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Abstract
IL-21 is a type I cytokine produced by T cells and natural killer T cells that has
pleiotropic actions on a wide range of immune and non-immune cell types.
Since its discovery in 2000, extensive studies on the biological actions of IL-21
have been performed  and . Recent reports describing patientsin vitro in vivo
with primary immunodeficiency caused by mutations of  or  haveIL21 IL21R
further deepened our knowledge of the role of this cytokine in host defense.
Elucidation of the molecular mechanisms that mediate IL-21’s actions has
provided the rationale for targeting IL-21 and IL-21 downstream mediators for
therapeutic purposes. The use of next-generation sequencing technology has
provided further insights into the complexity of IL-21 signaling and has
identified transcription factors and co-factors involved in mediating the actions
of this cytokine. In this review, we discuss recent advances in the biology and
signaling of IL-21 and how this knowledge can be potentially translated into
clinical settings.
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Introduction
IL-21 is a pleiotropic type I cytokine that is produced mainly by 
T cells and natural killer T (NKT) cells. This cytokine has diverse 
effects on a broad range of cell types including, but not limited to, 
CD4+ and CD8+ T cells, B cells, macrophages, monocytes, and den-
dritic cells (DCs)1 (Figure 1). The functional receptor for IL-21 is 
composed of the IL-21 receptor (IL-21R) and the common cytokine 
receptor γ chain (γ

c
), which is also a subunit of the receptors for 

IL-2, IL-4, IL-7, IL-9, and IL-15. Mutations of γ
c
 in humans result 

in X-linked severe combined immunodeficiency (XSCID), a disease 
characterized by the absence of T cells and natural killer (NK) cells, 
and with B cells that are normal in number but non-functional2. It is 
now clear that defective IL-21 signaling substantially explains the 
defective B-cell function in this disease3,4. In the past few years, the 
use of next-generation sequencing technology, particularly chro-
matin immunoprecipitation coupled with DNA sequencing (ChIP-
Seq) and RNA-Seq, has provided insights into the complexity of 
cell type-specific IL-21-mediated signaling and helped to identify 
the transcription factors and co-factors involved5. The pathogenic 
role of IL-21 in various types of autoimmune diseases is supported 
by the use of animal models, clinical reports, and genome-wide 
association studies (GWAS)1. Moreover, reports describing patients 
with primary immunodeficiency caused by IL21 or IL21R muta-
tions underscore the critical role of IL-21 in host defense in vivo 
in humans6–9. Knowledge of the biological functions of IL-21 has 
led to clinical trials using this cytokine alone or in combination 

with other agents in treating metastatic cancers, and blocking anti-
bodies to IL-21R are now being evaluated in clinical trials for the 
treatment of autoimmune diseases. Interestingly, discovery of the 
immunosuppressive actions of IL-21 suggests that this cytokine 
is a “double-edged sword” – IL-21 stimulation may lead to either 
the induction or suppression of immune responses, so that both 
stimulatory and suppressive effects of IL-21 must be considered 
during the clinical use of IL-21-related immunotherapeutic agents. 
The biological effects of IL-21 are also influenced by the presence 
of other cytokines or signaling molecules in the microenviron-
ment. Here, we review recent advances in our understanding of the 
biology and signaling of IL-21 and potential clinical applications.

IL-21-activated STAT3 forms cell type-specific 
complexes for signaling
Analogous to other γ

c
 cytokines, IL-21 transduces molecular sig-

nals substantially via the Janus kinase and Signal Transducer and 
Activator of Transcription (JAK-STAT), phosphoinositide 3-kinase 
(PI3K), and mitogen-activated protein kinase (MAPK) pathways10. 
IL-21 induces strong and sustained activation of STAT3, which is 
critical for its effects on B-cell and T-cell differentiation1. The clinical 
significance of STAT3 in IL-21-mediated signaling has been con-
firmed in patients with STAT3 mutations11–15. Studies have identi-
fied additional transcriptional factors and co-factors involved in 
IL-21-mediated signaling, with some of them forming complexes with 
STAT35. In addition to STAT3, IL-21-induced T-helper (Th) 17 cell 

Figure 1. Sources of IL-21 and its major biological actions in different immune cell types. IL-21 is produced mainly by CD4+ T cells and 
NKT cells (see bold arrows), but it is also produced by CD8+ T cells. IL-21 acts on both lymphoid and myeloid populations and can positively 
or negatively regulate immune responses depending on the context. The text in red indicates biological actions that make IL-21 a potential 
anti-cancer agent: it enhances the cytotoxic actions of CD8+ T cells and NK cells, induces apoptosis of B cell lymphoma cells, and promotes 
the M2 to M1 transition of the tumor-associated macrophages. The text in blue indicates actions of IL-21 that may contribute to autoimmune 
diseases: differentiation of Tfh and Th17 cells, inhibition of Treg generation, and the production of auto-antibodies. Thus, blocking IL-21 
signaling has promising therapeutic potential.
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differentiation requires interferon regulatory 4 (IRF4), with Irf4-
deficient CD4+ T cells having defects in IL-17 production after 
stimulation with IL-21 and TGF-β16. ChIP-Seq analysis in both 
B cells and CD4+ T cells has revealed global cooperative activ-
ity of the IL-21-activated STAT3 with IRF4, with most regions 
with STAT3 binding activity also binding IRF4, and moreover 
IL-21-mediated, STAT3-dependent gene expression is diminished 
in the absence of IRF417. IRF4 itself weakly binds to the DNA due 
to the presence of a carboxy-terminal auto-inhibitory domain, and 
in B cells, cooperative binding of IRF4 with ETS family proteins 
PU.1 or SPIB is known to increase the binding affinity of IRF4, 
resulting in the use of ETS-IRF4 composite elements, or EICEs. 
However, expression of PU.1 and SPIB is low in CD4+ T cells, lead-
ing to the unexpected discovery that, whereas B cells use EICEs, in 
T cells IRF4 cooperates with AP1 family proteins BATF and JUN 
and utilizes AP1-IRF4 composite elements (AICEs)18–20. Moreover, 
one study showed that cooperative activity of STAT3 and the aryl 
hydrocarbon receptor (AhR) is required for the expression of IL-22 

in CD4+ T cells21, indicating that the protein complexes activated 
by IL-21 likely involve additional proteins. These studies suggest 
that IL-21-mediated gene regulation often requires IRF4 in B and 
T cells, but IRF4 in T cells additionally complexes with AP-1 family 
proteins to regulate expression of certain genes, and perhaps this 
explains some T-cell-specific actions of IL-21 (Figure 2).

A critical role for STAT3 in IL-21 signaling was also confirmed in 
patients with autosomal dominant hyper-IgE syndrome (AD-HIES), 
which is caused by loss-of-function mutations of STAT3. Consistent 
with a key role of IL-21 in Th17 cell differentiation, CD4+ T cells 
from these patients are not able to produce IL-17 in vitro, and, 
together with the defective IL-6 and IL-23R signaling22,23, this helps 
to explain their susceptibility to recurrent infections24. Similarly, 
early studies showed that IL-21 together with CD40 engagement 
stimulates the differentiation of naïve B cells into IgG-producing 
plasma cells25, and it was subsequently shown that naïve B cells 
from AD-HIES patients are not able to differentiate into IgG- or 

Figure 2. Signaling pathways activated by IL-21. IL-21 activates JAK-STAT, PI 3-kinase (PI3K), and MAP kinase (MAPK) pathways. STAT3 
plays a major role in the biological actions of IL-21, but STAT1 also contributes to IL-21-regulated gene expression. Opposing actions of STAT1 
and STAT3 are important for fine-tuning IL-21’s functions. The importance of IL-21-activated STAT5 is not known. MAPK and PI3K pathways 
contribute to the proliferative effect of IL-21. In T cells, after IL-21 stimulation, optimal STAT3-mediated gene regulation requires functional 
cooperation with IRF4, which binds together with AP-1 family proteins (predominately BATF and JUN family proteins), to regulate genes 
containing AP1-IRF4 composite elements (AICEs). AhR can also cooperate with STAT3 for gene regulation in T cells after IL-21 stimulation. 
Additional transcription factors (TFs) and co-factors may also be involved.
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IgA-producing cells after IL-21 stimulation in vitro15. However, 
the clinical manifestations in these patients cannot be explained 
solely by defective IL-21 signaling, as other cytokines including 
IL-6, IL-10, and IL-11 also strongly activate STAT3 for signal 
transduction26.

IL-21 stimulation also leads to the activation of STAT1, at least in 
T cells, B cells, and conventional dendritic cells (cDCs), and recent 
studies have improved our understanding of the role of STAT1 in 
IL-21 signaling. IL-21-stimulated plasma cell generation remains 
intact in naïve B cells from STAT1 loss-of-function patients, but 
STAT1 plays a role in sustaining Ig production by differentiated 
memory B cells15. In addition, IL-21 can enhance the cytotoxic 
activity of mouse CD8+ T cells by induction of T-bet, predomi-
nantly via STAT127. Moreover, a recent study showed that ~10% of 
IL-21-regulated genes in pre-activated CD4+ T cells are depend-
ent on STAT1, compared to ~40% being dependent on STAT328. 
Strikingly, expression of some genes including Th1 signature genes 
Ifng and Tbx21 by IL-21 are differentially regulated by STAT1 
and STAT3, and IL-21-induced expression of IFNG and TBX21 
is enhanced in CD4+ T cells from AD-HIES patients and also 
modestly increased in CD4+ T cells from STAT1 gain-of-function 
patients28. These findings suggest that an interplay between STAT1 
and STAT3 may fine-tune IL-21-induced biological actions. This 
conclusion is also supported by the fact the STAT3 loss-of-function 
(AD-HIES) and STAT1 gain-of function patients share immu-
nological phenotypes (e.g., defective IL-17 production in CD4+ 
T cells and impaired production of antigen-specific antibodies) and 
clinical manifestations (e.g., mucocutaneous candidiasis)12,24,29,30.

Biological functions of IL-21 revealed from studies of 
patients with IL21R or IL21 mutations
Patients with primary immunodeficiency caused by IL21R or IL21 
mutations have been described6–9, and their phenotypes have pro-
vided invaluable insights into the role of IL-21 in host defense. 
Patients with defective IL-21 signaling suffer from recurrent pul-
monary infections, and patients with IL21R mutations, but not 
the single described patient with IL21 mutations, additionally 
have cryptosporidiosis, leading to secondary cholangitis and liver 
disease. Infections with opportunistic pathogens may be due to the 
defects in both innate and adaptive immunity in these patients, as 
plasma cell and memory B-cell generation, as well as immunoglob-
ulin class switching are impaired15, while CD8+ T-cell proliferation 
and NK -cell cytotoxicity are also diminished. Interestingly, the 
patient with the IL21 mutation did not have cryptosporidiosis but 
had early-onset inflammatory bowel disease (IBD)7.

Immunosuppressive effects of IL-21
The early onset IBD observed in the one IL21-mutated patient, 
alongside chronic diarrhea in some IL21R-deficient patients, was 
interesting, as multiple studies using animal models showed that 
IL-21 promotes the pathogenesis of IBD31. However, IL-21 can 
also be immunosuppressive because of its ability to induce IL-10. 
IL-10 signaling is known to critically regulate immune homeosta-
sis in the gut, and patients with IL1032 or IL10R33 mutations also 
develop severe early onset IBD. Interestingly, under Th1 priming 
conditions, the addition of IL-21 was shown to potently inhibit 
antigen-induced IL-2Rα expression and cell cycle progression of 

naïve CD8+ T cells in a STAT3-mediated, IL-10-dependent fashion34. 
Moreover, IL-27-mediated differentiation of IL-10-producing reg-
ulatory type 1 (Tr1) cells requires IL-21, c-Maf, and ICOS, with 
IL-21 acting as an autocrine factor to maintain Tr1 cells35. A more 
recent report showed that IL-21 drives human cord blood T cells into 
IL-10-producing Th1 cells36, suggesting that IL-21 can also exhibit 
immunosuppressive effects in humans. IL-21 together with CD40L 
induces human B cells to produce IL-10, particularly in memory 
B cells that have undergone immunoglobulin class switching37, 
showing that the induction of IL-10 by IL-21 is not restricted to 
T cells. In fact, IL-10-producing regulatory B cells (B10 cells) can 
be greatly expanded in vitro by engagement of CD40 and IL-21 
receptors, and transferring these cells into mice significantly inhibits 
disease symptoms in experimental autoimmune encephalomyelitis 
(EAE), a model of human multiple sclerosis38. IL-21-derived B10 
cells also express granzyme B, which degrades the T-cell recep-
tor ζ-chain and limits T-cell proliferation39, providing an additional 
mechanism by which these cells can suppress immune responses.

Furthermore, IL-21 can potently induce apoptosis of B cells25,40,41 
and cDCs42, which may provide alternative mechanisms for its 
suppressive effect. Stimulation of mouse naïve B cells in vitro 
with IL-21 without co-stimulatory signals induces apoptosis via 
the induction of pro-apoptotic BIM expression40 and suppression 
of pro-survival BCL2 and BCLXL41. However, pre-activation of 
B cells with anti-CD40 and anti-IgM inhibits the apoptotic effect 
of IL-2125,40,41, and CD40 engagement combined with IL-21 drives 
B-cell differentiation to plasma cells via induction of BLIMP1 and 
stimulates Ig class-switching via STAT3 activation12,25,43,44. These 
results suggest that, analogous to IL-2-mediated activation-induced 
cell death in T cells45, IL-21 might help to eliminate B cells that are 
activated in an antigenic non-specific fashion without the cognate 
antigen-specific or co-stimulatory signals.

IL-21 is known to inhibit the maturation and function of bone 
marrow-derived dendritic cells (BMDCs)46,47. It also inhibits the 
LPS-stimulated expression of pro-inflammatory cytokines IL-6 and 
IL-1β by these cells46. IL-21 can potently induce the apoptosis of 
cDCs via STAT3-mediated BIM induction42. The apoptosis induced 
by IL-21 can be prevented by GM-CSF, which activates STAT5. 
Interestingly, ChIP-Seq analysis shows that STAT3 and STAT5 
compete for DNA binding at the Bim locus, suggesting a direct 
competitive effect for these STAT proteins. Further investigation 
of the effect of IL-21 on cDCs revealed an unexpected role of IL-21 
in IL-1β expression via a NF-κB-independent, STAT3-dependent 
pathway, with direct STAT3 binding identified in the Il1b locus in 
cDCs after IL-21 stimulation48. These studies suggest that IL-21 has 
dual roles in DCs where it suppresses immune responses by inhibit-
ing the maturation and actions of BMDCs and inducing apoptosis in 
cDCs, but promotes immune responses by inducing IL-1β in cDCs.

There are extensive data indicating that IL-21 signaling promotes 
the pathogenesis of autoimmune diseases1, including in animal mod-
els of type 1 diabetes49,50, systemic lupus erythematosus (SLE)51, 
and experimental autoimmune uveitis52. Moreover, the number 
of IL-21-producing CD4+ T cells is higher in patients with active 
SLE53 and chronic rheumatoid arthritis (RA)54, suggesting that 
blocking IL-21 signaling might serve to ameliorate these diseases. 
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However, the effects of IL-21 can be complex, and IL-21 signal-
ing in certain cell types can have protective effects as well. For 
example, in SLE-prone BXSB-Yaa mice, although selective ablation 
of IL-21R expression in B cells protects the mice from developing 
disease manifestations, IL-21 signaling supports the expansion of 
CD8+ suppressor T cells in these mice and, as a result, selective 
ablation of IL-21R in CD8+ T cells also promotes pathogenesis of 
the disease55. Also, IL-21-induced IL-22 expression in CD4+ T cells 
may play a protective role in the DSS-induced colitis model21. Thus, 
although blocking IL-21 signaling is currently under evaluation 
in early clinical trials for the treatment of autoimmune disease, it 
conceivably could have mixed effects depending on the context in 
individual patients.

IL-21 is a promising immunotherapeutic agent for 
cancer
Activation of the cytotoxic programs in NK cells and CD8+ 
T cells is key for cancer immunotherapy, and consequently early 
studies provided compelling evidence that IL-21 is a promising 
immunotherapeutic agent for this disease56. IL-21 promotes matu-
ration, enhances cytotoxicity, and induces production of IFN-γ and 
perforin by NK cells57,58. Correspondingly, cytolytic activity induced 
by IL-21 significantly inhibits the growth of B16 melanoma58,59. 
Moreover, IL-21 together with IL-15 expands antigen-specific 
CD8+ T-cell numbers and their effector function, resulting in tumor 
regression60. In addition, cancer cells over-expressing IL-21 cannot 
graft to the host and are rapidly eliminated61–64, and local delivery 
of IL-21 into the tumor microenvironment in a breast tumor model 
was shown to switch tumor-associated macrophages from the M2 
phenotype to a tumor-inhibiting M1 phenotype, which rapidly 
stimulates T cell responses65. These studies suggest that IL-21 can 
“rejuvenate” multiple effector cells in the tumor microenvironment 
and thus that this cytokine might be used alone or in combination 
with other therapeutic agents in a clinical setting. Indeed, clinical 
trials are underway, with encouraging results1. In one phase II study 
in which IL-21 was used as a single agent to treat patients with 
metastatic melanoma who had not received prior systemic therapy, 
a response rate of 22.5% was achieved66. Another phase 1/2 study 
investigated the effects of IL-21 combined with the tyrosine kinase 
inhibitor sorafenib for treating metastatic renal cell carcinoma, and 
a disease control rate of 82% was achieved67.

IL-21 is known to directly induce apoptosis in certain types of lym-
phoma. In vitro studies showed that IL-21 potently induces apopto-
sis of diffuse large B-cell lymphoma68, mantle cell lymphoma69,70, 
and chronic lymphocytic leukemia71 cells via activation of STAT3 or 
STAT1, leading to the altered expression of BCL2 family proteins 
and the activation of caspases. Besides its direct apoptotic effect, 
IL-21 alone or combined with anti-CD20 monoclonal antibody 
(mAb) (rituximab) can also indirectly kill the IL-21-insensitive 
cancer cells by activating NK cell-dependent cytotoxic effects69,72. 
Based on these results, a phase I study combined IL-21 with 
rituximab for treating 19 patients with indolent B-cell malignan-
cies, and 42% of patients obtained complete or partial responses73. 
Unlike IL-2, injection of high-dose IL-21 does not cause capillary 
leak syndrome in vivo74 and was well tolerated.

Adoptive transfer of in vitro expanded tumor antigen-specific 
CD8+ T cells into patients is another promising anti-cancer strat-
egy. When leukemia antigen-specific CD8+ T cells purified from 
an HLA-matched donor were cultured with IL-21 in vitro and then 
infused into a patient, the CD8+ T cells showed a long-lived mem-
ory phenotype compared to the cells not treated with IL-21. Patients 
receiving the IL-21-cultured cells had a marked decrease in leukemic 
cells and a sustained complete remission75. These results indicate that 
IL-21 may be a potent adjuvant for cell-based cancer immunotherapy.

Critical role of IL-21 in chronic viral infection
The vital role of IL-21 in anti-viral immunity has been demon-
strated mainly in studies using models of chronic lymphocytic cho-
riomeningitis virus (LCMV) infection76–79. During chronic LCMV 
infection, IL-21 is produced by CD4+ T cells, which sustains CD8+ 
T cell expansion and production of IFN-γ, TNF-α, and IL-278. 
Correspondingly, mice lacking IL-21 or IL-21R show diminished 
CD8+ T cell clonal expansion, increased exhaustion, and persist-
ent high serum viral titers76–78, indicating that IL-21 directly acts 
on CD8+ T cells to limit chronic viral infections. In addition, IL-21 
can also indirectly activate the anti-viral activity of CD8+ T cells 
by suppressing the expansion of Treg cells during chronic LCMV 
infection79. Although the requirements for IL-21 signaling in host 
defense during acute viral infection are less stringent, studies using the 
Armstrong (acute) strain of LCMV or vaccinia virus showed that 
IL-21 signaling is essential for the survival of activated CD8+ T cells 
and generation of long-lived memory cells80,81. Moreover, IL-21 act-
ing on B cells and CD4+ T cells is critical for generating long-lived 
plasma cells after infection with an acute strain of LCMV, vesicular 
stomatitis virus, and influenza virus, highlighting the importance of 
IL-21 in humoral immunity during viral infection82.

IL-21 as a potential vaccine adjuvant
The biological actions of IL-21 on NK cells, CD8+ T cells, and 
B cells described above, as well as its potent anti-viral property 
shown in mouse models, make it an attractive candidate for use as a 
vaccine adjuvant. Indeed, IL-21 has been shown to play important 
roles in controlling disease progression after human immunode-
ficiency virus (HIV) infection. Serum levels of IL-21 are signifi-
cantly reduced in HIV-infected patients and correlate with CD4+ 
T-cell counts83. Among different disease-status groups of HIV-
infected patients, only the elite controllers maintain normal produc-
tion of IL-21, and IL-21-producing CD4+ T cells are decreased in 
HIV-infected viremic patients or patients with progressive 
disease84,85. Interestingly, CD8+ T cells in HIV-infected patients pro-
duce IL-21, and the frequencies of these cells are closely associated 
with viral control86,87, suggesting that the loss of IL-21 production 
correlates with disease progression. Correspondingly, recent stud-
ies showed that T follicular helper (Tfh) cells, which are the major 
source of IL-21, are the most efficiently infected by HIV among 
different CD4+ T-cell subtypes88, and defective Tfh function results 
in impaired humoral immunity against HIV89. The potential use of 
IL-21 therefore has been investigated using non-human primate 
models. Similar to the ex vivo effects of IL-21 on NK and CD8+ 
T cells isolated from HIV-infected patients90,91, injecting IL-21 into 
simian immunodeficiency virus (SIV)-infected rhesus macaques 
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increases cytotoxic activity and the production of granzyme B and 
perforin by these cells92,93. The frequencies of SIV-specific CD8+ 
T cells, peripheral blood CD27+ memory B cells, and serum SIV 
antibodies are also increased after IL-21 administration92. Intrigu-
ingly, IL-21 injection alone or in combination with anti-retroviral 
therapy in SIV-infected rhesus macaques leads to the restoration 
of intestinal Th17 cells, which is associated with reduced micro-
bial translocation from the intestinal lumen into the systemic cir-
culation, systemic inflammation, and morbidity93–95. Together, these 
studies indicate that IL-21 can be used as an adjuvant for anti-viral 
therapies.

Concluding remarks
IL-21 is being intensely studied, with new information emerging 
on its biological effects, its signaling mechanism(s), and clinical 
potential. Studies in patients with mutations in IL21, IL21R and 
STAT3 confirmed the major roles of IL-21-activated STAT3 signal-
ing in T-cell and B-cell differentiation and also revealed roles for 
its STAT3-independent signaling. ChIP-Seq analysis has success-
fully identified protein complexes activated by IL-21, which help 
to explain the cell-type-specific effects of this cytokine. Because 
multiple cytokines including IL-6 and IL-10 also activate STAT3, it 
will be interesting to know whether these cytokines activate forma-
tion of the same complexes as IL-21 or whether there are cytokine- 
specific complex(es). As discussed above, IL-21 is a promising 
agent for treating cancers. Clinical trials using IL-21 as an adjuvant 

for cell-based cancer immunotherapy have been encouraging. In 
addition, clinical trials using blocking IL-21R mAb for autoimmune 
diseases are ongoing1. Moreover, in vitro expansion of regulatory 
B10 cells by IL-21 is potent in a mouse model and thus may have 
potential for human autoimmunity as well, an area for future 
research. In mouse models, IL-21 has been shown to play critical 
role(s) in the development of graft-versus-host disease (GVHD)96–100, 
and future clinical investigation of the possibility of using IL-21-
blocking agents to treat GVHD is needed. Overall, the study of the 
biological actions and signaling mechanisms of IL-21 has provided 
critical basic insights and the rationale for clinical evaluation of 
IL-21, both in cancer and in the use of antibodies to IL-21 in 
autoimmunity and potentially other diseases as well.
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