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Abstract: This paper aims to present the analysis and development of a complete electronic smart
meter that is able to perform four-quadrant measurements, act as a three-phase shunt active power
filter (APF), and control three-phase induction motors by stator flux estimation. A transmission con-
trol protocol together with Internet protocol (TCP/IP) communication protocol for the remote access
of measurement data is embedded into the application to securely transmit reliable information. An
artificial neural network trained with particle swarm optimization is used for stator flux estimation,
and a fuzzy logic controller is adopted to regulate the power converter DC bus voltage. The present
work gathers knowledge from multidisciplinary fields, and all applied techniques have not been
proposed altogether before. All control functions are embedded into a field-programmable gate
array (FPGA) device, using VHSIC Hardware Description Language (VHDL), to enhance efficiency
taking advantage of parallelism and high speed. An FPGA-in-the-loop cosimulation technique was
first applied to prove the control functions’ functionality, and, later, experimental evaluations are
conducted to finally prove equipment operation and reliability.

Keywords: APF; artificial neural network; bidirectional measurement; fuzzy; FPGA; smart meter

1. Introduction

The generation, distribution, and measurement of electricity are some of the main
themes studied by scientists and researchers all over the world due to their considerably
higher efficiency in processing and transporting over other energy sources. Brazilian
electricity scenario remained unchanged for at least a hundred years; however, some factors
such as fault detection, remote measurements, fraud, and mainly distributed generation
have led to the establishment of intelligent grids, also known as smart grids.

Due to the intense usage of nonlinear loads in industries and companies, the quality
of the electric power system is impaired with the more apparent occurrence of harmonics
and reactive power flow. Some of the major nonlinear loads are identified as rectifiers,
converters, and arc devices that pollute the distribution system [1,2]. Devices such as
passive and active filters are widely used for harmonic current mitigation and voltage
distortion reduction and can be applied separately or together, forming hybrid filters [3–5].
The main difference between these filters is related to their complexity and flexibility of
use; nevertheless, both have the goal of eliminating or reducing the harmonic content,
achieving reactive power compensation and power factor correction to meet the standards
such as IEEE 519, 1547, and IEC 61006. This aids in avoiding the major effects of harmonics

Sensors 2021, 21, 4154. https://doi.org/10.3390/s21124154 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4902-409X
https://doi.org/10.3390/s21124154
https://doi.org/10.3390/s21124154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124154
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124154?type=check_update&version=2


Sensors 2021, 21, 4154 2 of 18

in the energy system, which are conductors overheating, equipment failures, resonances
occurrence, and the premature aging of components [6,7].

In this sense, the development of a platform—mainly, but not restricted to, 220 VRMS
three-phase systems—is proposed. The system’s measurement and control functions are
vital to enhancing microgenerators’ power quality for the microgrid current and future
scenarios. In addition, this platform has the objective of monitoring, with online web com-
munication and a graphical interface, the bidirectional power flow and harmonic content
and providing flux estimation and active harmonic mitigation, forming a multifunctional
device (smart meter). Measurements of power flow and harmonic content were performed
based on the instantaneous power theory (pq theory), which identifies the harmonic cur-
rents injected by nonlinear loads as oscillating power components [8]. In that sense, the
proposed system contains an active power filter (APF) not only for the compensation of
harmonics but also to compensate for the reactive power flow [9].

A solution for the equipment implementation on systems where certain levels of power
quality and speed of response are required can be achieved through rapid prototyping hard-
ware. The usage of reconfigurable logic devices, such as a field-programmable gate array
(FPGA), allows that the input data and all the required algorithms are processed in real-time,
with concurrent and parallel operation schemes, maximizing system effectiveness.

To provide expert control, with high performance and great robustness, for working
with different loads, a fuzzy controller was proposed to control the APF DC bus voltage.
The use of fuzzy inference systems is actually present in several areas with outstanding
achievements [10–12].

A multilayer perceptron artificial neural network (MLP-ANN) was trained via a
particle swarm optimization (PSO) algorithm for stator flux estimation. The flux estimation
is used for controlling the three-phase induction machines using direct torque control
(DTC). The rapid response for the required electromagnetic torque demands associated
with the reduced stator flux oscillations is the main advantage of drives using the DTC
strategy [13–15]. Moreover, the proper choice of switching presents a reduction in the
switching frequency and losses reduction. The MPL-ANN was chosen because of its parallel
processing ability, speed of response, learning ability, robustness, and great response when
dealing with nonlinear systems; in the same sense, PSO is a very interesting alternative
for the optimization of problems that fall into complex nonlinear functions (i.e., activation
functions in neural networks). The great advantage of the PSO method is the ease of
structuring and understanding, as well as the simplicity of implementation [16–19].

To ensure storage and data security, a web system was developed to receive and
send information to the proposed device via a transmission control protocol together with
Internet protocol (TCP/IP). The device sends measurement information to the system, and
all data are saved on a database. The objective of this web system is the centralization of
information from smart meters, as it allows monitoring and data transmission. The web
platform was designed so that the server was able to communicate with multiple smart
meters in the sense that, through this web system, it is possible to analyze and collect all
data sent in one place. This feature is interesting for medium- and long-term analysis.

Some of the main features of the proposed FPGA-based smart meter can be highlighted
as monitoring loads and grid power quality, compensating harmonics, increased power
factor, and control of induction motors, even in very low-speed situations.

Considering the achievements of the present work regarding the existing literature,
we cite no overshoots and zero steady-state error for the four-quadrant measurements.
They were achieved with less computation burden than [20] and with less error than [21]
because of the correct fixed-point representation with a lower-order filter and better flux
estimation than [14], with zero error and only with small oscillations at the waveform
peaks, even during speed step changes. In [14], one may verify for the flux space vector
(d vs. q flux) low-frequency oscillations in all space vector waveforms, and, thus, the same
oscillations are shown in the rotor flux. Verifying [22] and [23], we achieved a lower total
harmonic distortion for the grid currents, obeying international standards, and reduced
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voltage fluctuations at the DC bus with fewer membership functions in the fuzzy inference
machine. Finally, the usage of the TCP/IP protocol in the proposed smart meter allows a
standardized and popular way to connect the electrical system to the web. In [24], one may
verify the tendency to exchange data from the smart meter and the web server, but it is
intended only for single-phase low-power systems, whereas the present work deals with
three-phase systems.

Therefore, the main advantage of the proposed smart meter consists of having only
one device with multifunctional properties as well as instantly monitoring. It is necessary
to emphasize that although all concepts are not new in the literature, the present work
gathers knowledge from multidisciplinary fields, and all applied techniques have not
been proposed altogether before, becoming a challenging task and demonstrating its
archival value.

Finally, hardware cosimulation and posterior experimental evaluations are conducted
to prove the equipment operation and effectiveness. An overall diagram of the proposed
device can be visualized in Figure 1, with exchanged data among blocks.
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Figure 1. Multifunctional device overall diagram.

2. Material and Methods
2.1. Artificial Neural Network and PSO

This paper presents the development of a monitoring platform, in four quadrants,
ensuring with a single device the control of induction machines and reduced total harmonic
distortion (THD) levels for microgrid operation. Hence, a strategy was developed for
estimating the stator magnetic flux through an MLP-ANN trained with PSO. Besides being
monitored, the flux is necessary for the DTC strategy.

Additionally, an MLP network was chosen as it allows the usage of various activation
functions (such as “tansig” or “logsig”) that are more effective than simple step functions
and enable the network to be applied to nonlinear problem solutions [13]. Two separate,
but identical, recurrent network structures were used, the first for estimating the magnetic
flux along the d-axis and the second for evaluating the magnetic flux along the q-axis.
The former network structure, which used only information concerning the d-axis, can
be separated into two parts as outlined. In the first, the stator current (id) and the stator
voltage (Ud) were the inputs, and the output was the stator flux Ψd ~ (k) estimation.
In the second, the stator flux on the d-axis was estimated by considering the previous
two estimated fluxes, namely Ψd ~ (k−1) and Ψd ~ (k−2). The former network can be
visualized in Figure 2. Another identical neural network estimates the q-axis flux.
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Offline supervised training was chosen because the data used for training came from
simulations. The simulations were performed using the MATLAB/Simulink platform fol-
lowing the equations found in [25]. These networks were trained to estimate the motor flux
from low speed to nominal speed and with nominal torque. The main motor characteristics
are: 0.5 HP, 220 VRMS, 60 Hz, 4 poles, a stator resistance of 0.43 Ω, a rotor resistance of
0.82 Ω, a stator inductance of 2 mH, a rotor inductance of 2 mH, a mutual inductance of
0.69 mH, and an inertia of 0.089 kg·m2. The used stopping criteria were an acceptable error
of 0.0001 (between the estimated and real flux) or failing on achieving a better result over
50 times.

The network training was performed using the PSO strategy, which emerged from
experiments with algorithms that mimic the social behavior observed in flocks of birds,
shoals of fish, and groups of human beings [17]. PSO is based on the social cognitive
hypothesis that each individual in a population has their own experience and is able
to estimate the quality of that experience. However, because the individuals are part
of a social group, they also possess knowledge about their neighbor’s behavior [18,19].
Analysis has shown that the learning process depends partly on the unique experiences of
the individual and partly on the experiences of neighbors, implying that decision-making is
a function of the past performance of the individual and those of some neighbors. Cultural
adaptation depends on three principles [18,19]: (i) self-evaluation—individuals have the
ability to sense the environment in order to estimate their own behavior; (ii) comparison—
individuals use each other as a comparative reference; and (iii) imitation—important for
the acquisition and maintenance of abilities. Individuals with the capacity to evaluate,
compare, and mimic are those that are best able to find a group solution for problems
presented by their environment and, therefore, to define global behavior as a result of
such interactions.

In the PSO algorithm, the individuals of the population are represented by a number
of particles, which constitute a swarm moving around a search space. Variations in their
attributes lead to new points in the search space corresponding to movements in that
space [19]. Each particle will move in a direction determined by its current position xi(k)
and velocity νi(k), the position i that led to its best performance (pBi) or best fitness so far,
and the best overall system performance (G). The particle’s velocity may be determined
from Equation (1).

vi(k + 1) = vi(k) + γ1(pBi − xi(k)) + γ2(G− xi(k)), (1)
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where coefficients γ1 and γ2, known, respectively, as the cognitive and social components,
are limited from zero to one and indicate the relative contribution of each factor at instant k.
The position of the particle at the next instant, i.e., xi (k + 1), is determined from its previous
position xi (k) and its calculated velocity vi (k + 1) as Equation (2).

xi(k + 1) = xi(k) + vi(k + 1). (2)

2.2. Smart Systems

As technologies for alternative energy sources are in constant development, bidirec-
tional power flow meters will be needed to constitute one of the main requirements for an
intelligent grid. By providing information about the active and reactive power flow, one
can identify if the client is receiving or providing power to the system.

It is known that it is possible to use four-quadrant measurements for controlling AC
induction motors [26] and permanent magnet DC motors [27], as well as for assistance
in controlling three-phase power converters [28]. Therefore, this paper demonstrates the
usage of the pq theory to extract the active and reactive average powers and represent
them in all four quadrants, as well as for compensating harmonic content.

To obtain the oscillating parts for active and reactive powers, the average power is
subtracted from the instantaneous power. These calculated average values can be achieved
through digital filters such as the moving average or discretized low-pass filters. In this
paper, digital low-pass filters were used because they showed good response and used
fewer FPGA logic elements. The transfer function for a third-order low-pass filter, with a
unitary damping frequency, is given by Equation (3).

H(s) =
ω3

c

s3 + 3ωcs2 + 3ω2
c s + ω3

c
. (3)

The Tustin discretization method is applied at Equation (3) returning Equation (4).
The Tustin method [29] was adopted once the s-plane was mapped into the entirely z-
plane and the frequency response could be easily verified in the w-plane (complex digital
representation of an equivalent of the s-plane).

H(z) =
k0z3 + k1z2 + k2z + k3

z3 + k4z2 + k5z + k6
. (4)

Through Equation (4), it is possible to describe the filter into a VHDL code, where
the coefficients were implemented with a fixed point (43 bits/1 signal bit and 40 bits for
the fractional part), and the filter was implemented through the direct representation of
its difference equation according to Equation (5), using registers, multipliers, and adders.
Table 1 summarizes the filter coefficients considering an acquisition frequency of 30 kHz
and a cut off frequency (ωc) of 20 Hz. The acquisition frequency is the same as the power
converter switching frequency to simplify the synchronization procedures among the
analog-to-digital converters and the pulse-width modulator. Figure 3 depicts the filter
frequency response, with −60 dB/dec and a flat response to maintain the integrity of the
DC value.

y(k) = k0u(k) + k1u(k− 1) + k2u(k− 2) + k3u(k− 3)− k4y(k− 1)− k5y(k− 2)− k6y(k− 3), (5)

where y is the output; u is the input; k is the current sample; and k− 1, k − 2, and k − 3 are
one, two, and three sample delays.
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Table 1. Digital filter coefficients.

Coefficient Value

k0 9.13 × 10−9

k1 2.739 × 10−8

k2 2.39 × 10−8

k3 9.13 × 10−9

k4 −2.987
k5 2.975
k6 −0.9875
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As mentioned, the theory used for detection and compensation is known as the
instantaneous active and reactive power theory, or simply, pq theory. It is based on
instantaneous values from three-phase systems with or without neutral wires. It is also
valid during transients or steady state. The pq theory consists of a Clarke transformation,
which converts time-domain signals as voltages and currents from a natural three-phase
coordinate system (abc) into a stationary two-phase reference frame (αβ0) [30]. Therefore, it
allows active p (vαiα + vβiβ), reactive q (vβiα − vαiβ), and zero-sequence p0 (v0i0) powers,
and their oscillating counterparts p̃ and q̃ to be examined distinctly and instantaneously.
Equation (6) defines the compensation currents (iα) and (iβ) from the designated powers,
and Equation (7) defines the compensation currents to be injected to the grid by means of
the inverse Clark transform, considering power invariability.[

iα

iβ

]
=

1
v2

α + v2
β

[
vα −vβ

vα vα

][
− p̃ + p0

q̃

]
. (6)

 ica
icb
icc

 =

√
2
3


1√
2

1 0
1√
2
− 1

2

√
3

2
1√
2
− 1

2 −
√

3
2


 −i0

iα
iβ

. (7)

A current controller is necessary for imposing Equation (7) into the grid through
pulse-width modulation (PWM) at the APF converter. The small-signal average modeling
was applied to obtain the main transfer functions of the adopted three-phase voltage source
inverter (VSI) with inductive filters for grid connection. This controller is based on the
average current mode control [31], and the adopted current compensator (Ri(s)) has a
pole at the origin, a zero, and another pole at a higher frequency (for reducing switching
frequency noise). One current control loop [32,33] is depicted in Figure 4, once the others
are similar with only 120 degrees of phase-shift. Some parameters are vital, such as the
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inductance (Lc) value, obtained from Equation (8), which is based on the maximum output
current ripple (∆iLC), switching frequency (fs), and grid voltage peak (Vgridpeak).

Lc =
Vdc −Vgridpeak

∆iLc fs
. (8)Sensors 2021, 21, x FOR PEER REVIEW 7 of 18 
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Figure 4. Current control loop—PhaseA.

The APF transfer function is defined in (9), where Vdc is the capacitor DC bus voltage
and rLc is the filter resistance.

Gi(s) =
i(s)
m(s)

=
Vdc

sLc + rLc
. (9)

The transfer function for the current compensator is given by (10), where ωz and ωp
are the zero frequency and pole frequency, respectively.

Ri(s) = kRi
s + ωZ

s(s + ωP)
. (10)

To determine (10), one must analyze the open loop transfer function (OLTF), given
by (11).

OLTF(s) = Ri(s)KiKPWMGi(s). (11)

This control is tuned based on the Bode diagrams of modulus and phase using the
criteria of crossing-over frequency and phase margin [31]. The Bode diagrams are presented
in Figure 5, where one can observe the compensated characteristics as 4.5 kHz of crossing-
over frequency and almost 67 degrees of the phase margin, guaranteeing system stability.
The main APF parameters are summarized in Table 2. Tustin was used as a discretization
method with a 30 kHz sampling frequency.
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Table 2. Main active power filter (APF) parameters.

Symbol Description Value

Lc Inductance 700 µH
Vdc DC bus voltage 400 V
fs Switching frequency 30 kHz

∆iLC Current ripple 10%
Vgridpeak Grid peak voltage 311 V

Ki Current sensor 1/10
kRi Compensator gain 3545
ωZ Zero 73.2
ωP Pole 65,820

Besides the current loop, the voltage loop is also necessary because it keeps the
capacitor voltage at a constant DC value [32,33]. In this work, a capacitance value of 365 µF
was chosen for reducing the voltage ripple at the DC bus. The voltage loop is controlled
through a fuzzy inference system mainly because of the fuzzy characteristics in dealing
with nonidealities and plant perturbations [34,35].

The inference method applied in this controller was Mamdani’s max-prod [36]. The
membership function labels are NB, NS, Z, PS, and PB, representing negative big, negative
small, zero, positive small, and positive big, respectively. We chose the triangular member-
ship functions (TMF) because of their simplicity and ease of implementation. In this paper,
the error (e(k)) and its variation (de(k)) were selected as input variables. The error is defined
as the difference between the DC link reference voltage, which is 400 V, and the capacitor
actual voltage. The MFs for e(k), d(e(k)) and fuzzy output (u(k)) are shown in Figure 6. At
first, it was adopted five MFs for de(k), and because of that, small variations in the error
are considered to generate undesirable noises. Therefore, it was decided to decrease and
modify the functions in such a way that, in addition to decreasing the number of rules and,
consequently, the hardware usage, it would be possible to eliminate the noise and preserve
the action of the controller on sudden variations.
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Table 3 summarizes the rules considering the MFs and the output u(k) according to
the inputs e(k) and de(k). The defuzzification method, obtained through Equation (12),
consists of calculating the center of the area (COA) after applying Mamdani’s max-prod
inference method.

u(k) = ∑ u(u(k)) u(k)
∑ u(u(k))

, (12)

where u(u(k)) is the MF value of the discrete element of output value u(k).
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Table 3. Fuzzy rules.

u(k) e(k)

de(k)

NB NS Z PS B
NB NB NB NS NS Z
Z NS NS Z PS PS

PB Z PS PS PB PB

The overall controller configuration integrates the error and sums it after the fuzzy
inference machine, therefore eliminating any steady-state error. The integrative term
appears in parallel with the inference machine performing a fuzzy PD + I controller; in such
a configuration, the zero steady-state error is obtained by the usage of the integrative term,
and the inference machine speeds-up the controller response. The explained configuration
is shown in Figure 6, where coefficients k, k1, k2, and k3 are chosen as 100, 1, 0.01, and
5, respectively. The aforementioned coefficients were determined throughout extensive
simulation analysis. The control signal obtained finally with the configuration of Figure 7
is the power lost in the converter stage, called ploss. This signal is used in addition to the
other power compensation signals (− p̃ + p0) in Equation (6) to create the compensating
currents according to Equation (7).
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The communication system was implemented through TCP/IP protocol to enable
remote access for monitoring data with a web interface. Hence, access control is a need to
secure and ensure the information integrity from the smart meters in a way the user will
only have access to these equipment/data through his own profile, and all the information
stored in the database allows energy quality analysis.

Figure 8 shows one of the system’s interfaces, in which the average voltages, currents,
consumption, and quadrants are shown. This web system is Java-based and communicates
with the equipment using an API socket. Some of the exchanged data are voltages, currents,
active and reactive power, and energy consumption.
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3. Results

The equipment was tested with a bidirectional meter by changing the three-phase
loads: first, a predominant resistive load in delta connection for measuring the active power;
second, predominant capacitive and inductive loads inserted with the previous load.

The experimental results characterize the equipment’s ability to measure the bidirec-
tional power flow through pq theory and the digital filters embedded in the hardware.
Figure 9 demonstrates the active and reactive powers with the resistive load in series with
an inductive load (207 Ω/550 mH for each phase). Figure 10 shows the result for the same
loads but with an inverted position of the source while maintaining the position of the
sensors. In Figure 11, a capacitive load (12.8 µF) is put in the place of the inductive load.
In Figure 12, the load and source positions are inverted again. The power drained by the
aforementioned loads, in series connection, are close to 350 W and 350 VAr.
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Figure 12. Quadrant 4.

This equipment also has the objective of controlling a three-phase induction motor by
estimating the magnetic flux through an MLP-ANN. This strategy was adopted because, at
very low speeds, the acquired data from sensors present considerable noise, interfering
directly with the motor control. These motors are vastly used in microgeneration sys-
tems, and therefore, more optimized usage may interfere directly with power quality and
production costs.

The ANN training was performed through the PSO algorithm. The ANN used had
two hidden layers with eight neurons in the first and two in the second. PSO was in
charge of computing and storing the weights. As explained before, the ANN inputs were
voltages, currents, and delayed fluxes from the stator in both the q- and d-axes. The
objective function was based on the error; however, minimizing its absolute values was
necessary, according to Equation (13). The major advantage is a reduction in computational
cost and training time. Due to a large amount of input data, training algorithms such as
Levenberg–Marquardt (LM) [37,38] had memory issues, which resulted in a software crash.
PSO, in turn, did not present any problems and, even with lower training points, is faster
than LM.

E =
∣∣∣estimed f lux − ideal f lux

∣∣∣. (13)

Through simulations in the MATLAB environment, one can check the quality of the
estimation and the motor control. Figure 13 shows a comparison between the estimated
and optimum flux, in the q- and d-axes, for the velocities of 10 and 30 rpm controlled by
the DTC. An artificial offset was added to facilitate their visualization. Fluxes are also
presented in terms of their corresponding axes in Figure 14, where one can verify the
quality of the estimated flux, i.e., without error and with small oscillations, even during
the step-change.

Hardware described in the VHDL language for testing the control of the APF was
implemented. The first part test was taken through FPGA-in-the-loop (FIL), where the
hardware is described in VHDL and embedded in the FPGA and the simulation runs on
software (MATLAB/Simulink) and hardware (FPGA). The pq theory, current controllers,
and PWM were inserted into the FIL as VHDL codes using a 32-bit fixed-point data type
for arithmetic purposes. For FIL simulations, the Altera Quartus II was adopted as the
compiler, and the system ran at an 8 MHz clock speed. There remains the possibility to
generate a customized configuration in case the board lacks predefined configurations and
libraries. The FIL block generated by Simulink is shown in Figure 15 with the conversion
blocks for sampling rate and data type.
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The results obtained for the embedded control module are shown using Cyclone
FPGA Altera EP4CE115. The logic occupied only 30% of the device’s total resources,
demonstrating the potential of the FPGA and VHDL programming.

In this paper, there is no distortion or unbalance in the voltage source so that the
focus of the presented results is on the drained currents. The motor as a load generates
considerable distortions in the input source. This is due to the converter input rectifier. As
expected, the currents showed a high level of harmonics, as shown in Figure 16. However,
Figure 17 shows its currents after the compensation from the APF almost in sinusoidal
form, with a total harmonic distortion of 3.5%, far less than the recommendation of 5%.
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test bench comprehension. It comprises the web interface, the FPGA platform, the signal 
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Figure 18 presents the DC bus voltage with a fuzzy controller. One may note that the
voltage fluctuation is within the designed limits, which were 1%, and its average value
is 400 V. Its behavior changes after 0.06 s because this is when the equipment finished
calculating the average powers and started compensating properly; the small ripple is
observed because of the update rate of the algorithm. Because, at all times, the DC voltage
is higher than the source voltage and does not exceed the fluctuation limit, even with
different loads, the fuzzy controller was validated.
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After FIL validation, the equipment was experimentally verified. The complete test
workbench is presented in Figure 19a. In Figure 19b, one may verify the block scheme
for test bench comprehension. It comprises the web interface, the FPGA platform, the
signal conditioning, a three-phase 220 VRMS source, an induction machine (squirrel gage,
220 V, 60 Hz, 0.5 HP, 4 poles), the variable loads, the Fluke energy analyzer, and the
power converter.
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The results can be seen in Figure 20, which shows that source voltages are balanced.
Figure 21 shows the drained distorted currents when driving the three-phase induction
motor. The source currents after harmonic compensation are presented in Figure 22.
Therefore, even with a nonlinear load, the multifunctional smart meter is able to detect and
compensate for the harmonic currents appropriately.
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4. Discussions

According to Figures 9–12, one may verify the bidirectionality of the proposed smart
meter. The measurements showed no overshoots and zero steady-state error with almost no
ripple for all the four-quadrant measurements. Observing [20], the present work obtained
similar results for the active power measurement with less computation burden once
we achieved zero steady-state error with a lower-order digital filter. The authors of [21]
showed active power measurements with pq theory with errors in the range of 4%, which
is far bigger than our results; this happened most probably because they used a limited
fixed-point representation for the calculus. As we used an FPGA, we could choose the
correct fixed-point representation for each coefficient.

Additionally, regarding the flux estimation, according to Figures 13 and 14, one
may conclude a correct flux estimation, with zero error and only small oscillations at the
waveform peaks. The correct estimated fluxes were achieved even during velocity step
changes. Verifying [14], it presented for the flux space vector (d vs. q flux) low-frequency
oscillations in all space vector waveforms, and, thus, the same oscillations are shown
in the rotor flux waveforms. This way, we may verify that our work presents a better
flux estimation.

Observing Figure 18, the fuzzy logic controller adopted for the control of the DC bus
in a constant average value results in a small ripple of less than 1 V, which represents only
a 0.25% fluctuation. Finally, one may observe from Figure 22 the correct compensation of
the harmonic content in an almost sinusoidal form, with low harmonic distortion in the
range of 3%. Similar findings can be verified in [22], but the total harmonic distortion is
in the range of 10%, which is not allowed by international standards. In [23], the authors
inserted a fuzzy controller to improve the DC bus regulation, and this helped to minimize



Sensors 2021, 21, 4154 16 of 18

the total harmonic distortion to 3.88%, which is similar to our work but still slightly higher.
In addition to this, the authors of [22] used nine membership functions, which increases
computational burden; in our study, we could achieve the aforementioned improvements
with only five membership functions.

Finally, an important verification is that all controller functions are presented sepa-
rately in the literature, which shows the importance of the proposed work.

5. Conclusions

The purpose of this paper is to provide an alternative composed of intelligent mon-
itoring and control systems for use in microgeneration scenarios. This equipment has
fundamental properties that meet the concepts necessary for a smart grid, such as four-
quadrant measurements, current harmonic mitigation, power factor control, motor control,
and data monitoring, via a web system using techniques fully implemented into the VHDL
language and embedded processing.

It should be emphasized that the use of PSO training favors a faster and simpler way
to estimate the flux using artificial neural networks, assisting in more accurate induction
motor control (widely used in some power generation systems) and providing an increase
in energy quality. Additionally, the usage of a fuzzy logic controller is an interesting
alternative to control the APF DC bus voltage when dealing with different load types. In
relation to FPGA and VHDL programming, the logic occupied only 30% of the board’s
total resources, demonstrating the potential of the proposed solution.

The results obtained through the energy analyzer are consistent with both software
and hardware (FPGA-in-the-loop) simulations and experimental evaluations, serving as
the base for the development of more compact, robust, and efficient multifunctional smart
meters. The usage of an FPGA as technology to embed the operational logic of the smart
meter, as proposed in this work, favors the hardware synthesis of AI algorithms, antifraud
systems, the implementation of different communication systems enabling IoT, remote
updating capability, and the availability of services to consumers. As FPGA technology
favors the execution of algorithms in parallel, the computational resources are attractive to
enhance the use of big data and the implementation of advanced measurement infrastruc-
ture (AMI), fundamental in the smart grid scenario. The authors aimed to demonstrate
a solution that could be used to implement the concepts of Industry 4.0 and IoT in the
electricity distribution network, in addition to microgeneration control.

Finally, the present work gathers knowledge from multidisciplinary fields, and all
applied techniques have not been proposed altogether before, as we observed from
the literature.
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