committee at Indiana University–

Bloomington (Protocol #09-037). All implants were performed

with local anesthetic and euthanasia was conducted in accordance

with the AVMA Guidelines on Euthanasia. Animals were

captured near Mountain Lake Biological Station on publicly

accessible roadways in and around Jefferson National Forest.

Animal collection permits were obtained from the: U.S. Depart-

ment of the Interior (Permit Number: 20261), U.S. Fish and

Wildlife Service (Permit Number: MB093279-0), and Virginia

Department of Game and Inland Fisheries (Permit Number:

041506).

Animal collection and treatment
We collected 26 adult dark-eyed juncos (14 male, 12 female)

from breeding grounds near Mountain Lake Biological Station
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(Pembroke, VA; 37u 229 310N, 80u 319 240W). Individuals were

captured in mist-nets during the early breeding season (7 to 14

May 7 2010) and held individually in a semi-naturalistic outdoor

aviary. Each individual had its own compartment

(0.6061.1262.38 m). Animals were not acoustically or visually

isolated from each other.

Following capture, individuals were treated with implants of

silastic tubing that were either empty (control) or packed with

crystalline T (Sigma-Aldrich, St. Louis, Missouri, USA). Males

treated with T received two 10 mm implants, while females

received a single 5 mm implant. These implants have been used

historically in the study of the junco and have been repeatedly

shown to yield physiological maximum levels of T in each sex [17].

We placed all implants subcutaneously along the right flank of the

bird with a trochar needle under local anesthetic on May 14 and

15. Implants were checked the following day and again at the time

of euthanasia to ensure proper placement. In all, four treatment

groups were created: control males (n = 7), testosterone-treated

males (n = 7), control females (n = 6), and testosterone-treated

females (n = 6). Six individuals (males were randomly selected for

inclusion) from each treatment group were used to analyze each

tissue.

The specifics of our implant regimen were chosen to mimic

previous studies and to capture the largest possible range of effects

of T-treatment, including both direct and indirect effects.

Testosterone is aromatizable, and many of the effects of T are

known to be mediated by local conversion of T to estradiol [75].

Similarly, the duration of the implant exposure (26 days) is

sufficient to establish stable phenotypic effects [37,53], and to

allow for both direct and indirect phenotypic effects of T-

treatment on tissues and gene expression. Thus, we note that many

of the effects of T-treatment, both phenotypic in previous studies

and transcriptional in this study, are likely to be indirect stemming

from conversion of T to other hormones, the interaction of T with

other signaling systems, and feedback from behavioral and

physiological changes directly induced by T-treatment. These

direct and indirect effects reflect the natural response of the

organism to elevated T levels and to the T-implants utilized in

previous studies.

Tissue collection and RNA extraction
On June 9 and 10, 26 days after treatment, individuals were

euthanized by overdose of isoflurane. Sacrifices occurred between

the hours of 0700 and 1230. Sexes and treatments were balanced

across days and time of day due to the potential for circadian

changes in expression of some genes. Tissues, including whole

brains, were collected rapidly (within 20 minutes post-mortem)

and stored on powdered dry ice to ensure negligible RNA

degradation [76]. Brains were later dissected into 14 distinct

regions using anatomical landmarks, following previously estab-

lished methods [77,78]. Briefly, each brain was placed onto a

sterile, chilled glass petri dish over ice and allowed to thaw only

enough to permit microdissection. After removing optic chiasm,

optic tecta, and the hindbrain, we collected the diencephalon to

the depth of the anterior commissure. This dissection includes the

most rostral portion of the thalamus, but is largely limited to the

hypothalamus [77], and so it will be referred to as hypothalamus

throughout the manuscript. We then removed approximately

1 mm of the ventromedial portion of the caudal telencephalon,

which is largely limited to the medial amygdala [72]. The newly

separated regions were rapidly returned to 280uC. RNA was later

extracted in TRIzol, following manufacturer directions (Invitro-

gen, Carlsbad, CA, USA). All RNA was high quality as measured

by Agilent Bioanalyzer (Santa Clara, CA, USA) with RNA

integrity number [79] scores ranging from 7.6–9.4.

Microarray platform
Gene expression was analyzed using a custom microarray for

the dark-eyed junco based on transcriptome sequencing [80].

Briefly, this Nimblegen 12-plex microarray (Roche Nimblegen,

Inc., Madison, WI) contained 100,635 features representing

33,545 contigs (assembled sequencing reads) in triplicate covering

22,765 isogroups (putative genes). An additional 34,365 probes

singly representing unassembled singletons were omitted from this

analysis. Annotation was accomplished by sequence similarity

against the NCBI non-redundant protein database [81] using

blastx for gene identities and Blast2GO [82] for functional

annotation with gene ontology (GO) terms [83].

cDNA preparation and hybridization
Microarray experiments were conducted as described in [80]

following [84]. Briefly, we performed double strand cDNA

synthesis using the Invitrogen SuperScript Double-Stranded

cDNA Synthesis kit with random hexamer primers and labeled

cDNA using 1 O.D. CY-labeled random nonamer primer (either

Cy3 or Cy5) and 100 U Klenow fragment per 1 mg ds-cDNA

(following NimbleGen labeling protocols). We then hybridized 15

mg of each of two labeled samples (one Cy3, one Cy5) to each sub-

array, following a full round robin design within each tissue (n = 6

per treatment group for each tissue), and followed manufacturer’s

directions for post-hybridization washing and scanning (Roche

NimbleGen, Inc., Madison, WI). Imaging was accomplished by

Axon GenePix 4200A scanner (Molecular Devices, Sunnyvale CA)

with GenePix 6.0 software, and data were extracted with

NimbleScan 2.4 (Roche NimbleGen, Inc., Madison WI). Raw

microarray data were processed and normalized with the limma

package [85] in R [86]. The microarray data are available in the

NCBI Gene Expression Ominubus repository (accession number:

GSE41076).

Microarray analysis
Following normalization, we identified contigs that were

expressed in each condition by comparing contig expression

scores to randomized probes, as described in [80]. Using only

contigs expressed in at least one of the compared treatment

groups, we made three comparisons for each tissue using the

limma package [85] of bioconductor in the R statistical package

[86]: control males vs. control females; control males vs.

testosterone-treated males; and control females vs. testosterone-

treated females (n = 6 per treatment group for each tissue).

For calculations, statistics, and visualization, we used the log2

fold change between sexes or between treatment groups, along

with the modified t-statistic and p-value, calculated in the limma

package for most isogroups. However, for isogroups represented

by more than one contig (4,288 of 22,765 isogroups), we calculated

the mean t-value of all contigs and calculated significance on

degrees of freedom equal to the total number of probes scored for

the isogroup minus two. The median fold change from its

representative contigs was assigned to each isogroup. To reduce

false-positives, we set a false discovery threshold of 0.05 [87] and

calculated global q-values (FDR control for all tissues and

comparisons) using the R package qvalue [88].

We then used topGO [89] to identify the GO terms that were

significantly over-represented among the significantly differentially

expressed genes in each comparison using the weight algorithm

[90], Fisher’s exact test, and a p-value cut-off of 0.05. GO terms

with fewer than five annotations were not analyzed, and terms
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with over-representation driven by fewer than 3 genes were not

reported.

Results

Sex differences
We identified many genes as significantly differentially ex-

pressed between control males and control females in each brain

region. In the medial amygdala 651 isogroups (of 15,254

expressed) were differentially expressed between the two sexes

(Figure 1a) with 476 higher in control males than females (Table

S1 in file S1) and 175 higher in control females than males (Table

S2 in file S1). Here, GO analysis identified 46 terms that were

over-represented among the significantly differentially expressed

genes (Table S3 in file S1), including the terms: microtubule

cytoskeleton, positive regulation of synaptic plasticity by chemical substance,

positive regulation of cell growth, neuron projection, RAS protein signal

transduction, and cytokinesis.

In the hypothalamus, 611 isogroups (of 15,624 expressed) were

differentially expressed by sex (Figure 1b) with 483 higher in

control males than females (Table S4 in file S1) and 128 higher in

control females than males (Table S5 in file S1). Among these 611

genes, GO analysis identified 60 terms that were significantly over-

represented (Table S6 in file S1). These GO terms included:

regulation of microtubule cytoskeleton, positive regulation of synaptic

plasticity by chemical substance, positive regulation of cell growth, axon

regeneration, and sterol metabolic process.

Among theses genes, 324 genes were significantly differentially

expressed between the sexes in both medial amygdala and

hypothalamus (Figure 1c). Of these genes, 253 were higher in

control males than control females in both tissues (Table S7 in file

S1) and 71 were higher in control females than control males in

both tissues (Table S8 in file S1). None was differentially expressed

in opposite directions in the tissues.

Effect of T-treatment in females
In both brain regions, there were significant differences in

expression between T-treated and control females. In the medial

amygdala, 327 isogroups (of 15,110 expressed) were significantly

differentially expressed between T-treated and control females

(Figure 2a) with 167 higher in T-treated than control females

(Table S9 in file S1) and 160 lower in T-treated than control

females (Table S10 in file S1). GO analysis identified 18 over-

represented terms (Table S11 in file S1), including: microtubule

polymerization or depolymerization, structural molecule activity, and ribosome.

In the female hypothalamus, 79 isogroups (of 15,546 expressed)

were differentially expressed (Figure 2b) with 49 higher in T-

treated than control females (Table S12 in file S1) and 30 lower in

T-treated than control females (Table S13 in file S1). GO analysis

identified 15 over-represented terms (Table S14 in file S1),

including: metal ion binding, detection of chemical stimulus, and response to

nutrient levels.

In females, 16 genes were significantly differentially expressed

between T-treated and control individuals in both medial amygdala

and hypothalamus (Figure 2c). Among these genes, 9 were higher

(Table S15 in file S1) and 7 were lower (Table S16 in file S1) in T-

treated than control females in both tissues. No genes were

significantly affected in opposite directions in the two tissues.

Effect of T-treatment in males
In the medial amygdala, 36 isogroups (of 15,279 expressed)

were significantly differentially expressed between T-treated and

control males (Figure 2d) with 15 higher in T-treated than control

males (Table S17 in file S1) and 21 lower in T-treated than control

males (Table S18 in file S1). GO analysis identified four over-

represented terms: metal ion transport, ion channel activity, cation

transmembrane transporter activity, and integral to membrane.

In the male hypothalamus, 89 isogroups (of 15,540 expressed)

were significantly differentially expressed between treatment

groups (Figure 2d) with 35 higher in T-treated than control males

(Table S19 in file S1) and 54 lower in T-treated than control males

(Table S20 in file S1). GO analysis identified one over-represented

term: phosphatase activity.

In males, 8 genes were differentially expressed between T-

treated and control individuals in both medial amygdala and

hypothalamus (Figure 2c). Among these genes, 4 were higher

(Table S21 in file S1) and 4 were lower (Table S22 in file S1) in T-

treated than control males in both tissues. No genes were

significantly affected in opposite directions in the two tissues.

Comparing the effect of T-treatment in the sexes
In both the medial amygdala and hypothalamus, a small

number of genes were differentially expressed between T-treated

Figure 1. Sex differences in gene expression. Differences in gene expression between the sexes are represented by heat maps that show scaled
individual expression scores for just the significantly differentially expressed genes in the medial amygdala (a) and hypothalamus (b). Venn diagram
shows the overlap in significant genes between the two tissues (c).
doi:10.1371/journal.pone.0061784.g001
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and control individuals of both sexes. Three genes were

significantly differentially expressed between T-treated and control

individuals of both sexes in the medial amygdala (transient receptor

potential cation channel, subfamily M, member 8, and two unannotated

genes), and they were each lower in T-treated than control males,

but higher in T-treated than control females. One gene (Cytochrome

P450 19A1) was significantly differentially expressed between T-

treated and controls of both sexes in the hypothalamus, and that

gene was more highly expressed in T-treated than control

individuals in both sexes.

Discussion

We identified many genes that were differentially expressed

between control males and females and between T-treated and

control individuals of each sex. As predicted, the affected genes

were often related to known sexual dimorphisms and previously

described effects of T-treatment on phenotype (elaborated below).

However, there was a substantial difference in response to T-

treatment in males and females: T-treatment influenced the

expression of different sets of genes in each sex in both tissues. The

difference between the sexes in hormonally regulated gene

expression is a key to understanding sexual dimorphism and

sexual conflict, and the specific genes identified here may mediate

some of these processes.

Sexually dimorphic gene expression
Similarly to other studies (reviewed in [18]), we identified a

substantial number of genes that were expressed differentially in

males and females. In general, our results resembled patterns

found in previous comparisons of sex-biased gene expression in

whole brains of other song birds [19], although we identified a

greater number of sexually dimorphic genes (611 in the

hypothalamus and 651 in the medial amygdala) than were

reported in the whole brain of zebra finch and common

whitethroat (Sylvia communis; 509 and 345, respectively; [19]). This

difference may relate to fact that we analyzed two specific brain

regions as opposed to whole brain. Others have noted that pooling

tissues comprised of discrete regions can reduce ability to detect

differences [65], likely because changes in gene expression in

particular regions may be masked if the expression level was

modified in only a subset of tissues that were analyzed collectively.

Significant gene expression differences between fine scale regions

of the human [91] and bird [92] brain suggest that sex differences

in gene expression may vary significantly between regions as well.

The consensus from comparative neurobiology suggests that

social stimuli are relayed through the medial amygdala to modify

how animals respond to social stimuli, and many of the behaviors

influenced by the medial amygdala are sexually dimorphic,

including social [93] and aggressive [94] behaviors. Thus, it is

not surprising that among the differentially affected genes, there

were several receptors that have been directly related to behavior

in model systems. For example, galanin receptor 3 (GALR3) was

expressed more in males than females, and galanin, its ligand, has

been implicated in several clinical conditions that are known to

affect one sex more than another, including depression and

anxiety [95,96] and human alcoholism [97].

In the hypothalamus, we found differential expression of a

number of cholesterol- and steroid-related genes, consistent with

the role of the hypothalamus in regulating steroid levels.

Specifically, HMG-CoA reductase, HMG-CoA synthase, and hydroxyste-

roid (17-beta) dehydrogenase 4 (HSD17B4), were all more highly

expressed in control males than control females. HMG-CoA

reductase, and HMG-CoA synthase, are key enzymes in the production

of cholesterol via the mevalonate pathway [98], a necessary step

for de novo production of steroid hormones. HSD17B4, is involved,

Figure 2. Gene expression in response to T-treatment in each sex. Differences in gene expression between T-treated and control individuals
in both the medial amygdala (left column) and the hypothalamus (middle column) for response to females (a–c) and in males (d–fh). Heat maps show
scaled individual expression scores for just the genes that were significantly differentially expressed between T-treated and control individuals in each
sex (a,b,d,e). Venn diagram shows the overlap of significant within each contrast between the tissues. See text and supplementary tables for more
information.
doi:10.1371/journal.pone.0061784.g002
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primarily, in the oxidative breakdown of estradiol [99]. Combined,

these findings suggest that males may be producing more steroids

(or their precursors), but also more rapidly turning them over,

compared to females. In addition, follistatin was more highly

expressed in control males than control females. Follistatin plays a

wide-range of roles throughout the body [100]; however, in the

brain it suppresses the release of follicle stimulating hormone, a

key regulator of gametogenesis [101], from the pituitary [102].

Together, the differential expression of these genes is consistent

with the known role of the hypothalamus in regulating hormonal

and reproductive physiology differently in males and females.

Results in mammals find a limited number of genes with

sexually dimorphic expression in the brain as compared to other

tissues, and these genes often appear to have potentially large

downstream effects [103], as do the genes identified in this study.

For example, in mice, RNA helicase activity is the only function over-

represented among genes differentially expressed in brain between

males and females [65]. In other species, many of the genes and

functions identified as differentially expressed between males and

females relate to translation and suggest large downstream effects

that cannot be identified by gene expression analysis [103]. In our

study, several transcription factors (nine in the medial amygdala

and six in the hypothalamus) were differentially expressed between

control males and females. If these transcription factors have a

subtle effect on expression of other genes, then perhaps they

affected the expression of many other genes, but below the level of

detection of this experiment. Many of the genes we identified as

differentially expressed by sex were also related to cell growth and

cytoskeleton structure. For instance, genes related to microtubule

formation were expressed at higher levels in males than in females

in both the medial amygdala and hypothalamus, perhaps

suggesting that males were more actively maintaining and

remodeling the cellular structure of these brain regions.

Effect of T-treatment in females
Several of the genes that were differentially expressed between

T-treated and control females have been linked to aggressive

behavior in the past, suggesting a connection with the known effect

of T-treatment on aggression in juncos [43] and other species

[28,52]. Cytochrome P450 19A1, the aromatase responsible for the

enzymatic conversion of T to estradiol [71], was more highly

expressed in the hypothalamus of T-treated than control females.

Local metabolism of T into estradiol is known to meditate many of

the well known effects of T [75], suggesting that the higher

hypothalamic expression of aromatase may mediate some of the

behavioral effects of T-treatment. Neural aromatase expression

and activity is associated with sexual [104] and aggressive behavior

[105] and correlates with aggression in juncos [78]. Similarly,

monoamine oxidase A (MAO-A) is less expressed in the medial

amygdala of T-treated than control females. MAO-A degrades

both dopamine and serotonin, and decreased or absent function-

ing of MAO-A increases aggression in mice [106] and humans

[107]. Thus, expression changes in Cytochrome P450 19A1 and

MAO-A may partially mediate the effects of T-treatment on

aggression.

Another set of differentially expressed genes appears to be

related to the metabolic and activity effects of T-treatment

[59,108,109]. Cannabinoid receptor 1 (CB1) was more highly

expressed in the hypothalamus of T-treated than control females.

This is one of the genes annotated with the GO term response to

nutrient levels, and the role of CB1 in signaling hunger [110] may be

involved in the reduced body mass and fattening induced by T-

treatment [45,56]. Further, GALR3, which can affect activity

[95,111], is less expressed in medial amygdala of T-treated than

control females.

Although we did not directly measure phenotypes in this study,

more than a dozen previous studies in juncos have demonstrated

that this same T-treatment masculinizes several female behaviors

[17], including reduced nest defense [47], increased aggression

[43], and reduced mate choosiness [112], to levels more similar to

males [33,113,114]. Findings in other species also support a role

for T in masculinizing female behavior and brain morphology

[16,17,25], along with gene expression [22,23,115]. In both sexes,

many of the neural effects of testosterone are actually mediated by

estradiol, after testosterone is locally converted via aromatase [75].

Further, if T-treatment directly caused a behavioral change, then

gene expression in the brain may be a response to that modified

behavior, rather than a direct response to T. Thus, we cannot

distinguish whether the gene expression effects we quantified were

the direct effect of T or caused by these indirect routes; however,

these mechanisms likely operated in previous studies of T-

treatment and therefore reflect the transcriptional changes related

to known phenotypic effects of T-treatment.

Effect of T-treatment in males
Many of the genes identified as differentially expressed between

T-treated and control males are related to previously identified

phenotypic effects of T-treatment. Further, it appears that several

of the differentially expressed genes impact signaling systems that

are likely to have large influence on a number of phenotypes.

Testosterone is a hormone that has pleiotropic effects on

organismal phenotype [36]; however it is possible that these

sweeping effects are not the result of T-treatment affecting the

expression of many different genes (either directly or indirectly),

but rather the result of T-treatment altering the expression of only

a few genes with major pleiotropic effects on a broad array of

phenotypes.

Several genes appear to be related to both the aggressive- [55]

and activity- [59] related effects of T-treatment. For example, in

hypothalamus, cytochrome P450 19A1, the aromatase responsible for

the enzymatic conversion of T to estradiol [71], was more highly

expressed in T-treated than control males. As in females (see

above), change in expression of aromatase may explain several

aspects of the aggressive and sexual response to T-treatment in

juncos [75,78,116]. In mice and humans, decreased melanocortin 4

receptor (MC4R) activity increases feeding and obesity [117–119].

Thus, higher expression of MC4R in hypothalamus of T-treated

than control males is consistent with previous findings of reduced

body mass following T-treatment in songbirds [45,56], though it is

important to note that such an effect could come about because

MC4R was directly affected by T-treatment or because T-

treatment induced changes in feeding and metabolism that altered

expression of MC4R.

Thus, it is possible that the expression change in these few genes

could account for a large proportion of the previously described

phenotypic effects of T-treatment. As another example,

MGC89063 protein, a major transcriptional cofactor [83,120],

was expressed more highly in T-treated than control males in the

hypothalamus and medial amygdala. MGC89063 may play a wide

role in modifying gene expression, and if its downstream effects on

gene-expression were numerous but small or in different brain

regions, they may be below the level of detection for microarray

experiments yet still be biologically meaningful [121].

Comparing the effect of T-treatment in the sexes
Most of the genes identified as significantly differentially

expressed between T-treated individuals and controls in one sex
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were not also significant in the other sex, suggesting that different

genes were being affected by T-treatment in each sex. The small

overlap between genes that were affected by T-treatment in males

and females is particularly puzzling, because T-treatment elicits

many of the same behavioral and physiological outcomes in both

sexes (reviewed in [17]). Our data suggest that the sexes may arrive

at particular phenotypic outcomes via transcriptional changes in

different genes, though other systems give reason to doubt the

generality of this finding. For example, dominant social behavior

in cichlid fish appears to be due to the same gene expression

mechanisms in both males and females [122], demonstrating that

similar phenotypes in males and females may be arrived at

through the same transcriptional mechanisms as well.

Among the genes that were significantly differentially expressed

between T-treated and control individuals in both sexes, there was

no clear pattern relating the sexes. In the hypothalamus, cytochrome

P450 19A1 (aromatase) was higher in T-treated than control

individuals of both sexes, possibly due to its role in local conversion

of T to estradiol, which may be the mediator of some of the known

effects of T-treatment (see above for descriptions in males and

females). In the medial amygdala, the three genes that were

differentially expressed between T-treated and control individuals

were all higher in T-treated than control in females and lower in

T-treated than control in males. Only one of these, (transient receptor

potential cation channel, subfamily M, member 8; TRPM8) was

annotated. TRPM8 responds to cold stimuli in sensory cells

[123], but whether it mediates known phenotypic effects of T-

treatment via the medial amygdala is unclear.

It appears that the similar phenotypic outcomes of T-treatment

described in previous studies may be caused by expression changes

in different genes in each sex. For example, activity and

metabolism appear to be affected by T-treatment in multiple

species (e.g., [109,124]), but in juncos, only males, not females,

increase their home-range size in response to T-treatment [58,59].

As described above, it appears that some of these metabolic and

activity effects of T-treatment [109,124] could be mediated by

changes in expression of CB1 and GALR3 in females [125,126],

while MC4R expression may mediate this effect in males [118].

Perhaps these different transcriptional routes are a mechanism

that has allowed for the divergence of male and female response to

T-treatment.

The difference in T-dosage given to each sex may also relate to

the differential response to T-treatment in males and females. We

administered one 5 mm implant to females to induce T-levels at

the high end of the natural distribution of female T, but because

male T is naturally much higher, we used two 10 mm implants to

induce T-levels at the high end of the natural distribution of male

T. Thus, while these doses were sex-appropriate [17] and match

the doses used when measuring phenotypes in previous studies

(e.g. [46,112]), it remains possible that there is a bell-shaped dose-

response curve to T such that T-treatment in males suppressed the

expression of genes that were enhanced by T-treatment in females.

Thus, it is possible that had we treated females with the same dose

as males, the responses might have been similar. However, we do

not think this explanation is the most parsimonious because these

same dosages of T implant induce similar behavior and physiology

in male and female juncos (summarized above). Further, identical

doses of T would not ensure that the sexes experience the implants

in the same way. For example, in wintering juncos given identical

5-mm T-implants, females had circulating levels of T that were

significantly higher than males [127], suggesting that male and

female processing of exogenous T may differ.

The fact that both males and females have been shown to

respond phenotypically to T-treatment indicates the potential for

sexual antagonism over the optimal circulating level of hormones

[24–26]. However, it is also known that females are not sensitive to

all of the same behavioral and physiological effects of hormonal

treatment as males (reviewed in [17]). Female insensitivity to T-

treatment with respect to some phenotypes suggests that, in some

species, the sexes may process or interpret a hormonal signal

differently, which is consistent with our finding that T-treatment

affects different genes in each sex. Thus, not only do the sexes

differ in naturally circulating levels of T and phenotypic response

to T-treatment [17], but, as we have shown here, they also differ in

the downstream genomic effects seen in response to experimental

treatment with T. It is possible that the sex difference in

transcriptional response to T-treatment could be a consequence

of additional modulators of gene expression that control the way in

which T interacts with the genome (e.g. androgen receptor co-

activators or DNA methylation patterns). Sexual dimorphism in

the genes that are affected by T-treatment may be a key step in

resolving sexual conflict over optimal circulating T levels [24–26]

by modifying the phenotypic effect of T separately in each sex.

Conclusions

In this study, we applied genomic tools and functional

knowledge from model systems to a species with well-studied

ecology to gain novel insights into sexual dimorphism and

hormones in a natural system. We identified a large number of

genes that are likely to play specific roles in both sexual

dimorphism and the behavioral effects of testosterone. Further

investigation is warranted to determine whether these differences

in gene expression contributed to the previously identified

phenotypic effects of T-treatment and to assess the mechanisms

relating T-treatment, gene expression, and phenotypic effects.

Specifically, RNAi knockdown of these genes would allow for

analysis of the immediate impact of targeted changes in gene

expression on behavior. T-treatment affected largely different

genes in males and female, suggesting that T-treatment may bring

about similar behavioral and physiological effects on the sexes by

different transcriptional mechanisms, potentially opening a route

to the reduction of sexual conflict over optimal levels of T. We

were especially intrigued by the possibility that only a few genes in

a few tissues may mediate the pleiotropic phenotypic effects

previously observed in response to T-treatment.
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