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Liver transplantation is currently the most effective method for treating end-stage liver

disease. However, recipients still need long-term immunosuppressive drug treatment

to control allogeneic immune rejection, which may cause various complications

and affect the long-term survival of the recipient. Many liver transplant researchers

constantly pursue the induction of immune tolerance in liver transplant recipients,

immunosuppression withdrawal, and the maintenance of good and stable graft function.

Although allogeneic liver transplantation is more tolerated than transplantation of other

solid organs, and it shows a certain incidence of spontaneous tolerance, there is

still great risk for general recipients. With the gradual progress in our understanding

of immune regulatory mechanisms, a variety of immune regulatory cells have been

discovered, and good results have been obtained in rodent and non-human primate

transplant models. As immune cell therapies can induce long-term stable tolerance, they

provide a good prospect for the induction of tolerance in clinical liver transplantation. At

present, many transplant centers have carried out tolerance-inducing clinical trials in liver

transplant recipients, and some have achieved gratifying results. This article will review the

current status of liver transplant tolerance and the research progress of different cellular

immunotherapies to induce this tolerance, which can provide more support for future

clinical applications.

Keywords: tolerance, liver transplantation, operational tolerance, cell therapy, hematopoietic stem cell

transplantation, regulatory T cells, regulatory dendritic cells

INTRODUCTION

Liver transplantation has been a preferred option for patients with end-stage liver disease. Since Dr.
Starzl performed the first human liver transplantation in 1963, the short-term survival rate of liver
transplant recipients has improved significantly, which can be attributed to advances in surgical
techniques and immunosuppression (IS) agents (1). However, owing to the long-term use of IS
agents, complications concerning the cardiovascular and cerebrovascular systems, diabetes, chronic
renal insufficiency, infection, or tumors seriously affect the long-term survival of liver transplant
recipients (2, 3).
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Immunological self-tolerance refers to the ability of a healthy
immune system to produce a protective immune response to
pathogens and foreign antigens while maintaining tolerance to
its own tissues. Therefore, transplant tolerance refers to accepting
organs without the need for long-term IS and maintaining
protective immunity (4). Tolerance is usually classified as
complete immune tolerance, operational tolerance (OT), and
prope tolerance, referred to a condition with a low, non-toxic
dose of IS (5). In clinical applications, the focus of the study is
OT, that is, long-term functional graft survival in a patient not
requiring maintenance IS (6).

The liver is an immunologically privileged organ compared
to other transplant organs such as the heart, kidney, or pancreas
(7). Liver transplant recipients generally maintain a low level of
IS and the hepatic graft can provide immunological protection
when transplanted in combination with other solid organs (8).
Since Calne first recognized the liver tolerance effect (8) in
1969, people have been enthusiastic about the induction of liver
immune tolerance.

As the body’s largest digestive organ, the liver has two
sets of blood supplies, the portal vein and the hepatic
artery. It is constantly exposed to enterically-derived blood-
borne pathogens, which gives the liver a unique form of
immune privilege (9). Numerous sinuses constitute the largest
reticuloendothelial system in the human body and contain
the largest number of specialized and non-specialized antigen-
presenting cells (APC) and cells that maintain liver immune
tolerance, including resident macrophages (also known as
Kupffer cells), dendritic cells, hepatocytes, hepatic sinusoidal
endothelial cells (LSECs), and hepatic stellate cells (HSCs) (10).
When pathogen-derived products such as lipopolysaccharides
pass through the liver, like an immune filter, their concentration
could be reduced 100-fold, enabling the hepatic immune
microenvironment to have sufficient capacity to regulate the
nature and intensity of its response (11). Numerous immune
regulatory mechanisms in the liver, including downregulation
of co-stimulatory molecules, secretion of inhibitory cytokines,
inhibition of effector T cell activation, and induction of
regulatory T cells, predispose the immune response of the liver
to tolerance rather than activation (12).

CURRENT STATE IN SPONTANEOUS
TOLERANCE

Factually, in liver transplantation, spontaneous tolerance
initially came from the casual clinical observation. Owing
to poor compliance, infection complications, posttransplant
lymphoproliferative disease (PTLD) or doctor’s advice, some
liver transplant recipients developed spontaneous tolerance after

Abbreviations: IS, immunosuppression; OT, operational tolerance; APC, antigen-

presenting cells; NK cells, natural killer cells; PBMC, peripheral blood

mononuclear cells; HSCs, hematopoietic stem cells; HSCT, hematopoietic stem

cell transplantation; GVHD, graft vs. host disease; Tregs, regulatory T cells; DC,

dendritic cells; regDC, regulatory dendritic cells; tolDC, tolerogenic dendritic

cells; GM-CSF, granulocyte-macrophage colony-stimulating factor; GMP, Good

manufacturing practice.

discontinuing IS, which has aroused great interest of transplant
researchers. In 1993, Reyes et al. in Pittsburgh reported that
8 liver transplant recipients with poor compliance ceased IS
from 0.5 to 11 years after transplantation, but unexpectedly
developed OT. Among them, after weaving from IS, 7 recipients
maintained good allograft function for 1 to 14.3 years. The
remaining recipient underwent liver retransplantation after 7.7
years of IS withdrawal for viral hepatitis. In addition, 6 recipients
were shown to have systemic chimerism (13).

Over nearly three decades, many liver transplant centers
have conducted clinical trials of IS withdrawal in both adult
and pediatric liver transplant recipients. It has been reported
that normal liver function was successfully maintained in adult
and child liver transplant recipients, with ∼20% of patients
(6–63%) achieving complete immunosuppressive withdrawal
(Tables 1, 2) (14–33).

Sanchez-Fueyo et al. of the Hospital Clinic of Barcelona
conducted a prospective and multicenter IS withdrawal clinical
trial in 98 liver transplant recipients (NCT00647283). Of these,
41 achieved clinical tolerance (41.8%) and 57 developed mild
rejection (58.2%), which was followed by remission within 5.6
months. During the 3-year follow-up after IS withdrawal, no
significant histological damage was found in liver biopsies of the
tolerant recipients. Statistical analysis showed that years post-
transplantation correlated positively with tolerance induction
and could be the strongest predictor (27).

Comparing with calcineurin inhibitors (CNI), sirolimus,
a kind of rapamycin inhibitor (mTOR-I), has no significant
drug toxicity, such as nephrotoxicity, hypertension, diabetes,
infections and neoplasms (34). Another advantage of sirolimus
is its immunomodulatory ability that could facilitate safe IS
withdrawal (35). To assess if sirolimus could increase the
tolerability in liver transplant recipients, Levitsky et al., at
Northwestern University, performed a prospective clinical trial
of single sirolimus withdrawal (NCT02062944). They recruited
15 recipients with non-viral or immunological hepatitis more
than 3 years after liver transplantation. After 12 months from
sirolimus withdraw, it showed that 8 recipients (53%) achieved
OT. Of the other 7 patients, 3 failed IS withdrawal, 3 developed
moderate cellular rejection (TCMR) on liver biopsies at the end
of the study, and 1 was withdrawn from the trial owing to
adrenal metastasis of hepatocellular carcinoma (32). The current
result showed the OT rate of sirolimus was comparable to CNI-
withdrawal studies. Except for free CNI toxicity, whether liver
recipients can benefit more from sirolimus withdrawal, it still
needs more and larger trials.

For pediatric liver transplant recipients, Feng et al. in the
University of California conducted a multicenter, prospective
clinical trial of IS withdrawal (WISP-R, NCT00320606). A total
of 12 (60%) of the 20 enrolled pediatric recipients achieved
clinical tolerance, and during follow-up for more than 2 years
after IS withdrawal, the graft function was normal and there
was no significant change in biopsy compared with baseline.
A total of 3 recipients underwent acute rejection (n = 2) or
uncertain rejection (n= 1) during IS withdrawal, and 4 recipients
failed to achieve clinical tolerance owing to uncertain acute
rejection within 1 year of drug withdrawal. Their graft function
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TABLE 1 | Immunosuppression withdrawal trials (≥10 recipients, single center).

ID Year Author Transplant

center

Adult or

pediatric

No. of

recipients

Donor (DD

or LD)

HCV+

or AIH ?

IS Time from

LT to IS

withdraw

(Years)

Follow-up

after IS

withdraw

(Months)

OT N

(%)

Rejecton N

(%)

References

/ 1997 Mazariegos Pittsburgh Both 95 DD Yes CsA/AZA/

Pred

8.4 ± 4.7 35.5

(10.1–57.2)

18 (19%) 18 (19%) (14)

/ 1998 2005 Devlin;

Girlanda

London Adult 18 DD Yes CsA/AZA/

Pred

7 (5∼11) 120 2 (11%) 7 (39%) (15, 16)

/ 2001 Takatsuki Kyoto

University

Pediatric 26 LD No TAC >2 25 (3∼69) 6(23%) 16 (25.4%) (17)

/ 2002 Oike Kyoto

University

Pediatric 115 LD No TAC / 4∼96 49(42%) 20 (17%) (18)

/ 2005 Eason New

Orleans

Adult 18 Yes TAC >0.5 6∼12 1 (6%) 11 (61%) (19)

/ 2005 2010 Tryphonopoulos Miami Adult 104 DD Yes TAC/CsA/

SRL

4.1 ± 0.3 7.27 ± 0.28 23(22%) 71 (68%) (20, 21)

/ 2006 2008 Tisone;

Orlando

University

of Rome

Adult 34 DD only

HCV+

CsA 5.3 ± 1.7 63.5 ± 20.1 7 (20%) 26 (76.5%) (22, 23)

/ 2007 Assy Western

Ontario

Adult 26 DD Yes CsA/AZA 4.6 ± 1.8 12 2(8%) 15 (58%) (24)

/ 2009 Pons Murcia Adult 20 DD No CsA 40.8 ± 26.4 47.5 (10–131) 8(40%) 6 (30%) (25)

/ 2013 de la Garza Pamplona Adult 24 DD No TAC/CsA/

SRL

9.3 (6∼13.3) 14(8.5∼22.5) 15 (63%) 2 (8.3%) (28)

2011-

02-003IA

2015 Lin Taipei Pediatric 16 Both Yes TAC 7.8 ± 5.4 40.75 ± 5.98 5 (31%) 6 (38%) (29)

NCT02062944 2019 Levitsky Transplant

Center

Adult 15 Both No SRL 8.1 (4.5∼12) 18

(12∼24)Months

8 (53%) 6 (40%) (32)

CNI, calcineurin inhibitor; CsA, Cyclosporine A; Pred, prednisone; SRL, sirolimus; DD, deceased donor; LD, living donor; LT, liver transplant; IS, immunosuppression; OT, operational tolerance.
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recovered to normal after increased or restarted IS. Another
recipient was withdrawn from the study after IS withdrawal for
violating exclusion criteria. Similar to the results of the adult
study, the time after transplantation was significantly longer in
the tolerance group than in the non-tolerance group, suggesting
that the time after transplantation is an important predictor of
tolerance formation (26). Of 12 OT recipients followed for 5
years, 9 cases were positive for class I or class II DSA, but no cases
resulted in chronic rejection, graft loss, or death. According to the
graft biopsy, there was no progressive increase in inflammation
or fibrosis, suggesting that liver grafts after immune retreat can
maintain stability during a certain period of time (30).

There are also many studies focused on biomarkers that can
predict immune tolerance. Bohne, et al. found that recipients
with spontaneous tolerance show an increased number of natural
killer (NK) cells and γδT cells in peripheral blood. High levels of
hepcidin in liver tissues and ferritin in the serum, increased iron
deposits in hepatocytes, and high expression of the related liver
tissue genes can accurately predict the outcome for a group of
independent patients with IS withdrawal (36). Mazariegos et al.
showed that the ratio of monocytoid dendritic cells (mDC) and
plasmacytoid dendritic cells (pDC) precursors in the peripheral
blood of patients with tolerance increased significantly compared
to the healthy control group and the IS maintenance group
(37). Levitsky et al. also found that, compared with the baseline,
the tolerogenic dendritic cells (tolDC), regulatory B cells (Breg),
and cell phenotypes associated with chronic antigen presentation
in peripheral blood of the OT group was significantly higher
than that of the non-OT group. In addition, gene signatures
in peripheral blood/biopsy tissue showed that 12/14 LTR could
accurately predict tolerance (32). Chruscinski et al. performed
a clinical trial (NCT02541916) for the predictive value of gene
signatures in peripheral blood/biopsy tissue. Preliminary results
suggest that 5 of the 9 patients, consistent with the inclusion
criteria, had discontinued IS for more than 2 years (38). However,
the feasibility of this method still needs to be verified by adequate
prospective, multicenter, large-scale follow-up trials.

Long-term studies on the safety of immunosuppressive IS
withdrawal regimens are inconclusive, and most of them lack
evidence of invasive liver biopsy. However, direct comparisons
of these trials are difficult because of the lack of standardization.
According to the current research results, the acute rejection rate
after IS withdrawal varies from 12 to 76% (Tables 1, 2), but it is
generally moderate and almost reversible. Chronic rejection is
rare (0–6%), and the incidence of graft loss owing to rejection
is extremely low (39, 40). Over time, however, the prevalence
and severity of chronic graft injury such as subclinical rejection,
chronic portal inflammation, borderline hepatitis, and/or fibrosis
(periportal and/or perivenous) would increase (41–51). Ten years
after transplantation, most studies report that normal histology
is present in up to 30% of allografts; bridging fibrosis and/or
cirrhosis may be equally common, accounting for about 60%
(42, 45, 52). The transcriptome analysis of liver tissue revealed
an expression profile very similar to that of T-cell mediated
rejection (53). Notably, more than 90 percent of patients who
stopped IS 20 years after the transplant did not experience
rejection (27). To date, there is no definitive data suggesting that
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progressively abnormal histology leads to loss of liver graft or
death of recipient. However, the OT is not a permanent stable
state, still needed regular inspection and to deal with in time.

Because of the difficulty to conduct prospective, multicenter,
and longitudinal long-term studies on clinical transplant
tolerance, the risk of IS withdrawal in liver transplant
recipients remains uncertain. However, based upon a broad
understanding of liver disease, increased fibrosis in the allograft
indicates the development of portal hypertension and associated
complications. IS withdrawal alone could make recipients at
the risk of re-transplantation after some years, especially for
pediatric recipients. Therefore, there is a wide area of research
for the development of induced liver tolerance, especially with
cell therapies.

HEMATOPOIETIC STEM CELL
TRANSPLANTATION (HSCT) FOR THE
INDUCTION OF LIVER TRANSPLANTATION
TOLERANCE

Mixed hematopoietic chimerism is associated with alloantigen
tolerance, a phenomenon first identified by Owen in freemartin
cattle (fraternal twins sharing placental circulation retain
allogeneic tolerance to each other after birth) in 1945
(54). Subsequently, Kashiwagi and Starzl discovered donor
immunoglobulin in the peripheral blood of liver recipients
in 1969, proposing the concept of chimerism in human
transplantation (55).

In a series of pioneering studies that began in 1961, Till
and McCulloch demonstrated that bone marrow consists of a
group of cells, known as hematopoietic stem cells (HSCs), which
have the ability to self-renew and differentiate into multiple
myeloid cell types (56–58). Afterward, Starzl et al. observed
persistent multilineage hematopoietic microchimera (defined as
<1% donor cells) in both lymphoid and non-lymphoid tissues
of long-lived liver or kidney transplant recipients, including
patients on IS for many years after transplantation in 1993 (59).
Over the past 30 years, many researchers have been exploring
ways to induce tolerance of solid organ transplantation (SOT)
using HSCT. Both autologous and allogeneic HSCT have been
applied to induce transplant tolerance clinically (60–63).

Clinically, hematopoietic stem cells were first harvested from
the bone marrow of the ilium (64). In the 1990s, the protocol to
mobilize stem cells into peripheral circulation with granulocyte
colony-stimulating factor (G-CSF) and isolate from PBMC by
magnetic activated cell sorting (MACS) or flow sorting, thereby
separating CD34+ cells, greatly amplified the clinical application
of HSCT. Subsequent studies show that combination with
chemokine receptor 4 antagonist (AMD3100) and G-CSF can
mobilize stem cells more effectively (65).

Allogeneic HSCT Inducing Chimerism
After lymphoablation of the recipient, transfusion of allogeneic
donor bone marrow can lead to mixed hematopoietic chimerism,
where genetically different donor HSCs are implanted into
the host and differentiate into donor-derived lymphocytes that

coexist with the host. Central tolerance is a key mechanism
of allograft tolerance induced by long-term HSCs (66). When
donor bone marrow is injected into the host that has undergone
lymphoablation, such as total lymphoid irradiation (TLI) and
anti-thymocyte globulin (ATG), HSCs are implanted into the
recipient bone marrow and thymus for differentiation, and the
host immune system is repopulated with various lymphocyte
cells from the donor following by the immunoreconstitution.
The presence of donor progenitor cells in the thymus leads
to the apoptosis of T cells that recognize the donor antigen
expressed by the transplanted organ itself without developing
and donor-reactive T cells would undergo clonal deletion, so
the host can tolerate the allograft (67). The coexistence of host
and donor hematopoietic cells is called chimera, and it is this
chimera state in the host that drives central tolerance. According
to the percentage of hematopoietic cells of donor origin, the
chimerism was divided into microchimerism (donor <1%) and
two forms of macrochimerism: full chimerism (donor ∼100%)
and mixed chimerism (donor >1% but <100%) (68). Although
central tolerance is the primary mechanism for HSCs-induced
tolerance to homo-antigens, it may be incomplete, in part because
not all donor antigens are expressed by HSCs in the host thymus.
Furthermore, T lymphocytes with low affinity for their own
antigens may escape the selection process, thereby entering the
peripheral lymphocyte cycle. In fact, peripheral mechanisms are
needed to maintain immune tolerance when the self-reactive
T cell subsets evade the thymus selection process. In the
transplant environment, a mild pre-treatment regimen designed
to induce chimerism can also control the survival of mature
alloreactive T cells through peripheral regulation mechanisms,
resulting in clone deletion, anergy, or apoptosis of the extra-
thymic alloreactive T lymphocytes (66, 67, 69–71). Persistent
microchimerismmay also be an important determinant for long-
term graft survival and transplant tolerance (72, 73).

Since the mid-twentieth century, scientists have used HSC
transfusion by injecting donor bone marrow to alter host
immune responses in a variety of autoimmunity diseases and
solid organ transplantation (SOT) (74, 75). The ideal state of
clinical transplant tolerance is to combine HSCT with SOT
from the same donor to form a stable hematopoietic chimera
of donor and recipient (76). However, myeloablative therapy
carries significant risks, most notably graft vs. host disease
(GVHD) and severe infections, which are too high-risk to be
applied in liver transplants routinely. Therefore, researchers
investigated protocols for non-myeloablative bone marrow
transplant, including co-stimulatory molecules blockade, low
dose irradiation, T cell depletion by monoclonal antibody,
etc. (77–79). Chimerism has always been the main method of
inducing tolerance in renal transplantation. Clinical studies on
transplant tolerance induced by bone marrow chimerism in
renal allografts have also achieved gratifying results. In 2008,
Kawai et al. reported the first successful application of mixed
chimerism tolerance in human kidney transplantation without
long-termmaintenance of IS (80). The authors then reported that
5 out of 10 kidney recipients had achieved transplant tolerance.
Although the detectable duration of chimerism was transient,
it was observed that donor-specific mixed lymphocyte response
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(MLR) and CTL activity decreased in vitro and FOXP3 mRNA
level increased in vivo (81). Based on the enriching of HSC with
tolerogenic CD8+/TCR− facilitating cells (FC) and the depleting
of GVHD-producing cells, Leventhal et al. performed a clinical
trial in 19 patients with uremia undergoing combined HLA-
mismatched hematopoietic stem cell/kidney transplantation.
Then 12 of them achieved stable chimerism and OT status of
8–48 months without GVHD after IS withdraw (82). Scandling
et al. reported that 16 of 22 HLA-matched patients who had
received the same treatment regimen established a persistent
mixed chimera (>12 months), with successful withdrawal from
immunosuppressants. Renal graft function was stable for up to 7
years after withdrawal, and no incidence of GVHD or rejection
was observed (83).

In the field of liver transplantation, there have been some
case reports and clinical trials with HSCT transfusion. Ringden
et al. reported a liver cancer patient who received HSCT from the
same donor after liver transplantation, underwent preoperative
myeloablation, achieved chimerism, but subsequently died of
opportunistic infection (84). Donckier et al. recruited 5 patients
with advanced hepatocellular carcinoma (HCC) who underwent
living liver transplantation and received donor CD34+ stem
cell transfusion based on the induction regimen of non-
myeloablative therapy. Two patients successfully stopped IS
without allograft rejection. Three patients developed acute
cellular rejection after immunosuppressant withdrawal, two of
which were given steroid pulse therapy, whereas the other was
reintroduced to calcineurin inhibitor (CNI) immunosuppressive
therapy, with no observation of macrochimerism (85, 86).
Tryphonopoulos et al. recruited 45 adults who received
cadaver livers and subsequently underwent transfusion of donor
bone marrow cells on the day of the transplant. IS were
discontinued for more than 3 years, starting 3 years after
surgery. Acute rejection occurred in 69% of the treated patients,
and immunosuppressive therapy was successfully withdrawn
in 22.2% of the treated recipients. However, there was no
significant increase in the success of withdrawal and chimerism
levels, compared to patients who did not receive bone marrow
transplants (20). Liver transplantation is mainly performed from
cadaver donors, and recipients generally suffer from severe
diseases during the perioperative period, as well as postoperative
coagulation and circulatory dysfunction, which may lead to
serious infection and tumor recurrence.

Surprisingly, Alexander et al. reported a successful case that
a 9-year-old girl with type O, RhD negative underwent RhD
blood type conversion to positive after receiving the liver graft
of a male donor with type O, RhD positive. Furthermore, CD19
+ B cells (XY) were found in the sample of bone marrow
puncture. Peripheral blood lymphocyte analysis showed that
94% of T cells came from male and 6% from female; 98% of
the B cells came from male and 2% from female; 100% of
the granulocytes and NK cells came from male. These results
support the formation of chimera. When IS was withdrawn 14
months after transplantation, both the graft and the recipient
were healthy for 5 years without GVHD or acute rejection. This
indicates that fully tolerated chimera can still occur under certain
conditions (87).

For the application of allogeneic HSCT in liver transplant
tolerance and chimerism, there are some challenges to overcome,
e.g., the risk of serious infection, coagulation and circulatory
dysfunction following the myeloablative, the tumor recurrence
and the permanence of existence in recipient.

Autologous HSCT Inducing Chimerism
Autologous HSCT is performed by pre-collecting and cryo-
preserving autologous bone marrow or peripheral blood stem
cells isolated from the patient and then re-transfusing after
myeloablative treatment to reconstruct the immune system,
which could lead to a more tolerant immune system (88, 89).
In autologous stem cell transplantation, the cells come from the
recipient, which theoretically prevents the possibility of immune
rejection or GVHD. Moreover, autologous bone marrow or
peripheral stem cells are easier to obtain and store.

Although there are some differences between allogeneic and
autologous HSCT with regard to tolerance mechanisms, they
both attempt to reconstruct the recipient immune system and
achieve immune tolerance through “re-education.” The basic
principle of autologous HSCT is to first eliminate reactive and
memory immunity and then regenerate the immune system;
that is, to exhaust autoreactive and memory T and B cells
through a myeloablative or non-myeloablative regimen, followed
by reconstruction of immune tolerance (89, 90). The immune
monitoring analyses have shown that this can recreate new
auto-tolerant immune T and B cell banks, enhance immune
regulation mechanisms, and induce changes in the recipient’s
anti-inflammatory environment (63, 91–95). Muraro et al. found
a large number of new T cell clones emerged after autologous
HSCT in patients with multiple sclerosis (MS), substituting for
the original T cell receptor (TCR) bank and showing a greater
diversity of TCR spectrum (63). The immune cell gene expression
profiles showed that the number of CD3 + cells remained low
after autologous HSCT, and the number of CD8 + cells could
return to normal after 3 months postoperatively (92). Another
important phenotypic observation is that the recipient’s CD4 +

CD25 + FoxP3 + regulatory T cells (Tregs) were significantly
increased (96–98) and so were the CD8 + Foxp3 + Tregs (99),
compared to the preoperative state. The ratio of Bregs increased
briefly after autologous HSCT and remained at a higher level for
at least 2 years after transplantation, suggesting that Bregs may
be involved in the reconstruction of self-tolerance after AHSCT
(95, 100). In addition, a variety of cells, such as IL-2, IL-4, IL-6, IL-
8, IL-10, IL-17, IL-18, IFN-γ, TNF-α, and TGF-β play an essential
role in immune reconstruction and regulation (95, 97).

In recent years, autologous HSCT has been used in clinical
trials to eliminate various types of refractory autoimmune
diseases such as multiple sclerosis, systemic sclerosis (SSc),
systemic lupus erythematous (SLE), rheumatoid arthritis (RA),
Crohn’s disease, juvenile arthritis, and type 1 diabetes (T1D),
presenting better results than traditional therapies and showing
promising prospects for long-term remission of autoimmune
diseases without IS (90, 93, 95, 101–105). At present, autologous
HSCT has also been widely used in various types of liver
cirrhosis, improving liver function in varying degrees (106–109).
Coupled with the study of transplant animalmodels, these studies
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provide abundant theoretical basis for expanding autologous
HSCT application in organ transplantation (110–112).

In Toronto University (Canada), Levy et al. have performed a
clinical trial on autologous HSCT for allogeneic organ transplant
tolerance (ASCOTT) (NCT02549586) (38). Six liver transplant
recipients were recruited, five of whom were enrolled. The
HSCs of patients were mobilized, purified, and cryopreserved
ahead of liver transplant. After immune ablation (Busulfan
+ Cyclophosphamide + rabbit anti-thymocyte globulin), the
patients received autologous HSCT and liver transplantation.
IS was withdrawn in five patients with evidence of deletion of
alloreactive T cell clones. Two of them were still healthy at 406
and 518 days after HSCT; one died of heart failure at 212 days,
one patient received re-transplantation at 166 days after HSCT
owing to complications of venous occlusive disease, and one
patient died of erythrocytic syndrome at 87 days after HSCT.
However, non-hematological toxicity in grades 3–4 was found
in almost all patients. It is suggested that there is a certain
application prospect of HSCT-induced immune tolerance after
liver transplantation, but the potential toxicity is an important
problem to be solved.

CD4 + REGULATORY T CELLS IN LIVER
TRANSPLANT TOLERANCE

Under physiological conditions, Tregs account for 5–10% of
CD4 + T cells in peripheral blood. Tregs are characterized by
high stable expression of CD25 and FoxP3, and are divided into
natural regulatory T cells (nTreg) produced in the thymus and
peripherally induced regulatory T cells (iTreg) (113). Modern
research shows that CD4 + Treg is the key to control self-
tolerance. The combination can induce peripheral tolerance to
autoantigens and alloantigens through a variety of mechanisms,
mainly cell-to-cell contact-induced cell lysis, local depletion of
IL-2, inhibition of DC maturity, downregulation of DC function,
secretion of immunosuppressive cytokines (such as IL-10, IL-35,
and TGF-β), etc. (114). In addition, Tregs can migrate to the
inflammation site, and their inhibitory activity is usually located
in the inflammation site, without significant effects on overall
immunity (115).

In rodent models of liver transplantation tolerance, Tregs
are present in increased proportion in liver grafts and are
involved in the induction of liver tolerance (116, 117). Relevant
clinical studies have also shown that, in OT liver transplantation
recipients, the proportion of Tregs in peripheral blood and liver
increases, which shows a protective effect on liver allografts (118,
119). Therefore, the use of Tregs to mediate transplant tolerance
is an important part of transplant immunology research.

Treg adoptive infusion is a method to induce tolerance,
where the principle is to tilt the immune response toward Treg
dominance, rather than to cause rejection of T effector cells, in
order to reduce the dependence of patients receiving solid organ
transplantation on immunosuppressant drugs.

It is now generally accepted that the best method to make
Treg clinically is to effectively expand it in vitro and maintain

high purity and inhibitory activity (115). Under certain culture
conditions, human Treg can be expanded to 100–1,000 times in
2 weeks (120, 121). The required cell dose varies depending on
the type of disease and the presence or absence of combination
therapy (115, 122, 123). Treg separation and purification
methods mainly include MACS and flow cytometry sorting.

Some researchers have used the chimeric antigen receptor
(CAR) technology to produce donor antigen-specific Treg
(CAR-Treg) and can overcome the limitation of alloantigen-
stimulation-based protocols in vitro. In these studies, CARs could
be developed to redirect Tregs toward a specific donor leucocyte
antigen (HLA) class I molecule (HLA-A2). Unlike HLA class
II, the selected donor HLA class I is expressed ubiquitously in
grafts. Compared with polyclonal Tregs, CAR-Treg could have
better safety, stability, and effectiveness in theory and have strong
therapeutic potential to protect allograft (124–127).

Clinical trials of various autoimmune diseases and GVHD
have confirmed the safety and feasibility of adoptive Treg
infusions (128–131). Clinical reports of adoptive infusion of Treg
in kidney transplant recipients have demonstrated the safety of
this method in solid organ transplantation, and, through the
method of isotope plutonium labeling (3H), it has been found
that Tregs can still be detectable for up to 1 year after infusion
(132, 133).

Currently, multiple transplant centers around the world are
conducting clinical trials of liver transplantation Treg treatment.
Todo et al. from the Hokkaido University in Japan, studied
10 liver transplant recipients who received a single dose of
donor antigen-specific Treg. Tregs from recipient lymphocytes
were amplified by co-culture with irradiated donor cells in the
presence of anti-CD80/86 monoclonal antibodies in vitro for 2
weeks. CD4 + CD25 + FoxP3 + Tregs were amplified 3–6-fold
to 28.1% of CD4 + cells and still maintained inhibitory activity.
On the 13th day after the operation, the cells were infused back to
the recipient with 0.23∼6.37 × 106 cell/Kg intravenously. IS was
gradually reduced during 6 months and withdrawn 18 months
postoperatively. These recipients were subjected to rigorous
monitoring, including liver biopsies, T cell activity assessments,
and level of donor-specific antibodies. After 16 to 33 months
of follow-up, 7 patients achieved OT without rejection and 4
remained IS-free for 24 months. Mild rejection occurred in 3
patients, and low dose IS was maintained afterward (121).

Safinia et al., at London University (UK), performed a
combined I/IIa clinical trial ThRIL (NCT02166177) for the
application of Treg immunotherapy in the field of liver
transplantation. Tregs were isolated from liver transplant
recipients by Good manufacturing practice (GMP) separation
technology based on CliniMACS sorting. IL-2 and rapamycin
were used for Tregs expansion in vitro. A stable Treg population
(purity of CD4 + CD25 + FOXP3 + > 95%) can be
obtained in 36 days, reaching a sufficient number for its clinical
application (120). With stimulation by rapamycin, the amplified
Tregs could maintain high levels of FOXP3, CD127lo, and
CTLA4, and, with continued expression of CD62L and CXCR3,
ensure the stability and functionality of Treg amplification,
which could prevent Treg from transforming into Th17 cells
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in the presence of pro-inflammatory cytokines (134). Nine
liver transplant recipients have received autologous polyclonal
Treg infusions, showing that the procedure is safe, does not
increase the incidence of infection or cancer, and can temporarily
increase circulating Treg pools and reduce anti-donor T cell
reaction (135).

The current research has opened the door for adoptive
infusion of Treg in liver transplantation induction therapy,
showing good application prospects. Subsequent research may
need to focus on isolation purity, functional induction, CAR-
Treg, and clinical induction protocols for OT of Treg in vitro.

REGULATORY DENDRITIC CELLS IN
LIVER TRANSPLANT TOLERANCE

In 1973, Steinman et al. found a cell type with a “star shape,”
or dendritic morphology, found in the preparation of adherent
spleen cells and named dendritic cell (DC) (136). It has been
recognized that DCs are a group of highly heterogeneous cell
populations derived from the myeloid or lymphoid, which
are widely distributed in all tissues and organs and are the
most powerful APC in the body, regulating both innate and
adaptive immunity and playing an important role in promoting
self-tolerance in healthy homeostasis (137, 138). In humans,
according to their cell morphology and function, DCs are divided
into two mean lineages of CD11c + conventional DCs (cDCs)
(HLA-DR+CD11c+) and CD11c- plasmocyte-like DCs (pDCs)
(HLA-DR+ CD123+) (139).

In 1996, Steptoe and Thomson defined the DC population that
can induce immune tolerance in vivo as tolerogenic DC (tolDC)
(140). However, it is still unclear whether tolDCs constitute a
particular lineage or just reflect a specific activation state of
DCs (141). In 2003, Sato et al. named the tolerogenic DCs
they cultured in vitro as "regulatory DCs (regDC),” because
they had the ability to inhibit T cell activation, induce T cell
anergy, and induce Tregs. They could also maintain strong
immunoregulatory properties in inflammatory conditions and
have the potential to resist multiple immune diseases (142,
143). This nomenclature has also been widely used in classic
tolerogenic DCs and their derivatives (144–148). Currently, two
methods of naming such tolerant DCs are both widely used.
Over the past 20 years, a large number of studies have found
that regDCs could be used to treat various autoimmune diseases
in animal models, such as T1D, SSc, RA, Cohn’s Disease, etc.
(149–152), and to induce tolerance of in GVHD and allografts
(115, 143, 153, 154). They also have good clinical application
prospects in the field of liver transplant tolerance (139, 155).

The phenotypic characteristics of regDC include low
expression of MHC class I and II molecules and T cell co-
stimulatory molecules (CD80/B7.1, CD86/B7.2, CD40, OX40L),
T cell co-inhibition of ligands (such as programmed death
Ligand 1 PD-L1), high expression of death-inducing ligands
(FasL), and low expression of adhesion molecules (156, 157).
Unlike immature DCs, there are indications that tolerability of
regDCs is the result of a specific transcription program, rather
than the preservation of immature status (158).

RegDCs retain the ability to present antigens to specific
T cells, and they can also build up peripheral tolerance
through different immunoregulatory mechanisms. These related
promotion mechanisms include the following:

• T cell anergy and T cell clonal deletion (159, 160);
• Apoptosis in naive and memory T cells through

increased expression of Fas (CD95)/FasL and indoleamine
2,3-dioxygenase (IDO) (161, 162);

• Inducing and expanding regulatory lymphocytes, including
Tregs (163, 164) and Bregs (165);

• Producing double negative (CD3 [+] CD4 [−] CD8 [−]) T
cells (166);

• Development of tolerance by increasing the expression and
release of immune regulatory molecules, such as the anti-
inflammatory cytokines IL-10, TGF-b, NO, and HO-1 (167–
170), the apoptosis-inducing PD-L 1, PD-L2, and human
leukocytes Ag-G (HLA-G), and the tumor necrosis factor
(TNF) (161, 164, 171, 172).

Recent studies have shown that exosomes released by regDCs are
also involved in the induction and maintenance of peripheral T
cell tolerance (172–174).

Although DCs are widely distributed in tissues, their
proportion is very low. Immature DCs (imDCs) are tolerogenic
in the body, but they are also unstable and may differentiate
into immunogenic DCs in inflammatory conditions. Therefore,
it is very important to establish a mature system for regDC
culture in vitro to obtain a sufficient number of functional and
stable regDCs.

DCs in the immune system act as “immune checkpoints,” with
the key role of turning immune signals on or off. A large number
of anti-inflammatory and immunosuppressive mediators can
promote tolerogenic phenotypes by interfering with DC
differentiation or activating checkpoints (157). Researchers
have explored different strategies for generating stable regDCs,
some of which have been performed in clinical trials, but
a consensus hasn’t been reached on the best approach
yet (115, 157, 172, 175, 176).

Currently, regDCs in vitro are mainly derived from rodent
bone marrow cells and human peripheral blood mononuclear
cells, as it is easier and less invasive than to operate in humans,
and abundant DC precursors are also available. Granulocyte-
macrophage colony-stimulating factor (GM-CSF) ± IL-4 can
be added to fresh or frozen blood mononuclear cells or
their precursors to promote the differentiation of myeloid
tolDCs (143, 175). Then, one or more anti-inflammatory and
immunosuppressive agents should also be added to inhibit
their maturation and promote tolerance. These agents include
anti-inflammatory cytokines (such as IL-10, TGF-β, TNF-α),
anti-inflammatory/IS drugs (CNI, rapamycin, mycophenolate,
corticosteroids, or aspirin), Vitamin D3, Prostaglandin E2,
retinoids, and HLA-G, tissue factors, such as hepatocyte growth
factor (HGF) and vasoactive intestinal peptide (VIP), etc. (139,
143, 153, 177–180).

In rodent and non-human primate transplantation models,
adoptive infusion of DCreg prior to transplantation can prolong
the survival of allografts and promote specific tolerance to
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the graft either alone, or in combination with short-term
IS (144, 154, 181–183). Clinical trials on the safety and
effectiveness of regDC have been conducted for a variety of
autoimmune diseases, including T1D, RA, multiple sclerosis
(MS), Crohn’s Disease (184–188) (NCT02618902, NCT02903537,
NCT01352858, NCT00445913), and renal transplant rejection
(137) (NCT 0364265, NCT02252055). So far, although there
are no long-term results, it has been confirmed that a regDC
regimen is safe and feasible without significant side effects, and
that the patient’s compliance is good. These results provide a
good theoretical guide for a regDC therapeutic schedule for
liver transplantation.

In Pittsburgh University (USA), Thomson et al. performed a
single-center, phase I/II clinical trial on regDC in living donor
liver transplantation (NCT03164265). The study recruited low-
risk living donor liver transplantation (LDLT) recipients, isolated
monocytes from peripheral blood from potential living organ
donors, and cultured cells with GM-CSF, IL-4, VitD3, and IL-
10 for 7 days in vitro. GMP-grade donor-derived regDCs could
be induced (153, 189), and a single intravenous infusion of 2.5–
10 × 10 6 donor-derived regDCs/kg was administered 7 days
before the surgery. Meanwhile, half a dose of mycophenolic
acid (MPA) was given, without ATG or Ab. MPA and Tac
were administrated within 6 months after transplantation. At
6 months after transplantation, recipients who meet specific
criteria [non-rejection and liver function allowance tests (LFTs)]
may gradually discontinue MPA. TAC withdrawal assessments
are performed 1 year after transplantation and then discontinued
gradually to achieve complete IS withdrawal 18 months after
liver transplantation. The recipients will be followed up for 3
years from IS withdrawal. During the follow-up period, clinical
data and peripheral blood were regularly collected and analyzed
to evaluate changes in liver function, renal function, donor-
specific antigen (DSA) levels, cardiovascular risk factors, and
quality of life. Meanwhile, liver biopsy is to be performed after
1 and 3 years from the withdrawal of IS (146). This study
is still in the research stage, but we are looking forward to
the results.

Autologous DCs seem to be more feasible than donor-derived
DCs, especially for liver transplantation from deceased donors, as
it can avoid the risk of sensitization. Autologous regDC infusion
with or without donor antigen pulse has shown good tolerogenic
effects in animal transplant model studies (179, 190). Some
studies have shown that autologous tolDC is more effective than
donor DC in delayed transplant rejection (180, 191). Under the
leadership of the European Union, in Nantes University (France),
Moreau A. et al. conducted a Phase I/II (feasibility/safety) “one
study” (www. onestudy.org) on kidney transplant recipients with
autologous tolDCs infusion (NCT0225055) (192), and its clinical
effects are still being observed.

There are few clinical trials about regDC in the induction
of liver transplantation tolerance, and still in the observation
stage up to now. As a kind of powerful immune-regulating cell,
the prospect of regDC is still thrilling in liver transplantation

tolerance. For the successful conversion from preclinical
researches to clinical application, researches still have
many issues to be studied extensively, such as the further
optimization of the regDC induction scheme to extend its
half-life, the stability of immunomodulatory function, and the
administration scheme of IS. However, the further exploration
of methods to induce immune tolerance will also improve our
understanding of the biological characteristics of DC and the
mechanisms of tolerance.

SUMMARY AND FUTURE DEVELOPMENT

Immune tolerance has always been the “holy grail” in the field
of organ transplantation. On the basis of a large number of
preclinical studies, various cell therapies could hold promising
prospects for inducing liver tolerance. This article reviews the
related research and progress regarding spontaneous tolerance
and the HSCT, Tregs, and regDCs strategies in the field of
liver transplant tolerance. There are many other cells not
reviewed that may also have the potential to induce liver
transplant tolerance, such as mesenchymal stem cells, regulatory
macrophages, regulatory B cells, and bone marrow-derived
immunosuppressive cells. At present, the clinical trials of various
cell therapies are still in the early stages, and most of them are
single-center studies. Thus, there is no clear clinical effect, the
purity and stability of cell-induced therapy and its safety for long-
term recipients should still be explored for a long time, as many
issues need to be observed.

The immune system is extremely delicate and complex. It may
be difficult to achieve immune tolerance using only one type of
tolerant cell or one mechanism. It may be necessary to consider
different mechanisms in combination with different immune
cells or drugs. The development of immunologic surveillance and
tolerance markers is also critical. This could develop personalized
tolerance induction programs for transplant recipients and could
guide the timing of immunosuppressive drug withdrawal or early
detection of rejection, infection, or tumors.

With the in-depth development of multi-field, multi-
disciplinary, and multi-level research, the application of various
new experimental methods can provide more possibilities and
theoretical guidance for liver transplant tolerance. With the
development of multi-center clinical trials, we are optimistic
about the good prospects for liver transplant tolerance.
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