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Abstract: Glasswort (Salicornia herbacea L.) is a halophyte that exhibits antioxidant and antidia-
betic effects. Only a few studies have been conducted on its antioxidant effects. Here, we iso-
lated an antioxidant using an activity-based purification method, and the resulting compound was
identified as (9Z,11E)-13-Oxooctadeca-9,11-dienoic acid (13-KODE). We investigated its ability to
suppress inflammatory responses and the molecular mechanisms underlying these abilities using
lipopolysaccharide-stimulated RAW 264.7 macrophage cells. We studied the anti-inflammatory
effects of 13-KODE derived from S. herbacea L on RAW 264.7 macrophages. 13-KODE inhibited
lipopolysaccharide (LPS)-induced nitric oxide (NO) production by suppressing inducible NO syn-
thase and suppressed LPS-induced tumor necrosis factor and interleukin-1β expression in RAW
264.7 macrophages. LPS-mediated nuclear localization of NF-κB and mitogen-activated protein
kinase activation were inhibited by 13-KODE. 13-KODE significantly reduced LPS-induced pro-
duction of reactive oxygen species and increased the expression of nuclear factor erythroid-2 like 2
(Nfe2I2) and heme oxygenase 1. Overall, our results indicate that 13-KODE may have potential for
treating inflammation.

Keywords: (9Z,11E)-13-Oxooctadeca-9,11-dienoic acid (13-KODE); Salicornia herbacea L.; inflammation;
Nrf-2 (Nfe2I2); macrophage; antioxidant

1. Introduction

Inflammation is the complex biological response of body tissues against pathogens
and damaged cells [1]. It is a protective response involving immune cells and molec-
ular mediators. The function of inflammation is to eliminate necrotic cells and dam-
aged tissues. Acute inflammation is considered a part of innate immunity and repre-
sents the first line of defense against foreign bacteria and dangerous molecules [2]. In-
fectious agents and cell damage activate inflammatory cells and induce inflammatory
signaling pathways, such as NF-κB, mitogen-activated protein kinase (MAPK), and JAK-
STAT signaling pathways [3]. Lipopolysaccharide (LPS), an endotoxin derived from the
outer membrane of Escherichia coli, induces inflammation and is used to develop disease
models to examine the anti-inflammatory effects of drugs and natural compounds [4,5].
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Macrophages exposed to LPS produce proinflammatory mediators, cytokines, and reactive
oxygen species (ROS) [6,7]. The major proinflammatory mediators consist of nitric oxide
(NO) and prostaglandin E2, which are produced by inducible NO synthase (iNOS) and
cyclooxygenase-2, respectively [8,9]. LPS-treated macrophages induce tumor necrosis factor
(TNF)-α and interleukin (IL)-1β, and these molecules contribute to various inflammatory
diseases [10,11]. Furthermore, LPS-stimulated macrophages secrete proinflammatory cy-
tokines and growth factors [12]. LPS exposure results in the production of proinflammatory
mediators and proinflammatory cytokines through NF-κB activation [13,14]. Inflammation-
related gene expression of immune cells is regulated by the NF-κB pathway [13,15]. LPS
stimulation promotes the nuclear translocation of NF-κB p65 through IκB-α reduction.
MAPKs regulate cell proliferation, cycle arrest, migration, differentiation, senescence and
apoptosis [16]. Inflammation induces ROS production and decreases the production of
antioxidant enzymes [17,18]. The crosstalk between inflammation and oxidative stress
is important in diseases. The evidence of this crosstalk and the protective effects of nat-
ural compounds against oxidative stress and inflammatory response has been shown
in previous studies [19–25]. Heme oxygenase-1 (HO-1) is regulated by nuclear factor
erythroid-2 like 2 (Nfe2I2) and cleaves heme to form biliverdin, which is subsequently
converted into bilirubin by biliverdin reductase. HO-1 is associated with antioxidant,
anti-inflammatory, and cytoprotective functions and has emerged as a target molecule
with therapeutic implications [26]. Nfe2I2 plays a central role against inflammation and
oxidative damage [17,27,28].

Glasswort (Salicornia herbacea L.) is a halophytic plant that inhabits the mudflats of
Korea and has been used as a seasoning and in folk medicine for intestinal ailments,
nephropathy, and hepatitis [29]. The extract of glasswort prevents high fat diet-induced
hyperglycemia and hyperlipidemia in mice and induces antioxidant and skin-whitening
effects [30,31]. Methyl 3,5-dicaffeoyl quinate (MDQ), an active compound present in
S. herbacea. L produces anti-melanogenic effects through p-p38 and p-ERK1/2 signaling in
B16F10 mouse melanoma cells [32]. (9Z,11E)-13-Oxooctadeca-9,11-dienoic acid [13-KODE
(13-oxo-ode)] is a compound present in tomato fruit; it has health benefits and acts as a
peroxisome proliferator-activated receptor-α (PPARα) agonist [33]. Furthermore, linoleic
acid (LA) is oxidized into 13-hydroperoxy-9Z, 11E-octadecadienoic acid (13-HpODE) by
lipoxygenase, and 13-HpODE is reduced to 13-hydroyoctadecadienoic acid (13-HODE)
by glutathione peroxidase. 13-KODE (13-oxo-ode) is derived from 13-HODE by hydroxy
fatty acid dehydrogenase [34]. However, the anti-inflammatory effects of 13-KODE derived
from S. herbacea L. in murine macrophages have not been studied yet.

Here, we examined the anti-inflammatory activity of 13-KODE derived from S. herbacea L.
using murine macrophages. We isolated the antioxidant component using an antioxidant
assay-based purification protocol and the isolated compound, (9Z,11E)-13-Oxooctadeca-
9,11-dienoic acid (13-KODE) was found to exhibit anti-inflammatory activity. We showed
that 13-KODE functions as an anti-inflammatory agent by modulating NF-κB, ROS, and
Nfe2I2 signaling in murine macrophages

2. Materials and Methods
2.1. Materials

Silica gel 60A and gel filtration resin (Sephadex LH-20) were obtained from Millipore-
Sigma (Burlington, MA, USA). Reversed-phase high-performance liquid chromatography
(HPLC)-UV analysis of antioxidants was carried out on a Shimadzu 20A series HPLC
system (Kyoto, Japan) (Core-facility center, Jeju, Korea). LPS from E. coli was obtained
from InvivoGen (San Diego, CA, USA). Cell proliferation was done using the EZ-cytox Cell
Viability Assay Kit (Wellbio, Seoul, Korea). We used 13-KODE purified from S. herbacea L.
extracts. All other chemicals were obtained from Millipore-Sigma (Burlington, MA, USA).
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2.2. Plant Source

S. herbacea L. was purchased from Dasarang, Ltd. (Sinan, Korea). The plants were
ground and lyophilized. A lyophilized sample (no. 2020_10) was deposited at the Depart-
ment of Biomaterials, Jeju National University (Core-facility center, Jeju, Korea).

2.3. Purification of (9Z,11E)-13-Oxooctadeca-9,11-dienoic Acid (13-KODE)

The ground sample of S. herbacea L. (1000 g) was incubated with absolute methanol
at 28 ◦C for 16 h. The antioxidant-based isolation is described in Figure 1A. We mixed
methanol-extracted samples with distilled water and then evaporated the 100% methanol
off using a rotary evaporator (Heidolph, Schwabach, Germany). The water-soluble por-
tion was extracted with 1X ethyl acetate (EA). We isolated and then evaporated the EA
fraction. The evaporated purified samples were dissolved in 100% methanol. The EA
extracts were applied onto a silica gel resin (column size; 30 mm × 300 mm) and iso-
lated with chloroform:methanol (30:1) (Figure S1). The extracts were divided into several
fractions, evaporated, dissolved in methanol, and tested for antioxidant activity. The #6
fraction showed an antioxidant effect; it was applied to a Sephadex LH-20 gel (column
size; 30 mm × 300 mm) and separated into four parts (Figure S2). Each part was evaluated
for antioxidant activity and part #2 exhibited an effect. Part #2 was then loaded onto
a preparatory thin-layer chromatography (TLC) plate (glass plate; 200 mm × 200 mm).
The separated bands were examined for antioxidant activity (Figure S3). Fraction #1 was
injected onto an HPLC column (Shimadzu LC-20A, Kyoto, Japan) (Shim-pack GIS C-18
column and elution rate; 2 mL/min) and a gradient elution was employed as follows:
0–60% acetonitrile for 20 min, 60–100% acetonitrile 10 min, and 100% acetonitrile for 20 min.
The injection volume was 500 µl (Figure S4). The purified peak was observed at 32.8 min
(Figure 1B).

Antioxidants 2022, 11, 180 3 of 15 
 

 

herbacea L. extracts. All other chemicals were obtained from Millipore-Sigma (Burlington, 
MA, USA). 

2.2. Plant Source 
S. herbacea L. was purchased from Dasarang, Ltd. (Sinan, Korea). The plants were 

ground and lyophilized. A lyophilized sample (no. 2020_10) was deposited at the Depart-
ment of Biomaterials, Jeju National University (Core-facility center, Jeju, Korea). 

2.3. Purification of (9Z,11E)-13-Oxooctadeca-9,11-dienoic Acid (13-KODE) 
The ground sample of S. herbacea L. (1000 g) was incubated with absolute methanol 

at 28 °C for 16 h. The antioxidant-based isolation is described in Figure 1A. We mixed 
methanol-extracted samples with distilled water and then evaporated the 100% methanol 
off using a rotary evaporator (Heidolph, Schwabach, Germany). The water-soluble por-
tion was extracted with 1X ethyl acetate (EA). We isolated and then evaporated the EA 
fraction. The evaporated purified samples were dissolved in 100% methanol. The EA ex-
tracts were applied onto a silica gel resin (column size; 30 mm × 300 mm) and isolated 
with chloroform:methanol (30:1) (Figure S1). The extracts were divided into several frac-
tions, evaporated, dissolved in methanol, and tested for antioxidant activity. The #6 frac-
tion showed an antioxidant effect; it was applied to a Sephadex LH-20 gel (column size; 
30 mm × 300 mm) and separated into four parts (Figure S2). Each part was evaluated for 
antioxidant activity and part #2 exhibited an effect. Part #2 was then loaded onto a pre-
paratory thin-layer chromatography (TLC) plate (glass plate; 200 mm × 200 mm). The sep-
arated bands were examined for antioxidant activity (Figure S3). Fraction #1 was injected 
onto an HPLC column (Shimadzu LC-20A, Kyoto, Japan) (Shim-pack GIS C-18 column 
and elution rate; 2 mL/min) and a gradient elution was employed as follows: 0–60% ace-
tonitrile for 20 min, 60–100% acetonitrile 10 min, and 100% acetonitrile for 20 min. The 
injection volume was 500 µl (Figure S4). The purified peak was observed at 32.8 min (Fig-
ure 1B). 

 
Figure 1. Procedure for the isolation of an antioxidant from S. herbacea L. and the molecular structure 
of 13-KODE. (A) Purification flowchart of the antioxidant from S. herbacea L. (B) HPLC analysis of 
an antioxidant derived from S. herbacea L. (C) Chemical structure of 13-KODE, the antioxidant pu-
rified from S. herbacea L. 

  

Figure 1. Procedure for the isolation of an antioxidant from S. herbacea L. and the molecular structure
of 13-KODE. (A) Purification flowchart of the antioxidant from S. herbacea L. (B) HPLC analysis of an
antioxidant derived from S. herbacea L. (C) Chemical structure of 13-KODE, the antioxidant purified
from S. herbacea L.

2.4. Structural Analysis of the Isolated Sample

The chemical structure of the isolated compound was determined by mass spectrom-
etry and NMR. The molecular weight was established as 294 by ESI-mass spectrometry,
which showed quasi-molecular ion peaks at m/z 295.4 [M+H]+ in positive mode and m/z
293.4 [M-H]- in negative mode (see Figure S5). The 1H NMR spectrum in CDCl3 exhibited
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signals resulting from 4 olefinic methines at δ 7.48, 6.17, 6.11, and 5.88, 11 methylenes at
δ 2.53, 2.34, 2.29, 1.62, 1.62, 1.41, and 1.25–1.35, and 1 methyl at δ 0.88. In the 13C NMR
spectrum, 18 carbon peaks were observed, including 2 carbonyl carbons at δ 201.4 and
178.3, 4 olefinic methine carbons at δ 142.6, 137.0, 129.2, and 127.0, 11 methylene carbons
at δ 41.3, 33.8, 31.5, 28.7–29.1, 28.2, 24.6, 24.1, and 22.5, and 1 methyl carbon at δ 13.9
(see Figure S6). All proton-bearing carbons were assigned by the Heteronuclear Multiple
Quantum Coherence (HMQC) spectrum, and the 1H-1H Correlated Spectroscopy (COSY)
spectrum revealed four partial structures, CH3-CH2-, -CH2-CH2-, -CH=CH-CH=CH-CH2-
CH2-, and -CH2-CH2-CH2- (see Figures S7 and S8). Further structural elucidation was
performed using the Heteronuclear Multiple Bond Correlation (HMBC) spectrum, which
showed long-range correlations from the methyl protons at δ 0.88 to the carbons at δ 31.5
and 22.5, from the methylene protons at δ 2.53 to the carbons at δ 31.5 and 24.1, and from
the protons at δ 6.17 and 2.53 to the ketone carbonyl carbon at δ 201.4. The methylene
protons at δ 2.34 and 1.62 showed a long-range correlation to the carbon at δ 178.3 (see
Figures S9 and S10). Finally, the structure of the isolated compound was determined as
(9Z,11E)-13-Oxooctadeca-9,11-dienoic acid (13-KODE) by the process of elimination. The
geometries of C-9 and C-11 were established as cis and trans, respectively, by the proton
coupling constants of 11.0 and 15.5 Hz.

2.5. Antioxidant Assay

The antioxidant assay was done by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method [35].
Several concentrations of 13-KODE (0, 25, 50, 75, and 100 µM) and a representative an-
tioxidant, 10 mM N-acetyl-cysteine (NAC) as a positive control, were incubated with
200 µM DPPH solution in a 96-well plate for 20 min. The absorbance at OD517 was
examined using a VersaMax plate reader (Molecular Devices, San Jose, CA, USA). The
DPPH scavenging activities were determined by the following equation: DPPH scavenging
activity (%) = {1-[(Sample-Blank)/Control]} × 100.

2.6. Cell Line and Culture Conditions

RAW 264.7 macrophages were purchased from the American Type Culture Collec-
tion (Manassas, VA, USA). The macrophage cells were cultured in RPMI-1640 medium
with 10% Cytiva HyClone fetal bovine serum (Marlborough, MA, USA) and 1% Peni-
cillin/Streptomycin (Cytiva, HyClone) at 37 ◦C in 5% CO2.

2.7. Cell Proliferation Assay

RAW 264.7 cells (2.5 × 106 cells/plate) were seeded into a 96-well plate for 24 h. The
murine macrophages were incubated with increasing concentrations of 13-KODE (0, 25,
50, 100, 200, 300, and 400 µM) for one day. Cell proliferation was determined using the
EZ-Cytox Cell Viability Assay Kit (Wellbio, Seoul, Korea) following the manufacturer’s
instructions. The cultured media and reagent solution were mixed at a 10:1 ratio and 100 µL
of the mixture was added to each well and incubated at 37 ◦C for 2 h. The absorbance at
OD492 was measured using a VersaMax plate reader (Molecular Devices).

2.8. NO Assay

RAW 264.7 macrophages (2.5 × 106 cells/plate) were incubated in a 12-well plate
for 24 h. The macrophages were incubated with two concentrations of 13-KODE (0 or
100 µM) without LPS or with several concentrations of 13-KODE (0, 25, 50, 75, and 100 µM)
with 1 µg/mL LPS for 1 day. Secretory NO concentrations were measured using the
NO Plus Detection kit (LiliF, Gyeonggi, Korea). Then, 100 µL of the media and nitrite
standard were incubated by adding 50 µL of N1 buffer to each reaction for 30 min, and
the combined solution was incubated with 50 µL of N2 buffer for 15 min. The production
of NO was determined by measuring the absorbance OD560 using a VersaMax microplate
reader (Molecular Devices).
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2.9. Quantitative Real Time Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

RAW 264.7 macrophage cells were seeded into a 6-well plate for 24 h. The cells were
treated with 13-KODE (50 and 100 µM) for 1 h and incubated with LPS (1 µg/mL) for
24 h. Total RNA was extracted using the RNAiso Plus Extraction Kit (TaKaRa, Tokyo,
Japan) following manufacturer’s instructions. Real time qRT-PCR was carried out using a
One Step PrimeScript RT-PCR kit (TaKaRa, Tokyo, Japan). The qRT-PCR reaction mixture
contained 10 µL of 2X One Step RT-PCR buffer, 0.5 µL of PrimeScript RT enzyme Mix,
0.5 µL of Takara ExTaq, 1 µL of total RNA (150 ng/µL), 1 µL of forward primer (10 ng/µL),
1 µL of reverse primer (10 ng/µL), and 6 µL of RNase-free sterile water. We used the
comparative Ct method for analyzing the relative transcript levels of the target genes. The
specific qRT-PCR primers were obtained from Bioneer (Daejeon, Korea) and described in
Table S1. The β-actin gene was used as an internal control.

2.10. Enzyme-Linked Immunosorbent Assay (ELISA) for Cytokines

RAW 264.7 macrophage cells were seeded in a 12-well plate. The cells were pretreated
with 13-KODE (50 and 100 µM) for 1 h and stimulated with LPS (1 µg/mL) for 24 h. The
amount of TNF-α and IL-1β in the supernatant medium was measured using a specific
ELISA kit. The amount of IL-1β and TNF-α was measured using the IL-1β Mouse and
TNF-α ELISA Kit (R&D, Minneapolis, MN, USA).

2.11. Western Blot Analysis

RAW 264.7 macrophage cells were treated with 13-KODE for 1 h and incubated
with 1 µg/mL LPS for 30 min. The cells were lysed using a radioimmunoprecipitation
assay (RIPA) buffer (Sigma-Aldrich, Burlington, MA, USA) supplemented with protease
inhibitor, 10 mM sodium fluoride, and 10 mM sodium vanadate. Each lysate was separated
using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the
proteins were transferred to polyvinylidene fluoride (PVDF) membranes (Sigma-Aldrich,
Burlington, MA, USA). After incubating with Odyssey® Blocking Buffer (PBS) (LI-COR,
Lincoln, NE, USA) at room temperature for 1 h, the membranes were incubated for 3 h
at room temperature with primary antibodies. After washing three times with 1X PBS
containing 0.1% Tween 20, the membrane was incubated with IRDye® 680RD- and IRDye®

800CW-labeled antibody in Odyssey blocking buffer (1X PBS) supplemented with 1X PBS
containing 0.1% Tween 20 at room temperature for 1 h. The protein bands were visualized
using Odyssey CLx (LI-COR, Lincoln, NE, USA). Anti-pp38, anti-JNK, anti-pJNK, anti-
ERK1/2, anti-pERK1/2, anti-p65, anti-NRF2 (Nfe2l2), and anti-HO-1 antibodies were
obtained from Cell Signaling Technology (Beverly, MA, USA). Anti-p38, anti-β-actin, and
anti-Lamin B antibodies were obtained from Santa Cruz Biotechnology (Dallas, TX, USA).

2.12. Immunofluorescence Staining

RAW 264.7 macrophage cells (5 × 105 cells/mL) were incubated in a 96-well black
plate with a glass bottom (Eppendorf, Hamburg, Germany). The cells were pretreated with
13-KODE for 1 h and stimulated with LPS (1 µg/mL) for 60 min. The cells were fixed in
4% paraformaldehyde for 15 min, permeabilized with 0.1% Triton X-100 for 5 min, and
treated with 50 mM NH4Cl for 5 min. The cells were blocked with PBS containing 3% BSA
for 30 min and stained with p65 antibody (Cell Signaling Technology) overnight at 4 ◦C.
The stained cells were washed with 1X PBS and incubated with goat anti-mouse IgG Alexa
488-conjugated secondary antibodies. The cells were subsequently stained using mounting
medium with DAPI (Abcam, Cambridge, UK) and detected with an automated microscope
(Lionheart, Biotek, VT, USA).

2.13. Determination of Cellular ROS by Invitrogen® CellROX® Green Reagent

The cellular ROS concentration was determined using Invitrogen CellROX® Green
Reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. RAW
264.7 macrophage cells (1 × 106 cells/plate) were seeded in a 96-well plate for 24 h. The
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cells were pretreated with 13-KODE or N-acetyl-L-cysteine (NAC) for 60 min and incubated
with LPS (1 µg/mL) for 30 min. Then, the cells were stained with CellROX green dye
for 10 min at 37 ◦C. After washing with 1X PBS, the stained ROS were captured using an
automated microscope (Lionheart, Biotek, VT, USA).

2.14. Statistical Analysis

The data was the result of three independent experiments and reported as the
mean ± standard deviation. All data were analyzed using one-way analysis of variance
and evaluated using GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA),
and ** p < 0.01, *** p < 0.001 was considered a significant statistical difference.

3. Results
3.1. Purification of an Antioxidant Derived from S. herbacea L.

The antioxidant-guided (DPPH assay) purification steps are presented in Figure 1A.
The ground powder of S. herbacea L. was extracted with 100% methanol, and the dried
samples of S. herbacea L. were extracted with EA and H2O (v/v = 1:1). The EA extracts were
isolated using silica gel chromatography, Sephadex LH-20 gel chromatography, preparatory
thin layer chromatography (prep-TLC), and HPLC (Figures 1A and S1–S4). The isolated
sample was shown using HPLC and it has antioxidant activity (Figure 1B).

3.2. Structure of Isolated Antioxidant and the Effect of 13-KODE on Cell Proliferation

The purified antioxidant was identified as 13-Oxo-9Z, 11E-octadecadienoic acid (13-
KODE) using NMR spectrometry (Figures 1C and S5–S10). Cell proliferation was assessed
using 13-KODE in murine RAW 264.7 macrophages. The cells were incubated with 13-
KODE up to 400 µM. The results indicated that 13-KODE (100 µM) without LPS, LPS (up to
10 µg) without 13-KODE, and the combination of LPS and 13-KODE exhibited no growth
inhibition on macrophage cells (Figure 2A,B), whereas 200 µM 13-KODE inhibited cell
proliferation by 42%.

3.3. Effect of 13-KODE on LPS-Stimulated Production of Proinflammatory Mediators in RAW
264.7 Cells

To determine the suppressive effect of 13-KODE on LPS-stimulated NO secretion, we
tested murine macrophage cells with 13-KODE (25, 50, 75, and 100 µM) for 1 day with
or without LPS. It was observed that 13-KODE (100 µM) without LPS did not change
NO secretion of macrophages (Figure 2D). Additionally, we found that LPS-induced NO
secretion and 13-KODE decreased LPS-stimulated NO secretion. LPS stimulation increased
NO secretion up to 42-fold, whereas 13-KODE treatment resulted in a 21%, 49%, 70%,
and 90% reduction, respectively, compared with LPS-stimulated cells (Figure 2D). We
examined the expression of iNOS using an immunoblot assay. The LPS-treated RAW
264.7 macrophages increased the expression of iNOS, whereas 13-KODE markedly reduced
LPS-induced iNOS protein levels. The mRNA level of iNOS was measured in LPS-treated
RAW 264.7 macrophages. LPS-induced mRNA levels of the iNOS gene, whereas 13-KODE
treatment resulted in a decrease in iNOS mRNA (Figure 2E). Thus, 13-KODE decreased
NO secretion by decreasing iNOS gene expression.
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24 h. (E) Total RNA was purified from RAW 264.7 macrophage cells with or without the indicated
concentrations of 13-KODE and treated with LPS (1 µg/mL) for 24 h. The transcripts of iNOS were
measured by quantitative reverse transcription polymerase chain reaction as described in Section 2.
Protein lysates were isolated from the cells with or without 13-KODE and then stimulated with LPS
(1 µg/mL) for 24 h. The values correspond to the mean ± standard deviation, n = 3. ## p < 0.01;
### p < 0.001; ** p < 0.01.

3.4. 13-KODE Inhibits LPS-Stimulated Proinflammatory Cytokines in RAW 264.7 Macrophage Cells

The effect of 13-KODE on the elevated levels of TNF-α and IL-1β mRNA and pro-
tein in RAW 264.7 macrophage cells was determined by qPCR and ELISA. LPS induced
mRNA and protein levels of IL-1β by 88- and 7.4-fold, respectively, whereas 13-KODE
(100 µM) down-regulated expression by 52% and 72% compared with the LPS-treated con-
trol (Figure 3A). LPS induced transcripts and protein levels of TNF-α by 6.3- and 9.8-fold,
respectively, whereas 13-KODE (100 µM) treatment resulted in a 66% and 61% decrease
compared with LPS-stimulated cells (Figure 3B). We found that 13-KODE decreased IL-1β
and TNF-α secretion by inhibition of IL-1β and TNF-α gene expression (Figure 3A,B). LPS
stimulation markedly induced the secretion of TNF-α and IL-1β in RAW 264.7 macrophages,
whereas 13-KODE decreased LPS-induced production of TNF-α and IL-1β (Figure 3A,B).
LPS induced the expression of TNF-α and IL-1β genes, whereas 13-KODE reduced LPS-
stimulated TNF-α and IL-1β gene expression (Figure 3A,B). These results indicate that
13-KODE decreases the inflammatory response of RAW 264.7 macrophage cells by reducing
LPS-induced cytokine secretion.
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translocation of NF-κB p65 in LPS-treated cells was increased 1.6-fold compared with con-
trol cells, whereas 13-KODE reduced the levels of nuclear p65 by 67% compared with LPS-
stimulated cells. The expression of cytosolic IκB was induced by 2.6-fold compared with 
the LPS-stimulated control. We found that LPS stimulation increased the nuclear level of 
NF-κB p65 protein and down-regulated the expression of IκB-α. Moreover, 13-KODE 

Figure 3. Inhibition of IL-1β and TNF-α production by 13-KODE in LPS-stimulated RAW 267.4 cells.
RAW 264.7 cells were incubated with 13-KODE (50 and 100 µM) prior to stimulation with 1 µg/mL
LPS for 1 day and total RNA was isolated. The transcript levels of IL-1β (A) and TNF-α (B) were
measured by qRT-PCR. RAW 264.7 cells were incubated with 13-KODE (50 and 100 µM) prior
to stimulation with 1 µg/mL LPS for 1 day and of IL-1β (A) and TNF-α (B) amounts in the cul-
tured supernatants were measured using commercial ELISA kits. The values correspond to the
mean ± standard deviation, n = 3. ** p < 0.01; ### p < 0.001.

3.5. The Effect of 13-KODE on NF-κB Signaling

We determined the effects of 13-KODE on the NF-κB signaling pathway. The nuclear
translocation of NF-κB p65 in LPS-treated cells was increased 1.6-fold compared with
control cells, whereas 13-KODE reduced the levels of nuclear p65 by 67% compared with
LPS-stimulated cells. The expression of cytosolic IκB was induced by 2.6-fold compared
with the LPS-stimulated control. We found that LPS stimulation increased the nuclear level
of NF-κB p65 protein and down-regulated the expression of IκB-α. Moreover, 13-KODE
treatment reduced the nuclear level of NF-κB (p65) and inhibited the downregulation
of IκB-α expression in LPS-stimulated cells (Figure 4A). The immunofluorescence data
revealed that LPS-treatment induced the nuclear translocation of NF-κB p65, whereas
pretreatment with 13-KODE inhibited the nuclear translocation of NF-κB p65 in LPS-
treated cells (Figure 4B). We demonstrated that 13-KODE is a suppressor of LPS-stimulated
NF-κB activation in RAW 264.7 macrophage cells.
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Figure 4. 13-KODE inhibits LPS-induced nuclear translocation of NF-κB in RAW264.7 cells.
Macrophage cells were treated with 100 µM 13-KODE for 1 h followed by treatment with LPS
(1 µg/mL) for 30 min. (A) Nuclear and cytosolic fractions were subjected to SDS-PAGE followed by
Western blotting using the indicated primary antibodies. The amounts of lamin B and β-actin were
used as internal controls for the nuclear and cytosolic fractions, respectively. The values correspond
to the means ± standard deviations, n = 3. ** p < 0.01 *** p < 0.001. (B) RAW264.7 cells were pretreated
with 100 µM 13-KODE for 1 h and then treated with LPS (1 µg/mL) for 30 min. The localization of
NF-κB p65 and nuclei were determined by staining with anti-p65 (green) and DAPI (blue). Images
were obtained by microscopy at 40X magnification and show representative macrophages (scale
bar = 100 µm).

3.6. 13-KODE Inhibits LPS-Induced MAPK Activation in RAW 264.7 Macrophages

Our data showed that LPS stimulation increased the levels of pERK1/2, p-p38, and
pJNK by 4.8-, 5.5- and 7-fold, respectively, whereas 13-KODE resulted in a decrease of 66%,
47%, and 52%, respectively, compared with LPS-stimulated control cells (Figure 5). We
found that 13-KODE suppressed LPS-treated levels of pERK, p-p38, and pJNK (Figure 5)
and inhibited the inflammatory response of LPS-induced RAW 264.7 cells by inhibiting
MAPK signaling.

3.7. 13-KODE Reduced LPS-Induced ROS Accumulation in RAW 264.7 Cells

Figure 6 shows that the LPS-induced cellular signal of CellROX Green was reversed
by 13-KODE and NAC. Fluorescent signals were increased by 12.2-fold in LPS-treated cells
and reduced by 88% in 13-KODE–treated cells. This suggests that 13-KODE is a strong
candidate for ROS-reducing activity against LPS on murine RAW 264.7 macrophages.
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3.8. Induction of HO-1 and Nfe2I2 Expression by 13-KODE in RAW 264.7 Cells  
The Nrf-2 (Nfe2I2) and HO-1 signaling axis represents a multiorgan protector that 

decreases oxidative stress in tissue and animal models [17,28]. We determined whether 
13-KODE could induce the Nfe2I2/HO-1 signaling axis. 13-KODE increased HO-1 and 
Nfe2I2 protein levels by 20- and 4.6-fold, respectively, and reduced the expression of 
Keap1 protein at 12 h by 67%. We found that 13-KODE induced HO-1 and Nfe2I2 protein 
levels (Figure 7A). We determined the cytosolic/nuclear location of Nfe2I2 during 13-
KODE treatment and found that nuclear Nfe2I2 protein was increased by 5.3-fold. 13-

Figure 5. Inhibition of the LPS-induced activation of MAPKs by 13-KODE in RAW 264.7 macrophages.
The cells were treated with 100 µM of 13-KODE for 1 h prior to exposure to LPS (1 µg/mL) for
30 min and total protein was isolated. The protein extracts were subject to SDS-PAGE followed
by Western blot analysis using the indicated primary antibodies. The amount of β-actin served as
the internal control. pERK1/2, p-p38, and pJNK levels were determined. The values represent the
mean ± standard deviation, n = 3. ** p < 0.01; *** p < 0.001.
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Figure 6. Effect of 13-KODE on LPS-induced ROS generation in RAW 264.7 macrophage cells.
The ROS production of RAW 264.7 macrophages was monitored using CellROX Green dye assays.
Macrophage cells were pretreated with 100 µM of 13-KODE and NAC (10 mM) for 1 h prior to
treatment with or without 1 µg/mL LPS for 30 min. ROS data were visualized using a fluorescence
microscope (magnification, ×100) and representative photos are shown (scale bar; 100 µm). The
values represent the mean ± standard deviation, n = 3. ** p < 0.01 ### p < 0.001.

3.8. Induction of HO-1 and Nfe2I2 Expression by 13-KODE in RAW 264.7 Cells

The Nrf-2 (Nfe2I2) and HO-1 signaling axis represents a multiorgan protector that
decreases oxidative stress in tissue and animal models [17,28]. We determined whether
13-KODE could induce the Nfe2I2/HO-1 signaling axis. 13-KODE increased HO-1 and
Nfe2I2 protein levels by 20- and 4.6-fold, respectively, and reduced the expression of Keap1
protein at 12 h by 67%. We found that 13-KODE induced HO-1 and Nfe2I2 protein levels
(Figure 7A). We determined the cytosolic/nuclear location of Nfe2I2 during 13-KODE
treatment and found that nuclear Nfe2I2 protein was increased by 5.3-fold. 13-KODE
significantly increased the level of nuclear Nfe2I2 protein in nuclear fractions of RAW
264.7 macrophage lysates (Figure 7B). The results indicate that the antioxidant effect of
13-KODE is associated with the Nfe2I2/HO-1 signaling axis.
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Figure 7. Induction of Nrf2 (Nfe2I2) and HO-1 proteins by 13-KODE in RAW 264.7 cells.
(A) Macrophage cells were cultured with 100 µM 13-KODE for the indicated times. Total pro-
tein was isolated by 10% SDS-PAGE and transferred to PVDF membranes. The membranes were
probed with the indicated antibodies. β-Actin served as the internal control. (B) Macrophage cells
were treated with 100 µM 13-KODE for 12 h. Nuclear and cytosolic proteins were probed with
anti-Nfe2I2 (Nrf2) antibody. Proteins were visualized using the near-infrared (NIR) Western blot
system. Lamin B and β-actin were used as internal controls for the nuclear and cytosolic proteins.
The values represent the mean ± standard deviation, n = 3. * p < 0.05; ** p < 0.01; *** p < 0.001.

4. Discussion

S. herbacea L. (glasswort) inhabits the western coastline of Korea; it is utilized as a food
resource and consumed as a raw vegetable in salads and fermented food [36,37]. S. herbacea
L. exhibits several biological effects including antioxidant, anti-inflammatory, and anti-
cancer activity [37–40]. In the present study, we isolated an antioxidant from an S. herbacea L.
extract using an antioxidant assay purification method, and the antioxidant was identified
as 13-KODE, a 13-Oxo-9(Z), 11(E)-octadecadienoic acid. We demonstrated that 13-KODE
extracted from glasswort exhibits anti-inflammatory activity on LPS-stimulated RAW
264.7 macrophages. 13-KODE (13-oxo-ode) is derived from 13-HODE by hydroxy fatty
acid dehydrogenase [34]. LA is an essential fatty acid, and its derivatives consist of 9,10-
epoxy-12-octadecenoic acid (leukotoxin), 12,13-epoxy (EKODE), 9-hydroxyoctadacadienoic
acid (9-HODE), 13-hydroxyoctadacadienoic acid (13-HODE), and 13-oxo-octadecadienoic
acid (13-oxo-ode, 13-KODE). The derivatives of LA are synthesized by cyclooxygenases,
lipoxygenases, and cytochrome p450 and are known to have pleiotropic effects [41].

The anti-inflammation properties of 13-KODE derived from S. herbacea L. have not
been studied in murine macrophages. We examined the protective effect of 13-KODE on
LPS-stimulated RAW 264.7 macrophages. LPS extracted from the cell wall of Gram negative
bacteria may be used as a tool to determine the ability of specific compounds to inhibit
inflammation [4]. After treatment with LPS, murine macrophages secrete inflammatory
cytokines, such as TNF-α, IL-6, and IL-1β. In the present work, 13-KODE inhibited LPS-
stimulated NO production, TNF-α secretion, and IL-1β secretion. It suppressed LPS-
stimulated inflammation. The NF-κB pathway is essential for producing an inflammatory
response and increases the expression of several proinflammatory genes [42]. This pathway
is a target for the treatment of inflammatory diseases [43]. Our results indicated that
13-KODE inhibited the LPS-stimulated nuclear translocation of NF-κB (p65). We also
found that 13-KODE suppressed LPS-stimulated MAPK activation (pERK1/2, pJNK, and
p-p38) and LPS-stimulated inflammation by modulating MAPK signaling and NF-κB (p65)
nuclear translocation.
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In murine macrophage cells, LPS-induced cellular ROS accumulation increased the
inflammatory mediators, and cytokine secretion [44]. The crosstalk between inflammation
and oxidative stress is important in diseases. LPS-induced oxidative stress and inflam-
mation in bovine mammary epithelial cells and acute lung injury were inhibited by hy-
droxytyrosol and adamantly retinoid ST1926 [19–21]. Our data showed that LPS-induced
oxidative stress and inflammation in RAW 264.7 macrophage cells were inhibited by 13-
KODE. It is considered that hydroxytyrosol, retinoid ST1926, and 13-KODE compounds
can regulate the crosstalk between inflammation and oxidative stress. ROS acts as a me-
diator of receptor-mediated signaling. Lipoxygenases (LOXs) and nicotinamide adenine
dinucleotide phosphate oxidases of immune cells induce the production of ROS during
receptor-mediated signaling. LPS-treatment increases ROS production and NF-κB acti-
vation [44]. We demonstrated that 13-KODE reduced LPS-stimulated ROS production in
murine macrophages and inhibited ROS accumulation, which represents an important
anti-inflammatory effect of 13-KODE.

The Nfe2I2/HO-1 axis is a multiorgan protective mechanism that protects cells against
oxidative stress. It inhibits the transcriptional activation of proinflammatory cytokines
and inflammatory genes [45] as well as oxidative stress in cells and organs [46]. The
Nfe2I2/sMaf transcription factor complex binds to the antioxidant response element and
activates the transcription of the HO-1 gene. The bilirubin produced by HO-1 exhibits
antioxidant and cytoprotective effects. We showed that 13-KODE increased Nfe2I2 and HO-
1 protein levels and Nfe2I2/HO-1 axis signaling. It also increased the anti-inflammatory
response of LPS-induced macrophage cells. Furthermore, we also found that 13-KODE
increased Nfe2I2 and HO-1 protein levels and decreased Keap1.

13-KODE, a derivative of LA, has been isolated from various tomato plants. It exhibits
antioxidant effects and acts as a PPARα agonist [33,34]. 13-HODE, a precursor of 13-KODE
act as a mitogenic signal responsible for LA-dependent growth in hepatoma 7288CTC
cells in vivo [47]. 13-KODE shows structural stability under hot and acidic conditions.
Our results showed that 13-KODE exhibits anti-inflammatory effects on murine RAW
264.7 cells not only by blocking ROS accumulation, MAPK activities and activating NF-κB
signaling, but also by increasing Nrf-2/HO-1 signaling (Figure 8). Our study showed that
13-KODE results in an anti-inflammatory effect and may have the potential for treating
inflammatory diseases.
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5. Conclusions

We purified an antioxidant compound from S. herbacea L. (glasswort) and found that
it exhibits significant antioxidant activity. Purification of the antioxidant compound was
carried out through antioxidant assay-based isolation and large sample preparation. Using
NMR spectrometry, we identified the purified compound to be 13-KODE. We determined
that it has a protective effect on LPS-stimulated inflammation of macrophages. 13-KODE
exhibits its anti-inflammatory activity in LPS-stimulated macrophages by inhibiting proin-
flammatory cytokine production, LPS-stimulated ROS accumulation, LPS-induced MAPK
activation and activating Nfe2I2/HO-1 signaling axis. We showed that 13-KODE produces
anti-inflammatory effects and has the potential for use in treating inflammatory diseases.

Supplementary Materials: The following data are available online at online https://www.mdpi.
com/article/10.3390/antiox11020180/s1. Table S1. Specific Real-time RT-qPCR primer sequences
containing iNOS, IL-1β, TNF-α, and β-actin genes. Figure S1: Purification of an antioxidant from
S. herbacea L. extracts using SiO2 gel chromatography eluted with CHCl3:MeOH (30:1). Active fraction:
#6. Figure S2. Purification of an antioxidant from S. herbacea L. extracts using Sephadex LH-20 gel
chromatography eluted with MeOH. Active fraction: #2. Figure S3. Purification of an antioxidant
from the S. herbacea L. extracts using preparative thin layer chromatography with CHCl3:MeOH
(20:1). Active fraction: #1. Figure S4. Purification procedure of an antioxidant from the S. herbacea L.
extracts using preparatory HPLC with acetonitrile. Figure S5. ESI-mass spectrometry of the purified
sample. Figure S6. 1H NMR and 13C NMR spectra of the purified sample. Figure S7. HMQC
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