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Purpose: Alternative splicing (AS) was reported to play a vital role in development and

progression of glioblastoma (GBM), the most common and fatal brain tumor. Systematic

analysis of survival-associated AS event profiles and prognostic prediction model based

on multiple AS events in GBM was needed.

Methods: Genome-wide AS and RNA sequencing profiles were generated in 152

patients with GBM in the cancer genome atlas (TCGA). Prognosis-associated AS

events were screened by integrated Cox regression analysis to construct the prognostic

risk score model in the training cohort (n = 101). The AS-based signature and

clinicopathologic parameters were applied to construct a prognostic nomogram for

0.5-, 1-, and 3-year OS prediction. Finally, the regulatory networks between prognostic

AS events and splicing factors (SFs) were constructed.

Results: A total of 1,598 prognosis-related AS events from 1,183 source genes

were determined. Eight prognostic risk score model based on integrated AS events

and 7 AS types were established, respectively. Concordance index (C-index) and

receiver operating characteristic (ROC) curve analysis demonstrated powerful ability in

distinguishing patients’ outcomes. Only Alternate Donor site (AD) and Exon Skip (ES)

signature out of the eight types of AS signature were identified as independent prognostic

factors for GBM, which was validated in the internal validation cohort. The nomogram

with age, new event, pharmaceutical therapy, radiation therapy, AD signature and ES

signature were constructed, with C-index of 0.892 (95% CI, 0.853–0.931; P = 5.13

× 10−15). Calibration plots, ROC, and decision curve analysis suggested excellent

predictive performance for the nomogram in both TCGA training cohort and validation

cohort. Splicing network indicated distinguished correlations between prognostic AS

events and SFs in GBM patients.

Conclusions: AS-based prediction model could serve as a promising prognostic

predictor and potential therapeutic target for GBM, facilitating better treatment strategies

in clinical practice.
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INTRODUCTION

Glioma is the most common primary tumor of the central
nervous system, accounting for 40–50% of brain tumors in
the United States from 2010 to 2014 (1). Glioblastoma (GBM),
corresponding to WHO grade IV, is the most commonly
occurring and most lethal type of glioma, generally exhibiting
a 5-year overall survival (OS) rate of ∼5% (1, 2). Despite
remarkable advances in the development of managements for
GBM, including surgery, chemotherapy, radiotherapy, targeted
therapy, and immunotherapy, the optimal treatment strategy
remains controversial (3). It has been reported in the literature
that age, extent of resection, and various molecular alterations
can serve as prognostic factors for GBM (4–6). Numerous clinical
and molecular studies of GBM have been reported in recent
years (4–6). However, the exact underlying mechanisms that
contribute to its development, progression and recurrence have
not been clearly elucidated. Hence, exploring the underlying
molecular mechanisms and investigating prognostic biomarkers
and predictors of therapeutic response are indispensable for the
treatment of GBM patients.

Alternative splicing (AS) is a vital posttranscriptional process
that modifies>95% of human genes by regulating the translation
of mRNA isoforms and encoding splice variants in normal
physiology (7, 8). Emerging evidence has demonstrated that
aberrant AS events play a vital role in multiple cancers by
promoting tumor cell proliferation, immune escape, metastasis,
and drug resistance (9, 10). In addition, alterations or changes
in the expression of splicing factors (SFs) could contribute
to oncogenic AS events by activating oncogenes or cancer-
related pathways and deactivating tumor suppressors (11).
With the rapid development of large-scale genome-sequencing
technologies, the roles of multiple oncogenic AS events in GBM
have been investigated in recent years, including the associations
between those AS events and GBM tumorigenesis, progression,
recurrence and even treatment (12–14). Certain AS events and
their cancer-specific mRNA isoforms can serve as promising
therapeutic and prognostic biomarkers for GBM. However,
systematic analysis of survival-associated AS event profiles and
prognostic prediction models based on multiple AS events have
not been realized in GBM before.

In this study, by performing a global expression profile
assessment, we aimed to identify survival-related AS signatures
that could serve as molecular biomarkers for subgroup
classification, risk stratification, prognostication, and therapeutic
targets in GBM. Moreover, we successfully established a novel,

Abbreviations: Abbreviations: AS, alternative splicing; GBM, glioblastoma;

TCGA, the cancer genome atlas; SF, splicing factor; C-index, Harrell’s concordance

index; ROC, receiver operating characteristic; AD, Alternate Donor site; ES, Exon

Skip; OS, overall survival; PSI, Percent-Spliced-In; AP, Alternate Promoter; AT,

Alternate Terminator; ME, Mutually Exclusive Exons; RI, Retained Intron; GO,

Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least

absolute shrinkage and selection operator; AIC, Akaike information criterion; BIC,

Bayesian information criterion; K-M, Kaplan-Meier; AUC, area under the curve;

KPS, Karnofsky performance score; DCA, decision curve analysis; HR, hazard

ratio; CI, confidence interval; BP, biological process; CC, cellular component;

MF, molecular function; MKNK2, manipulation of the kinase Mnk2; SSO, splice-

switching oligonucleotides.

promising prognostic nomogram for GBM based on multiple AS
signatures and clinicopathological factors, and we demonstrated
its powerful predictive ability. Finally, the regulatory networks
between prognostic AS events and SFs were constructed to
investigate the underlying regulatory mechanisms.

MATERIALS AND METHODS

Data Retrieval and Processing
The level 3 RNA sequencing data and clinical information of
156 GBM patients were downloaded from The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/) database. Patients
without prognostic information were excluded. AS events in
GBM and their percent-splice-in (PSI) values were obtained
from the TCGA SpliceSeq data portal (https://bioinformatics.
mdanderson.org/TCGASpliceSeq/). PSI values are expressed on
a scale from 0 to 1 and are commonly used to quantify AS events,
providing an overview of the AS junction and the proportion
of included exons from clinical samples (15). Seven types of AS
events, namely, alternate acceptor site (AA), alternate donor site
(AD), alternate promoter (AP), alternate terminator (AT), exon
skip (ES), mutually exclusive exons (ME), and retained intron
(RI) events, were quantified by PSI value (Figure 1A). Ultimately,
a total of 152 GBM patients with TCGA SpliceSeq data, RNA
sequencing data and clinical data were included our study. Four
patients were excluded due to lack of prognostic information.
Because the data were obtained from TCGA, our study did not
require approval by an ethics committee.

Construction of the Prognostic Risk Score
Model Based on AS Events
First, all the 152 GBM patients were randomly divided into
two groups on a ratio of 2:1, including training cohort
(n = 101) and internal validation cohort (n = 51). To
identify survival-associated AS events, we performed univariate
Cox regression analysis to identify the associations between
the PSI values of various AS events and patients’ OS
using the “survival” package (http://bioconductor.org/packages/
survival/) in R 3.5.1 (16). The intersections between AS
events as well as the quantitative analysis of these interactive
sets were visualized as UpSet plots using the “UpSetR”
package (17). Then, the Database for Annotation, Visualization
and Integrated Discovery (DAVID, http://david.ncifcrf.gov/)
was used to perform functional annotation and pathway
enrichment analyses, including Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis,
for the source genes of prognostic AS events (18–20). A P-value
< 0.05 was considered statistically significant.

Then, prognostic AS events with a P-value< 0.05 in univariate
Cox regression were further screened by least absolute shrinkage
and selection operator (LASSO) regression. We adopted the
optimal value of λ according to 10-fold cross-validation and the
Akaike information criterion (AIC) and Bayesian information
criterion (BIC) (21, 22). Finally, the optimal prognosis-related AS
events were identified by multivariate Cox regression analysis to
construct a prognostic risk score model for predicting OS. The
prognostic risk score model was established with the following

Frontiers in Oncology | www.frontiersin.org 2 July 2020 | Volume 10 | Article 1257

https://portal.gdc.cancer.gov/
https://bioinformatics.mdanderson.org/TCGASpliceSeq/
https://bioinformatics.mdanderson.org/TCGASpliceSeq/
http://bioconductor.org/packages/survival/
http://bioconductor.org/packages/survival/
http://david.ncifcrf.gov/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Prognostic AS Signature for GBM

FIGURE 1 | Overview of AS events in GBM patients. (A) UpSet plot of the seven types of AS events. (B) The source genes of the seven types of AS events. (C) The

seven types of AS events and their association with survival, shown as an UpSet plot. (D) Functional enrichment analysis of the source genes of prognostic AS events.

formula: risk score = PSI value of AS event1 × β1 + PSI
value of AS event2 × β2 +. . .+ PSI value of AS eventn × βn,
where β represents the regression coefficient calculated by the
multivariate Cox regression model (23). Then, the prognostic
risk score was generated for each patient. All GBM patients in
the training set were divided into high-risk (high risk score) and
low-risk (low risk score) groups using the median risk score as
the cutoff. Kaplan-Meier (K-M) survival curve analysis using the
“survival” package was performed to estimate the prognoses of
patients with high and low risk scores, and the survival difference
between the high-risk and low-risk groups was assessed by a
two-sided log-rank test. The prognostic performance of the
AS signature was evaluated by Harrell’s concordance index
(C-index) and time-dependent receiver operating characteristic
(ROC) curve analysis of 0.5-, 1-, 2-, 3-, and 5-year survival
with the “survcomp” (http://www.bioconductor.org/packages/
survcomp/) and “survivalROC” (https://cran.r-project.org/web/
packages/survivalROC/) R packages (24, 25). Both the C-index
and the area under the curve (AUC) range from 0.5 to 1,
with 1 indicating perfect discrimination and 0.5 indicating
no discrimination. Finally, the prognostic model constructed
by the TCGA training cohort were further validated by the
internal validation cohort in a similar way. In addition, to
determine whether the predictive power of the AS signature
could be independent of other clinicopathological parameters, we

performed univariate and multivariate Cox proportional hazards
regression analyses in the training set and validation set.

Construction and Validation of the
Nomogram With AS Signatures
Demographics and clinical characteristics of the TCGA GBM
patients in the training cohort and validation cohort were
shown in Table 1. Clinicopathological parameters [including age,
sex, new events, Karnofsky Performance Status (KPS) score,
pharmaceutical therapy, radiation therapy, surgery, and IDH
mutation status] and AS signatures (including the integrated
AS signature as well as the AA, AD, AP, AT, ES, ME, and RI
signatures), were entered into the univariate and multivariate
Cox regression analysis. All the independent prognostic factors
were determined to construct a prognostic nomogram to assess
the probability of 0.5-, 1-, and 3-year OS for TCGA GBM
patients using the “rms” R package (https://cran.r-project.org/
web/packages/rms/) (26). The discrimination performance of the
nomogram was quantitatively assessed by the C-index and the
area under the ROC curve (24). Calibration plots were also
used to graphically evaluate the discriminative ability of the
nomogram (25). Additionally, decision curve analysis (DCA) was
performed to determine the clinical usefulness of the prognostic
nomogram by quantifying the net benefits at different threshold
probabilities in GBM patients (27). The best prediction model is
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TABLE 1 | Demographics and clinical characteristics of the TCGA GBM patients

in the training cohort (n = 101) and internal validation cohort (n = 51).

Variables Training set

(n = 101)

Internal

validation set

(n = 51)

Age (years) 61.1 ± 13.1 56.8 ± 14.3

Sex (Female/Male) 16/35 16/35

New event (None or NA/Yes) 47/54 18/33

KPS (<80/>= 80/NA) 21/50/30 11/32/8

Pharmaceutical therapy (CT only/CT

+ TMT/CT + HT/Others/No or NA)

41/16/11/2/31 22/11/9/3/6

Radiation therapy (No/Yes/NA) 18/76/7 4/47/0

Surgery (Biopsy only/Tumor resection) 11/90 6/45

IDH mutation status

(Wildtype/Mutant)

97/4 47/4

GBM, glioblastoma; NA, not available; KPS, Karnofsky performance score; CT,

chemotherapy; TMT, targeted molecular therapy; HT, hormone therapy.

“New event” included progression and recurrence. “Others” in pharmaceutical therapy

included CT + TMT + HT, CT + TMT + Immunotherapy, and CT + Immunotherapy.

typically one that has a high net benefit within a suitable range
of threshold probabilities. Finally, the prognostic nomogram was
further validated by the internal validation cohort. All analyses
were conducted using R version 3.5.1, and a P-value < 0.05 was
considered statistically significant. Hazard ratios (HRs) and 95%
confidence intervals (CIs) are reported if necessary.

Correlation Analysis and Regulatory
Networks Between Prognostic AS Events
and SFs
It has been reported that AS events in the tumor
microenvironment can be modified or regulated by SFs (28).
Hence, it is vital to explore the correlations between prognostic
AS events and SFs in GBM. Correlation analyses between the
PSI values of prognostic AS events and the expression levels
of the corresponding SF genes were performed using Pearson’s
correlation test. A P-value < 0.001 combined with a correlation
coefficient > 0.6 or < −0.6 was considered to indicate a
significant correlation. Then, the regulatory networks between
prognostic AS events and SFs were visualized using Cytoscape.

RESULTS

AS Profiles in TCGA GBM Patients
By analyzing SpliceSeq data from 152 GBM patients, we obtained
45,610 mRNA splicing events in 21,136 source genes, including
3,827 AAs in 2,684 genes, 3,269 ADs in 2,270 genes, 8,686 APs in
3,476 genes, 8,456 ATs in 3,695 genes, 18,360 ESs in 6,934 genes,
184 MEs in 180 genes, and 2,828 RIs in 1,897 genes (Figure 1B).
ES was the most common type of AS, accounting for 40% of all
events, whereas ME was the least common.

Prognostic AS Events and Functional
Enrichment Analysis
Through univariate Cox regression analysis, we identified a
total of 1,598 prognosis-related AS events in 1,183 source
genes, as depicted in Figure 1C. GO analyses, including the
biological process (BP), cellular component (CC) and molecular
function (MF) categories, were performed on the source genes of
prognostic AS events. In the BP category, there was significant
gene enrichment in signal transduction, cell communication
and apoptosis. In the CC category, genes were significantly
enriched in the cytoplasm, nucleus and plasma membrane. In the
MF category, genes were significantly enriched in transcription
regulator activity, transcription factor activity and transporter
activity. In addition, KEGG pathway analysis revealed significant
gene enrichment in the mTOR signaling pathway, integrin
family cell surface interactions and pathways involved in cancer
(Figure 1D).

Using the HR or the z-score, each prognostic AS event was
classified as a favorable (HR < 1 or z-score < 0) or unfavorable
(HR > 1 or z-score > 0) prognostic factor. The top 20 most
significant AS events of each of the seven types are presented
graphically in Figure 2. Interestingly, most of the prognostic AS
events were favorable prognostic factors (850 vs. 747).

Construction of the AS-Based Prognostic
Risk Score Models
Following the univariate Cox regression analysis, LASSO
and multivariate Cox regression analysis were applied
to all AS types combined and to each of the 7 AS types
separately to screen the prognosis-associated AS events
(Figure 3, Supplementary Table 1). ROC curves indicated
excellent discriminative performances of LASSO analysis
(Supplementary Figure 1). Eight prognostic risk score models
based on AS events were established by the formulas shown in
Table 2. Then, we calculated the prognostic risk score for each
patient in the TCGA training cohort. The patients were divided
into a high-risk group (high risk score) and a low-risk group (low
risk score) using the median risk score as the cutoff (Figure 4).
K-M survival curve analysis demonstrated that patients in
high-risk groups had significantly poorer OS than patients in
low-risk groups as defined by all eight types of AS signatures
(log rank P < 0.05; Figure 5). The C-indexes of the ES signature
and the integrated AS signature for OS prediction were 0.875
(95% CI, 0.836–0.914; P = 6.05 × 10−32) and 0.852 (95% CI,
0.813–0.891; P= 5.99× 10−26), respectively, demonstrating that
these two models had the most favorable predictive value among
the eight AS-based risk score models (Table 2). Furthermore, in
time-dependent ROC analyses, all eight types of AS signatures
showed favorable predictive ability for 0.5-, 1-, 2-, 3-, and 5-year
OS, with each signature having an AUC of ∼0.9 (Figure 5).
Finally, to evaluate that the AS-based prognostic model had
similar predictive performances in different populations, we
applied it to predict OS in an independent internal validation
cohort in a similar way. According to the risk score model, the
51 GBM patients in the validation cohort were divided into
high-risk and low-risk groups (Supplementary Figure 2), and
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FIGURE 2 | Prognosis-related AS events in GBM. (A) Volcano plot showing an overview of the prognosis-related AS events. (B–H) The top 20 prognosis-related AS

events, illustrated by bubble plots, for AA, AD, AP, AT, ES, ME, and RI (z-score > 0, HR > 1; z-score < 0, HR < 1).

FIGURE 3 | The prognosis-associated AS events were screened by LASSO regression analysis for all AS types combined and for each of the 7 AS types separately.

Left panel (A–H) The coefficients are plotted against log(λ). A vertical line is shown at the value selected using 10-fold cross-validation, where the optimal λ results in

ten features with nonzero coefficients. Right panel (A–H): Optimal parameter (λ) selection in the LASSO model used 10-fold cross-validation via minimum criteria. The

partial likelihood deviance (binomial deviance) curve is plotted vs. log(λ). Dotted vertical lines are shown at the optimal values selected using two different criteria: the

minimum and 1 standard error of the minimum.

the OS of patients with high risk scores was significantly poorer
than those with low risk scores in all eight types of AS signatures
(logrank P < 0.05; Supplementary Figure 3). All eight types of
AS signatures also showed favorable predictive abilities of the
0.5-, 1-, 2, 3-, and 5-year OS rates, with AUC of approximately
0.9, in the validation set (Supplementary Figure 3). These results
indicate that all eight types of AS signatures may be robust and
reliable prognostic predictors for GBM patients.

Correlation analysis of the eight AS signatures
indicated that integrated AS, AA, and RI signature was
significantly positively correlated with each other in both
training (Supplementary Figure 4A) and validation cohort
(Supplementary Figure 4B). In addition, the genes within

the same signature did not show significant correlations
(all correlation coefficient < |0.6|) in both training and
validation set, which excluded colinearity among these genes
(Supplementary Figures 4C–J).

Evaluation of the Eight Types of AS
Signatures as Independent Prognostic
Factors
As shown in Table 3, univariate and multivariate Cox regression
analyses were performed to evaluate the prognostic significance
of the eight types of AS signatures together with various
clinicopathological parameters. First, univariate analysis
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TABLE 2 | The prognostic risk score models based on the PSI values of AS event types of GBM training cohort and C-index of the training and validation cohort.

AS event types Formula (risk score model) Training set Validation set

C-index (95%CI) P-value C-index (95%CI) P-value

Integrated AS

signature

MAP3K13-68008-AA × (−9.16) + TMEM63B-76352-AP × 3.76 +

MTF2-3772-ES × (−5.41) + ZNF302-48995-AD × (−2.27) +

KLHL12-9424-ES × (−19.59) + ZNF280D-30765-AP × 4.72 +

FAM86B1-82719-AD × (−2.59) + GSG1L-35696-AP × (−0.71) +

PPAPDC1A-13279-AP × (−11.22) + HAT1-55964-ES × (−18.27)

0.852 (0.813–0.891) 5.99 × 10−26 0.843 (0.804–0.882) 2.78 × 10−14

AA signature MAP3K13-68008-AA × (−5.38) + ATXN3-28923-AA × (−21.07) +

BTBD10-14452-AA × (−12.90) + STAT3-41034-AA × (−17.42) +

FAM193B-74803-AA × (−8.20) + METTL22-33899-AA × (−15.60) +

EIF3B-78612-AA × 4.01 + PXK-65445-AA × (−3.03) + PROM2-54495-AA ×

(−3.65) + CHD4-19897-AA × (−3.78) + TK1-43785-AA × (−25.70) +

FAM156B-89171-AA × 20.74

0.841 (0.802–0.880) 2.89 × 10−19 0.850 (0.812–0.889) 1.56 × 10−11

AD signature ZNF302-48995-AD × (−4.21) + FAM86B1-82719-AD × (−2.94) +

SERGEF-14562-AD × 1.83 + ZBTB45-52479-AD × 2.76 + SNX15-16731-AD

× (−7.43) + C12orf57-20020-AD × (−17.45) + PACS2-29637-AD × (−11.97)

+ CFL2-27169-AD × (−27.55) + CHTF18-33022-AD × (−2.62) +

SERPINB6-75151-AD × 3.66

0.828 (0.789–0.867) 2.74 × 10−18 0.859 (0.820–0.898) 1.92 × 10−21

AP signature TMEM63B-76352-AP × 3.62 + ZNF280D-30765-AP × 4.64 +

GSG1L-35696-AP × (−0.79) + PPAPDC1A-13279-AP × (−8.23) +

TES-81522-AP × (−14.68) + RPL39L-68071-AP × 1.08 + DYRK3-9590-AP

× (−10.01) + MEF2A-32714-AP × 2.56

0.824 (0.785–0.863) 7.83 × 10−23 0.805 (0.766–0.864) 3.05 × 10−15

AT signature DST-76557-AT × (−14.41) + SYNE1-78181-AT × (−4.04) +

CREBRF-74575-AT × (−14.26) + CCDC40-44016-AT × 3.03 +

AIFM2-12029-AT × (−7.32) + OSBPL1A-44880-AT × (−9.95) +

CDKL3-73367-AT × 2.83 + ECE2-67861-AT × 1.85 + CLCN5-89131-AT ×

(−9.06)

0.819 (0.780–0.858) 2.39 × 10−21 0.879 (0.839–0.918) 9.73 × 10−11

ES signature MTF2-3772-ES × (−5.66) + KLHL12-9424-ES × (−23.17) + HAT1-55964-ES

× (−15.71) + CBLL1-81372-ES × 3.20 + RWDD1-77328-ES × (−6.81) +

R3HCC1L-12757-ES × (−20.61) + NKIRAS2-41007-ES × (−6.35) +

UBXN11-101231-ES × 2.10 + FYN-124660-ES × (−3.10) +

MTMR10-29794-ES × (−12.28) + SLC7A7-26626-ES × (−16.48)

0.875 (0.836–0.914) 6.05 × 10−32 0.867 (0.828–0.906) 4.71 × 10−15

ME signature RPE-100824-ME × (−1.44) + FYN-77273-ME × (−2.74) + TTC13-10258-ME

× (−1.26) + GRIA1-125279-ME × 0.88 + C4orf29-70560-ME × (−3.59) +

C2CD5-251535-ME × 3.57

0.744 (0.705–0.783) 1.33 × 10−6 0.811 (0.772–0.850) 5.90 × 10−19

RI signature SV2B-32540-RI × (−5.46) + TMEM170A-37612-RI × (−20.10) +

COA6-10337-RI × (−2.60) + HOPX-69370-RI × 4.11 + MS4A6A-16057-RI ×

(−4.47) + UBC-25166-RI × (−6.38) + CRYAB-18698-RI × (−5.00) +

LY6K-85358-RI × (−0.97) + GDA-86591-RI × (−5.67) + MRPL27-42373-RI ×

(−5.66) + C11orf49-15610-RI × (−2.29) + COX11-42567-RI × 1.19 +

PRKRA-56163-RI × (−7.62)

0.833 (0.794–0.872) 5.53 × 10−23 0.834 (0.795–0.873) 3.80 × 10−25

AS, alternative splicing; PSI, percent spliced in; GBM, glioblastoma; AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AT, alternate terminator; ES, exon skip;

ME, mutually exclusive exons; RI, retained intron; CI, confidence interval.

indicated that age (P < 0.001), new events (P = 0.003),
pharmaceutical therapy (P < 0.001), radiation therapy (P =

0.001) and IDH mutation status (P = 0.009), integrated AS
signature (P < 0.001), AA signature (P < 0.001), AD signature
(P < 0.001), AP signature (P < 0.001), AT signature (P < 0.001),
ES signature (P < 0.001), ME signature (P < 0.001), and RI
signature (P < 0.001) were significantly associated with OS.
Then, the multivariate analyses demonstrated that age (P =

0.010), new events (P < 0.001), pharmaceutical therapy (P =

0.011), radiation therapy (P = 0.018), AD signature (P < 0.001),
and ES signature (P < 0.001) were significantly correlated with
OS. Additionally, following the univariate and multivariate Cox
regression analyses in the validation set, AD and ES signature
were also proven to be independent prognostic predictors

for GBM (Table 2). Interestingly, among the eight types of
AS signatures, only AD and ES signatures were identified as
independent prognostic factors for GBM.

Construction and Validation of a
Nomogram With AS Signatures
To develop a clinically applicable model for predicting the
prognosis of GBM, we constructed a nomogram to predict
the probability of 0.5-, 1-, and 3-year survival of GBM
patients. Six independent prognostic factors, including age,
new events, pharmaceutical therapy, radiation therapy, AD
signature and ES signature, were included in the prediction
model (Figure 6A). The C-index of the nomogram was 0.892
(95% CI, 0.853–0.931; P = 5.13 × 10−15). The calibration
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FIGURE 4 | Risk score analysis of the integrated AS signature and the 7 type-specific AS signatures in GBM patients. Upper panel (A–H) Patient survival status and

time distributed by risk score. Middle panel (A–H) Risk score curve of the AS signature. Bottom panel (A–H) Heatmaps of prognosis-related AS events. Colors ranging

from green to red indicate expression levels ranging from low to high. The dotted line represents the individual inflection point of the risk score curve, by which the

patients were categorized into low-risk and high-risk groups.

plots (Figures 6B–D) achieved excellent agreement between the
predicted and observed probabilities of 0.5-, 1-, and 3-year
survival in GBM patients. The nomogram also showed powerful
predictive ability for 0.5-, 1-, and 3-year OS, with AUC values of
0.927, 0.928, and 0.912, respectively (Figures 6H–J). As shown in
Figures 6H–J, the discrimination performance of the nomogram
was significantly higher than that of a prognostic model based
on any of the six factors alone (age, new events, pharmaceutical
therapy, radiation therapy, AD signature and ES signature).
Additionally, DCA curves were applied to determine the clinical
usefulness of the prognostic nomogram at 0.5, 1, and 3 years
in GBM patients. As shown in Figures 6K–M, the nomogram
demonstrated a greater net benefit than any of the single-factor
prognostic models. In addition, in the TCGA internal validation
cohort, the C-index of the nomogram for predicting survival of
51 GBM patients was 0.795 (95% CI, 0.756–0.834; P = 2.57 ×

10−10). The calibration plots also indicated excellent agreements
between survival prediction and actual observation in the
probabilities of 0.5-, 1-, and 3-year OS in the validation cohort
(Figures 3E–G). The nomogram achieved an AUC of 0.835,
0.738, and 0.776 for 0.5-, 1-, and 3-year OS, respectively, in the
validation cohort (Supplementary Figure 5A). DCA curves also
demonstrated a greater net benefit of the nomogram than other
factors (Supplementary Figure 5B). Additionally, as shown in
Supplementary Figure 6, the nomogram also achieved excellent
predictive performances in both primary and recurrent GBM in
the training cohort and validation cohort. These findings suggest
that the nomogram is highly reliable in predicting the prognosis

of GBM,meaning that it could assist both physicians and patients
in performing individualized survival predictions and facilitate
better treatment decision making and follow-up scheduling.

Regulatory Networks Between Prognostic
AS Events and SFs
By performing survival analyses and correlation analyses of
the RNA sequencing expression data combined with the AS
sequencing data, we identified 47 survival-associated SFs
and 52 survival-associated AS events that had significant
correlations (Pearson correlation coefficient > 0.6 or < −0.6,
P < 0.001; Supplementary Table 2). A total of 151 pairs
of SFs-AS events, including 65 with positive correlations
and 86 with negative correlations, were included in the
regulatory network (Figure 7A). Interestingly, we found
two subnetworks with different SF-AS correlations. In the
subnetwork centered on HEXA-31540-AT, the majority of
unfavorable prognostic AS events were negatively correlated
with the expression of SFs, whereas the favorable prognostic
AS events were positively correlated with the expression
of SFs. In another subnetwork, centered on CELF4, the
majority of unfavorable prognostic AS events were positively
correlated with the expression of SFs, whereas the favorable
prognostic AS events were negatively correlated with the
expression of SFs.

Furthermore, functional enrichment analyses were performed
for the 392 SF genes with |Pearson correlation coefficient| >

0.4. GO analysis, revealing that they were mainly enriched in
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FIGURE 5 | Survival analysis and prognostic performance of the integrated AS signature and the 7 type-specific AS signatures of GBM patients in the TCGA training

set. Left panel (A–H) K-M survival curve of the risk score for the OS of GBM patients. The high-risk group had significantly poorer OS rates than the low-risk group.

Right panel (A–H) The prognostic performance of the AS-based signature, demonstrated by the time-dependent ROC curves for predicting 0.5-, 1-, 2-, 3-, and

5-year OS in GBM patients.

mRNA splicing and regulation of alternative mRNA splicing
within the BP category (Figure 7B), the nucleoplasm and the
catalytic step 2 spliceosome within the CC category (Figure 7C),
and poly(A) RNA binding and nucleotide binding within
the MF category (Figure 7D). As for the KEGG pathways,
the 392 SF genes were mainly enriched in spliceosomes,
pathways involved in cancer, the cell cycle and apoptosis
(Figure 7E).

DISCUSSION

AS is reported to be an important process modifying gene
isoforms, which cause cells to produce different mRNA
and protein isoforms with various functional properties in

normal physiological processes (7, 8). Emerging evidence has

demonstrated that dysregulated AS events play a vital role in
the origin and progression of multiple cancers, especially GBM

Frontiers in Oncology | www.frontiersin.org 8 July 2020 | Volume 10 | Article 1257

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


W
a
n
g
e
t
a
l.

P
ro
g
n
o
stic

A
S
S
ig
n
a
tu
re

fo
r
G
B
M

TABLE 3 | Univariate and multivariate cox proportional hazards analysis of clinical parameters and AS event-based risk score model of the TCGA GBM patients in the training cohort (n = 101) and internal validation

cohort (n = 55).

Variables Training set (n = 101) Validation set (n = 51)

Univariate Analysis Multivariate analysis Univariate Analysis Multivariate analysis

HR (95%CI) P HR (95%CI) P HR (95%CI) P HR (95%CI) P

Age 1.028 (1.013–1.044) <0.001 1.024 (1.006–1.043) 0.010 1.211 (1.171–1.249) <0.001 1.088 (1.049–1.127) <0.001

Sex 0.912 (0.623–1.334) 0.635 – – 0.877 (0.485–1.269) 0.775 – –

New event 0.568 (0.389–0.829) 0.003 0.439 (0.271–0.710) <0.001 0.377 (0.338–0.416) <0.001 0.347 (0.308–0.386) <0.001

KPS 0.926 (0.695–1.233) 0.598 – – 1.112 (0.721–1.504) 0.545 – –

Pharmaceutical therapy 1.269 (1.129–1.425) <0.001 1.114 (1.075–1.153) 0.011 1.215 (1.177–1.264) <0.001 1.187 (1.168–1.226) 0.032

Radiation therapy 0.432 (0.262–0.712) 0.001 0.577 (0.366–0.908) 0.018 0.757 (0.618–0.796) 0.005 0.889 (0.944–0.929) 0.045

Surgery 0.962 (0.539–1.716) 0.895 – – 0.911 (0.519–1.313) 0.798 – –

IDH mutation status 0.263 (0.096–0.716) 0.009 1.261 (0.381–4.173) 0.704 0.853 (0.804–0.8922) 0.021 0.931 (0.5391–1.724) 0.334

Integrated AS signature (Low/High risk score) 3.604 (2.415–5.378) <0.001 1.426 (0.856–2.376) 0.173 3.313 (2.921–3.705) <0.001 1.267 (0.875–1.669) 0.088

AA signature (Low/High risk score) 3.653 (2.431–5.488) <0.001 1.513 (0.932–2.455) 0.094 3.593 (2.201–4.985) <0.001 1.115 (0.723–2.507) 0.214

AD signature (Low/High risk score) 4.305 (2.863–6.472) <0.001 2.422 (1.491–3.935) <0.001 5.312 (3.273–6.351) <0.001 4.899 (3.507–6.291) <0.001

AP signature (Low/High risk score) 3.430 (2.290–5.136) <0.001 1.542 (0.923–2.578) 0.098 2.745 (2.453–3.137) <0.001 1.561 (0.769–1.958) 0.313

AT signature (Low/High risk score) 3.244 (2.174–4.841) <0.001 1.498 (0.909–2.470) 0.113 3.677 (2.285–4.169) <0.001 1.855 (0.946–2.547) 0.093

ES signature (Low/High risk score) 5.145 (3.382–7.828) <0.001 4.355 (2.517–7.534) <0.001 6.213 (5.612–6.813) <0.001 4.461 (3.867–5.061) <0.001

ME signature (Low/High risk score) 2.122 (1.454–3.097) <0.001 1.208 (0.774–1.887) 0.406 1.866 (1.267–2.478) <0.001 1.211 (0.819–2.603) 0.322

RI signature (Low/High risk score) 4.092 (2.687–6.231) <0.001 1.461 (0.881–2.425) 0.142 3.810 (3.418–4.202) <0.001 1.259 (0.659–1.859) 0.078

AS, alternative splicing; GBM, glioblastoma; AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually exclusive exons; RI, retained intron; HR, hazard ratio; CI,

confidence interval; NA, not available; KPS, Karnofsky performance score; CT, chemotherapy; TMT, targeted molecular therapy; HT, hormone therapy.

“New event” included progression and recurrence. “Others” in pharmaceutical therapy included CT + TMT + HT, CT + TMT + Immunotherapy, and CT + Immunotherapy.

All statistical tests were two-sided.

Bold type means P < 0.05.
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FIGURE 6 | Nomogram to predict the probability of 0.5-, 1-, and 3-year survival in GBM. (A) Prognostic nomogram to predict the survival of GBM patients. (B–D)

Calibration plots for the nomogram to predict survival at 0.5, 1, and 3 years in the training set. (E–G) Calibration plots for the nomogram to predict survival at 0.5, 1,

and 3 years in the validation set. Actual survival is plotted on the y-axis, and the nomogram-predicted probability is plotted on the x-axis. (H–J) The prognostic

performance of the nomogram, demonstrated by the ROC curves for predicting 0.5-, 1-, and 3-year OS, compared with other single factor prognostic models. (K–M)

The clinical benefit and the scope of applications of the nomogram, evaluated by the DCA curves at 0.5, 1, and 3 years. The net benefit is plotted on the y-axis, and

the threshold probabilities of patients for 1-, 3-, and 5-year survival are plotted on the x-axis.

(9, 10). Aldave et al. (13) reported that the aberrant splicing
regulation of BAF45d contributed to the malignant phenotype
of GBM. Ferrarese et al. (29) demonstrated that lineage-specific
splicing of a brain-enriched alternative exon promotes GBM
progression. In addition, AS can serve as a therapeutic target
for GBM. For instance, manipulating AS of the mRNA for the
kinase Mnk2 (MKNK2) with splice-switching oligonucleotides
(SSOs) was reported as a novel approach to inhibit glioblastoma
tumorigenesis (12). In summary, numerous GBM-specific AS
events and their mRNA isoforms have been identified, but there
is still a lack of systematic analysis of survival-associated AS event
profiles and prognostic prediction models based on multiple AS
events for GBM.

In this study, we identified prognosis-related AS events
and their source genes for the first time by performing
univariate Cox regression analysis. A total of 1,598 (3.5%)
AS events were associated with the survival of the TCGA
GBM patients. Interestingly, more than half of the prognostic
AS events were favorable prognostic factors. GO analysis and
KEGG pathway enrichment analysis revealed that the prognostic
source genes of the above AS events were mainly enriched
in the pathways related to cancer and mRNA splicing. Then,
following LASSO and multivariate Cox regression analysis, we
constructed eight prognostic risk score models based on all

AS types combined and each of the 7 AS types separately.
All eight AS-based signatures showed excellent performance
in distinguishing the survival of GBM patients. However, only
two of them, the AD and ES signatures, were ultimately
identified as independent prognostic factors for GBM compared
with other clinicopathological parameters. Previous studies have
investigated the novel prognostic value of various AS events
and constructed the corresponding prognostic prediction models
based on these AS events in multiple cancers, such as bladder
urothelial carcinoma, renal clear cell carcinoma, and lung
cancer (30–32). However, prognostic prediction models based on
multiple AS events for GBM have not been reported before in the
literature. Hence, the novel prognostic signature based on the AS
events in our study, mainly AD and ES signatures, can be used
for individualized survival predictions for GBM patients.

Nomogram models have been widely used in clinical practice
due to its intuitive visual presentation (24). To the best of
our knowledge, this is the first prognostic nomogram that
incorporates AS-based signatures to predict the survival of GBM
patients and was constructed from a large-scale database with
long-term follow-up. In this study, we established a nomogram
with age, new events, pharmaceutical therapy, radiation therapy,
AD signature and ES signature. The calibration plots based on
the TCGA GBM cohort demonstrated that the actual survival
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FIGURE 7 | Correlation analysis between prognostic AS events and SFs. (A) The regulatory network between 47 survival-associated SFs and 52 survival-associated

AS events, with |Pearson correlation coefficient| > 0.6 and P < 0.001. Green and red dots, respectively, represent favorable and unfavorable prognostic AS events.

Green and red lines, respectively, represent negative and positive correlations between AS events and SFs. Blue triangles represent SFs. (B–E) Functional enrichment

analysis of the 392 SF genes having |Pearson correlation coefficient| > 0.4 with prognostic AS events.
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rates closely corresponded to the predictions, suggesting that
the predictive performance of the nomogram was excellent.
Following an evaluation of clinical usefulness by DCA, we
concluded that our visualized scoring system is a reliable tool
to aid physicians in making individualized treatment strategies
and survival predictions, which could facilitate better treatment
decision-making and follow-up scheduling.

Previous studies have demonstrated that SFs regulate
oncogenic AS events by binding to splice-regulatory sequence
elements of specific genes (28). In this study, we performed
correlation analyses and constructed the regulatory networks
between prognostic AS events and SFs to investigate the
underlying regulatory mechanisms in GBM. Interestingly, we
found two subnetworks with different SF-AS correlations. In
the subnetwork centered on HEXA-31540-AT, the majority of
unfavorable prognostic AS events were negatively correlated with
the expression of SFs, whereas the favorable prognostic AS events
were positively correlated with SFs. In another subnetwork,
centered on CELF4, the majority of unfavorable prognostic AS
events were positively correlated with SFs, whereas the favorable
prognostic AS events were negatively correlated with SFs. Our
study provides a novel understanding of AS patterns and their
correlations with SFs in GBM, which may eventually help to
elucidate the underlying roles of oncogenic AS events in the
development of GBM.

This study has some limitations. First, the clinicopathological
information downloaded from the TCGA GBM database was
limited and incomplete. Detailed information on neuroimaging,
the extent of resection, radiation therapy and chemotherapy
was not included in the Cox regression model. Second, the
prediction model was not further validated in the external GBM
database containing AS sequencing data. Additional large-scale,
multicenter prospective clinical trials are needed in the future.

In conclusion, by performing a global expression profile
assessment, we developed a reliable AS-based risk scoremodel for
subgroup classification, risk stratification, prognosis prediction,
and identification of potential therapeutic targets for GBM.
Then, we successfully established a novel, promising prognostic
nomogram that uses AS signatures and clinicopathological
factors for individualized survival prediction to facilitate
better treatment strategy and decision-making. Finally, the

regulatory networks between prognostic AS events and SFs
were constructed, which may eventually help to elucidate
the underlying mechanisms of oncogenic AS events in the
development and progression of GBM.
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