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Nonlinear optical processes, which are of paramount importance in science and technology, involve the
generation of new frequencies. This requires phase matching to avoid that light generated at different
positions interferes destructively. Of the two original approaches to achieve this, one relies on birefringence
in optical crystals, and is therefore limited by the dispersion of naturally occurring materials, whereas the
other, quasi-phase-matching, requires direct modulation of material properties, which is not universally
possible. To overcome these limitations, we propose to exploit the unique dispersion afforded by hyperbolic
metamaterials, where the refractive index can be arbitrarily large. We systematically analyse the ensuing
opportunities and demonstrate that hyperbolic phase matching can be achieved with a wide range of
material parameters, offering access to the use of nonlinear media for which phase matching cannot be
achieved by other means. With the rapid development in the fabrication of hyperbolic metamaterials, our
approach is destined to bring significant advantages over conventional techniques for the phase matching of
a variety of nonlinear processes.

N
onlinear frequency conversion is a technique to generate electromagnetic radiation at frequencies not
present in the incident field1,2. An example is second harmonic generation (SHG) whereby a fundamental
frequency (FF) v is doubled via the interaction with a nonlinear medium2. Since the phase of the SH wave,

generally, does not have the same position dependence as that of the FF wave, SH light generated at different
positions may interfere destructively. Therefore, a phase matching condition must be satisfied so the SH fields add
in phase. For SHG, it requires that k2v 2 2kv 5 0, where kv,2v are the wavenumbers of the FF and SH.
Since k 5 nv/c, with n the refractive index and c the speed of light in vacuum, this requirement is equivalent to
n(2v) 5 n(v).

Generally, phase matching requirements are not satisfied; for normal dispersion, for instance, n(2v) . n(v). In
quasi-phase matching (QPM), the nonlinear properties are made to vary periodically, typically by reversing the
sign of the nonlinear coefficient, so that efficient frequency conversion can be achieved3. However, the periodic
modulation of crystal properties required for QPM, usually achieved by poling, is often challenging and can be
used only for a limited number of materials3. Alternatively, in birefringent phase-matching, the refractive index
differences due to dispersion is balanced by that between the ordinary and extraordinary wave in a birefringent
medium, typically by appropriately choosing the propagation direction in the crystal. The birefringence can either
be natural or can be due to form birefringence4,5. However, the birefringent phase matching requires that the
difference between the extraordinary and ordinary refractive indices for the FF and SH must be larger than that
due to dispersion. Since the classical birefringence is typically small, this method cannot be exploited in arbitrary
nonlinear media.

The advent of metamaterials — artificially engineered materials with exotic properties — has opened wide
opportunities for nonlinear optics6, offering novel approaches for phase matching7. These include the use of
metamaterials with dual resonances, matched for SHG8,9; generation in reflection, exploiting negative refractive
indices10–14; dispersion engineering in arrays and transmission lines15–17; as well as boosting conventional QPM
techniques18,19.

Here, we systematically explore the novel opportunities towards a birefringent-like phase matching in hyper-
bolic metamaterials, or indefinite media, materials which behave like a metal in one direction but like a dielectric
in another20–23. Implementations of hyperbolic metamaterials are available as alternating layers of metal and
dielectric24, which behaves like a metal in the direction parallel to the layers and as a dielectric orthogonal to it, or
as wire media25 or plasma wires26 in a dielectric background, which behave like a metal in the direction of the wires
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and like a dielectric orthogonal to them. For these composites to
mimic uniform media, the transverse dimensions of the structural
elements need to be much smaller than the wavelength of the
radiation.

Certain nonlinear effects in hyperbolic metamaterials have been
addressed already27–31, with emphasis on non-local enhancement27,
power-dependent transmission28, polarisation switching29 and all-
optical modulation30. In particular, SH processes were theoretically
and numerically analysed31 for layered hyperbolic metamaterials
implemented with silver layers and metal oxides; assuming a
point-dipole excitation near the surface of such material, the authors
predicted a formation of double-resonance cones and discussed their
implications on SH imaging31. Nonetheless, a systematic investiga-
tion of the various phase-matching opportunities in hyperbolic
metamaterials was so far not undertaken.

Here we argue that unusual dispersion in layered hyperbolic meta-
materials, see Fig. 1(a), provides a number of promising means to
realise phase matching. It is true that in the typical implementations
of layered hyperbolic media the dissipation is relatively high due to
the presence of the metal. Nonetheless, our aim here is to investigate
whether or not it is worth considering hyperbolic media for purposes
of phase matching. In most of this paper we neglect losses so as to be
able to concentrate on the phase matching aspects. However, we give
an example showing that the dissipation length can be larger than the
beat length of the FF and SH, thus demonstrating that the novel
dispersion of layered metamaterials may be exploited for phase
matching of SHG.

In hyperbolic media, the isofrequency surface, which maps out all
allowed k-vectors for a given frequency, is hyperbolic, see Fig. 1(b),
whereas in naturally occurring birefringent media it is elliptical. This
allows, in principle, for propagating waves with arbitrarily large
wavenumbers. If a material is hyperbolic at the fundamental fre-
quency, the large wavenumbers accessible at that frequency should
guarantee the possibility of compensating for any variation in
refractive index due to dispersion at the second harmonic frequency.
However, hyperbolic materials are highly dispersive, in particular at
optical frequencies, so their practical implementation requires a
more detailed and careful analysis.

This paper is organised as follows. First, we carry out a systematic
analysis of the frequency-dependent shape of the normal surfaces of
layered hyperbolic media using homogenisation, which ignores the
spatial dispersion in these media. We then analyse all possible com-
binations of polarisation for elliptic and hyperbolic regimes that can
occur at the FF and SH. From this we identify a small subset of
configurations for which phase matching is achievable. Next, we
use a rigorous transfer matrix method to confirm that phase match-
ing is achieved beyond the effective medium approximation. Finally,
we provide a realistic example with practically available materials,
and show that phase matching is feasible in spite of a noticeable
dissipation, and even when the dispersion would not be sufficient
for a classical birefringent scheme.

Results
Normal surfaces of layered media. For the layered geometry shown
in Fig. 1(a), and defining the z-axis of our cartesian coordinate
system to be perpendicular to the layers, the permittivity tensor e
is diagonal with the components

exx~eyy~pedz 1{pð Þem, ð1Þ

ezz~ pe{1
d z 1{pð Þe{1

m

� �{1
, ð2Þ

provided kv,2vd=1, with d the period. Here em,d are the
permittivities of the metal and dielectric respectively, and p is the
dielectric volume fraction. According to the standard theory for
plane waves in uniaxial media, for ordinary (TE) waves, n~

ffiffiffiffiffiffi
exx
p

and for extraordinary (TM) waves,

n~
cos2h

exx
z

sin2h

ezz

� �{1=2

: ð3Þ

where cos h 5 kz/jjkjj. This equation may be cast in the form

kx=k0ð Þ2z ky
�

k0
� �2

ezz
z

kz=k0ð Þ2

exx
~1, ð4Þ

where k0 5 v/c. The solution set in k/k0 of Eq. (4) represents the
surface formed by revolving a conic section about the z-axis, which
suggests the threefold typology illustrated in Fig. 1(b): borrowing
the geometers’ nomenclature, a normal surface is (i) north-south
hyperbolic (NS) if exx . 0 . ezz; (ii) east-west hyperbolic (EW) if
ezz . 0 . exx; and (iii) elliptical if all diagonal components are
positive. The medium is metallic if all diagonal elements are
negative. The metamaterial literature also applies the term cut-off
to elliptical media and anti-cutoff to EW. For our purposes, it is
necessary to introduce the third category of NS: to give one
example of an important difference between NS and EW media,
ordinary waves propagate in the latter but not the former. It is also
desirable to use nomenclature that draws attention to the shape of the
medium’s normal surfaces, since our problem ultimately reduces to
that of finding intersections of these surfaces. Matching extraordinary
FF with extraordinary SH is possible because normal surfaces of
different types do intersect, which we demonstrate presently.

The same combination of dielectric and metal may exhibit normal
surfaces of all three types, depending on frequency, as Figs. 2(b)–(d)
illustrate. The figures show how the dispersion relations of homoge-
nized layered media with different fill fractions vary with frequency.
The dispersion of the constituents, taken here to be GaAs and gold, is
shown in Fig. 2(a). Anomalous dispersion is ignored in calculating ed,m

in order to make Fig. 2 represent clearly the qualitative features that
are common to all normally dispersive materials. We thus assume, for
simplicity, that (i) em and ed are normally dispersive; and, in addition,
that (ii) ed . 0 . em at all frequencies. It follows from Eqs. (1) and (2)
that in general a layered medium is EW at low frequencies, NS at high
frequencies and elliptical or metallic in the intermediate range between
these two. To formalise the meaning of ‘‘low’’, ‘‘intermediate’’ and
‘‘high’’ in this context, the figure marks three defining frequencies: the
critical frequency vc where ed 5 2em, the singular frequency vs at which
ezz diverges, and v0, where exx 5 0. The medium is NS when v . vs,
v0, EW when v , vs, v0, and elliptical when v0 , v , vs. Whether
the medium behaves elliptically or like a metal in the intermediate
regime depends on the fill fraction of dielectric (p), a dependence shown
in the progression of Fig. 2, (b)–(d). If p , 50% then vs , vc , v0 and
thus the intermediate regime is metallic, while p 5 50% implies vc 5 vs

5 v0 and hence that there is no intermediate regime, and p . 50%
implies that v0 , vc , vs and the intermediate regime is elliptical.

Phase matching in layered media. Homogenization regime. The
results from the above section restrict the possibilities of

Figure 1 | (a) Schematic of a layered hyperbolic medium with coordinate

axes; (b) isofrequency surfaces showing: (i) north-south (NS) and (ii) east-

west (EW) hyperbolic; (iii) elliptical.
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hyperbolic phase matching to four cases, schematised in Table 1 and
illustrated in Fig. 3. A fifth case (elliptical FF with NS SH) can be
eliminated because the minimum phase index at the SH exceeds the
maximum at the FF. We show below that solutions to the phase
matching condition must exist for some h in either (a) or (c), as
well as in cases (b) and (d) for any combination of normally
dispersive dielectric and metal.

Cases (a) and (c): In these cases we seek general conditions under
which two hyperbolic normal surfaces intersect. Noting that a hyper-
bola is asymptotically a straight line passing through the origin, the
hyperbolae intersect if and only if the limb that approaches its
asymptote from below has the steeper gradient. It follows from

Eq. (4) that the gradients of the asymptotes are given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exx=ezzj j

p
and so the necessary and sufficient condition for the existence of an
extraordinary-extraordinary matching angle is

exx vð Þ
ezz vð Þ

����
����wv exx 2vð Þ

ezz 2vð Þ

����
���� ð5Þ

with ‘‘,’’ for (a), and ‘‘.’’ for (c). The right-hand side of Eq. (5) is
guaranteed to vanish when 2v R v0, with the left hand side remain-
ing positive, and it is possible to make this approach from above in
the NS SH regime. In contrast, it is not possible to make the left hand
side vanish in a similar way and remain in the EW SH regime. A
second solution in case (c) involves the ordinary SH mode, which is
not possible in case (a) because ordinary modes do not propagate in
EW media.

Case (b): We now seek general conditions for the intersection
between hyperbolic FF and elliptical SH normal surfaces. We make
use of three facts: that the difference between the FF and SH phase
indices varies continuously with propagation direction; that the
phase index of the FF extraordinary mode is bounded from below
but unbounded from above; and that the phase index of the SH
extraordinary mode is bounded from above. We write n eð Þ

v hð Þ and

n eð Þ
2v hð Þ for the extraordinary phase indices of the FF and SH respect-

ively at angle h from the z-axis, and let ha be the angle between the
EW asymptote and the z-axis (i.e., the angle at which Eq. (2) is
singular). The assumption that the constituents are normally dis-
persive implies, on differentiating Eq. (2) with respect to v, that

n eð Þ
v 900ð Þ{n eð Þ

2v 900ð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ezz vð Þ

p
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ezz 2vð Þ

p
v0: ð6Þ

Further, from Eq. (3), as h R ha,

n eð Þ
v hð Þ{n eð Þ

2v hð Þ??: ð7Þ

The intermediate value theorem implies that for some h0, nv(h0) 5

n2v(h0). Examining Fig. 3(b), the existence of a solution is intuitive

Figure 2 | Dispersion of the permittivities of (a) GaAs (ed; Ref. 34) and Au (em; Drude model with plasma frequency 2.1 3 1015 Hz), compared with exx

and ezz of a layered medium containing (b) 40%, (c) 50% and (d) 60% dielectric.

Table 1 | The four different possibilities which may lead to phase
matching of SHG in layered metamaterials

Case FF SH

(a) EW EW
(b) EW elliptical
(c) EW NS
(d) NS NS

www.nature.com/scientificreports
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on noting the connection between the kx intercepts and the disper-
sion of the medium.

Case (d): The final case we consider involves matching an NS FF
with an NS SH and differs from case (a) in that advantage may be
taken of propagating ordinary modes. The condition on the existence
of a phase matching angle is that the minimum phase index of the FF
extraordinary mode is less than the uniform phase index of the
ordinary SH. Eq. (4) shows that for NS (exx . 0) the lower bound
on n is

ffiffiffiffiffiffi
exx
p

. For the SH ordinary mode, n~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exx 2vð Þ

p
. The function

exx, being the arithmetic mean of two monotonic increasing func-
tions, is also monotonic increasing, that is,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exx 2vð Þ

p
w

ffiffiffiffiffiffiffiffiffiffiffiffiffi
exx vð Þ

p
,

and so a matching angle is guaranteed to exist.

Beyond the effective medium approximation. The homogenisation in
Eqs. (1)–(2) assumes that the effective e is independent of k, and we
now present a Kronig-Penney model that relaxes this assumption, in
order to confirm the results obtained from homogenization and to
perform numerical calculations. This approach also allows us to
include the effects of dissipation. Working in the same coordinate
system as in Fig. 1, we treat the structure as infinitely periodic, which
implies that the Bloch condition holds, E(z 1 d) 5 exp(ikzd)E(z)
with kz the Bloch vector and d the spatial period. In this section we
concentrate on the most interesting case where both the FF and SH
are extraordinary waves. Knowing the boundary conditions imposed
by Maxwell’s equations at the interface between metal and dielectric
gives us, through the matrix transfer method, a second relation
between E(z 1 d) and E(z), which together with the Bloch condition,
allows kz to be found in terms of kx and v according to the equation32:

cos kzdð Þ~cos pNdð Þcos 1{p½ �Nmð Þ{

{
1
2

em

ed

k dð Þ
z

k mð Þ
z

z
ed

em

k mð Þ
z

k dð Þ
z

 !
sin pNdð Þsin 1{p½ �Nmð Þ,

ð8Þ

with Nd,m~k d,mð Þ
z d and k d,mð Þ

z ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v=c½ �2ed,m{k2

x

q
. As k d,mð Þ

z ?0, kz

approaches the value predicted by homogenisation. Numerical

comparison showed the discrepancy to be less than 2% when
kz=k0ƒ1.

To plot the dependence of solutions to Eq. (8) on the material
parameters ed,m, we fix em and the geometrical parameters d and p,
and let ed be a free variable. For our purposes, we require ed at the FF
and SH. The k space is also effectively two dimensional, since the
solutions are axially symmetric about kz. Hence, Eq. (8) maps from
coordinates in one plane, the space of values of ed, to another, k space,
a mapping which we can visualise by plotting ed coordinate curves in
cartesian k space, as in Figs. 4(a)–(d). In these figures, the dashed
curves labelled with calligraphic numerals indicate constant FF ed

and the solid curves constant SH ed. Each curve plotted represents a
unit increment. The rectilinear axes show the k solution correspond-
ing to a given permittivity coordinate. Dashed diagonal lines indicate
the matching angle with respect to the z-axis. The metal constituent
is silver, with permittivities taken from tabulated values. Panels (a)
and (c) take the FF to be 1064 nm, while (b) and (d) likewise
1550 nm. Panels (a) and (b) set the fill fraction p 5 0.85, whereas
in panels (c) and (d), p 5 0.75. One may read off solutions for any
choice of dielectric; the figures represents Eq. (8) in complete gen-
erality in this respect.

As an illustrative example known in the literature33, we select
AgGaS2 which has er vð Þ^6:0 for FF 1064 nm, and er 2vð Þ^6:9 at
the SH. By locating the coordinate (6.0, 6.9) in e space, Fig. 4(a) shows
the matching solution to be kx=k0^2:8, kz=k0^0:8 (circled), with
matching angle 75u. The double solid curve shown in Fig. 4(a) marks
all points where the FF and SH permitivitties are equal, providing an
upper bound on matching angles. In contrast to elliptical media, the
more dispersive the dielectric, the closer the matching angle is to the
normal. Again, the phase matching obtained here is between extra-
ordinary waves for both, FF and SH, and is thus not birefringent
phase matching.

Fig. 4(b) is similar to Fig. 4(a) but is for a FF of 1550 nm, leaving all
other parameters to be the same. This changes the metal permittiv-
ities from em(v) 5 258, em(2v) 5 212 at 1064 nm, to em(v) 5

2129, em(2v) 5 229 at 1550 nm. Comparison with Fig. 4(a) reveals
two significant effects of spatial dispersion. First, below a certain
value of the dielectric permittivity, the SH modes become evanescent
in the z direction, that is, kz becomes purely imaginary. This effect
must be due to spatial dispersion because simple homogenisation
predicts evanescent waves only when p , 0.5 and when the magni-
tudes of ed,m are of the same order (see Fig. 2(b)), neither of which
holds here. The occurrence of this effect depends on the metal per-
mittivity: while in Fig. 4(a) modes propagate at dielectric permittiv-
ities as low as e(2v) < 2, in Fig. 4(b) modes are already evanescent
when e(2v) < 4.5. Moreover, the kz of all contours is lower in (b)
compared to (a), and the contours are more densely spaced.

The second effect of spatial dispersion is that the FF normal sur-
faces only weakly depend on kx as the FF dielectric permittivity
decreases, an effect which is particular striking in Figs 4(c) and (d).
This effect too becomes more pronounced the more negative the
metal permittivity is, born out by comparing the slopes of the dashed
FF curves in Figs. 4(a) and (b).

Figures 4(c) and (d) are similar to 4(a) and (b), but with a reduced
dielectric fill fraction. Comparing Figs. 4(a) and (c), decreasing the
fill fraction transforms higher permittivity SH curves from ellipses
into NS hyperbolae, as the simple homogenisation model predicts.
The evanescence threshold observed in Figures 4(b) is increased in
Fig. 4(d) from between 4.5 and 5 to between 7.5 and 8.

Though a systematic treatment of dissipation is not performed
here, we have calculated the propagation length, the length over
which the field amplitude decays to 1/e of its initial value, in the
particular case of a layered medium composed of 15% Ag and 85%
AgGaS2 with a spatial period of d 5 100 nm and a fundamental
wavelength lFF 5 1.55 mm. AgGaS2 is negatively birefringent at these
wavelengths but insufficiently so for conventional phase matching,

Figure 3 | Isofrequency plots for the four cases (a)–(d) as summarised in

Table 1; (a) solid lines show the limbs of FF and SH EW hyperbolae and

dotted lines their linear asymptotes; (b) solid lines show hyperbolic FF and

elliptical SH, and the dash dotted line the circular SH ordinary mode; (c)

same as (a), but with SH hyperbola NS, and ordinary mode shown dash

dotted; (d) same as (a) but with both hyperbolae NS, and ordinary modes

shown dash dotted.

www.nature.com/scientificreports
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and in performing our calculations we make the approximation that
ed~n2

o, where no is the ordinary refractive index. The propagation
length of the FF mode is 17.1 mm and of the SH, 14.4 mm. It is

instructive to compare these numbers with the coherence length L
in AgGaS2 at 1.55 mm, computed according to the formula3

L~
lFF

4 n 2vð Þ{n vð Þ½ � ð9Þ

With the reported data33, for ordinary FF and extraordinary SH,
ne(2v) 2 no(v) 5 0.02 (subscripts e and o denote the extraordinary
and ordinary index), so that Leo 5 19.4 mm. Taking ordinary FF and
ordinary SH, Loo 5 5.4 mm. The propagation length of the layered
structure improves on Loo and is comparable to Leo. This example
shows that frequency conversion can be achieved prior to the decay
of the signals due to dissipation.

Discussion
In conclusion, we propose and systematically investigate the use of
hyperbolic dispersion for phase matching nonlinear frequency gen-
eration. Our approach provides an alternative for efficient phase
matching, overcoming certain limitations of the two classical tech-
niques. A particular benefit of the new method is that the dispersion
can be designed independently of nonlinear properties, therefore
expanding phase matching opportunities towards, in principle, arbit-
rary nonlinear materials.

Remarkably, amongst the many different combinations of normal
surfaces at the FF and SH frequencies, we conclude that only four
permit phase matching for SHG. Appropriate structures can have
low metal volume fractions, thus promising modest absorption.
Provided that these absorptive losses can be limited to acceptable
levels, layered metamaterials thus provide a route to engineering
materials for phase matching of materials without intrinsic birefrin-
gence. Figs. 4 are a convenient way to represent the phase matching
conditions. Using this figure, we find that a key difference with
conventional (elliptical) media is that hyperbolic normal surfaces
enable phase matching when all waves are extraordinary. This allows
for the use of the diagonal elements of the x(2) tensor, which tend to be
larger than the off-diagonal elements2.

While a systematic investigation of the dissipation is beyond the
scope of this paper, we presented a realistic example in which the
decay length of the fields exceeds the beat length of the FF and the SH.
Future work would need to consider the details of the SHG process,
i.e., the particular element of the x(2) tensor which is being exploited,
the strength of the interaction, the coupling geometries for the two
frequencies, as well as other nonlinear processes which require phase
matching.

We note waveguides made with hyperbolic materials can carry
positive and negative group velocity modes depending on fre-
quency36–40. This may lend itself for backward propagating SHG,
which can be highly efficient41. The detailed study of SHG possibil-
ities in such configuration however is beyond the scope of this paper.

Though we considered phase matching for second-harmonic gen-
eration, other frequency conversion processes, all of which have
phase matching conditions which take the form of a relation between
the refractive indices at the different frequency involved in the pro-
cess, can similarly benefit from the dispersion afforded by hyperbolic
metamaterials. The rapid progress in the design and fabrication of
hyperbolic media provides the confidence that hyperbolic phase
matching will be able to be applied to a range of nonlinear materials
and materials where conventional method cannot be used, enabling
further progress in nonlinear optics.
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