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The purpose of this study was to create an open access repository of validated liquid chromatography tandem mass
spectrometry (LC-MS/MS) multiple reaction monitoring (MRM) methods for quantifying 284 important proteins associated with
drug absorption, distribution, metabolism, and excretion (ADME). Various in silico and experimental approaches were used to
select surrogate peptides and optimize instrument parameters for LC-MS/MS quantification of the selected proteins. The final
methods were uploaded to an online public database (QPrOmics; www.qpromics.uw.edu/qpromics/assay/), which provides
essential information for facile method development in triple quadrupole mass spectrometry (MS) instruments. To validate the
utility of the methods, the differential tissue expression of 107 key ADME proteins was characterized in the tryptic digests of
the pooled subcellular fractions of human liver, kidneys, intestines, and lungs. These methods and the data are critical for
development of physiologically based pharmacokinetic (PBPK) models to predict xenobiotic disposition.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 267–276; doi:10.1002/psp4.12170; published online 11 January 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Quantitative methods to measure the expression of

ADME proteins in various human tissues are not avail-

able. There has been limited emphasis on compiling

validated quantitative methods outside of a small num-

ber of ADME genes.
WHAT QUESTION DID THIS STUDY ADDRESS?
� We have developed quantitative proteomics methods

for 284 important human DMEs, transporters, and nucle-

ar receptors. Further, we have validated and applied

many of these methods in multiple human tissues.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This study compiled an open access database of
surrogate peptides, optimized LC-MS/MS parameters,
and tissue expression data of DMEs and transporters
in human liver, kidneys, intestines, and lungs.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The methods provided are useful for generating
inter-tissue and interindividual variability data on the
expression of drug disposition-related proteins, which
are crucial for developing accurate PBPK models appli-
cable in drug development.

Physiologically based pharmacokinetic (PBPK) modeling is an

emerging approach for predicting the potential in vivo PKs of

drugs.1–3 By characterizing the differential tissue expression

and interindividual variability of proteins involved in drug dispo-

sition (i.e., drug metabolizing enzymes (DMEs) and drug trans-

porters), the accuracy of PBPK predictions can be significantly

improved. Both phase I and phase II DMEs regulate drug con-

centration through chemical biotransformation of the drugs.

Phase I enzymes modify a compound through oxidation,

reduction, or hydrolysis. Cytochrome P450 (CYP) enzymes

are the most commonly studied enzymes with regard to drug

metabolism, as they are widely expressed and broadly spe-

cific. CYP enzymes, along with flavin-containing monooxyge-

nases (FMOs), alcohol dehydrogenases (ADHs), aldehyde

dehydrogenases (ALDHs, respectively), and several other

families, oxidize xenobiotics to break them down into more

readily eliminated compounds. Esterases, such as carboxyles-

terases (CESs) and paraoxonases (PONs), are hydrolytic

enzymes. In contrast to phase I enzymes, phase II enzymes

conjugate compounds in order to make them more polar, and,

thus more readily eliminated. UDP-glucuronosyltransferases

are the most widely studied phase II enzymes. Glutathione s-

transferases, sulfotransferases, and N-acetyltransferases are

also grouped in phase II enzymes. In addition to DMEs, there

are drug transporters that control uptake (phase 0) or efflux

(phase III) of drugs in tissues, such as the liver, intestines,

kidneys, and brain. Therefore, DMEs and transporters often

collectively constitute rate-determining processes with regard

to drug efficacy (on-target effects) and toxicity (off-target

effects).4–8

Human primary cell-based in vitro models, such as
human hepatocytes or proximal tubular cells, can be used

1Department of Pharmaceutics, University of Washington, Seattle, Washington, USA; 2Medicinal Chemistry, University of Washington, Seattle, Washington, USA; 3Indian
Institute of Technology Kharagpur, Kharagpur, West Bengal, India; 4Current address: Informatica Business Solutions PVT., LTD., Bangalore, Karnataka, India. *Corre-
spondence: B Prasad (bhagwat@u.washington.edu)
Received 16 August 2016; accepted 29 December 2016; published online on 11 January 2017. doi:10.1002/psp4.12170

Citation: CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 267–276; doi:10.1002/psp4.12170
VC 2017 ASCPT All rights reserved

http://www.qpromics.uw.edu/qpromics/assay


to predict drug metabolism and transport in vivo.3,9 Howev-

er, in vitro protein expression can change depending on the

culture conditions.10,11 Therefore, primary cells often lead

to poor prediction of in vivo clearance, especially when

changes in protein expression are not quantified.12 More-

over, primary cells are not available for several organs that

are important to drug disposition, such as the intestines

and lungs. An emerging approach relies on estimating in

vitro clearance of DMEs or transporters using recombinant

enzymes or cells.10,11 These in vitro clearance data can be

extrapolated to in vivo by incorporating tissue protein expres-

sion in the PBPK models, as discussed elsewhere.13–15

Therefore, protein expression data in human tissues are

important for in vitro-in vivo extrapolation and PBPK model-

ing from either primary cells or recombinant systems. In

addition, interindividual variability in drug disposition can also

be predicted using expression data generated using the

banked donor tissues. By characterizing tissue cohorts for

the protein expression, the effect of covariates, such as age,

sex, genotype, and disease conditions can be integrated into

PBPK models. Further, quantification of DMEs and trans-

porters is important for the characterization of in vitro mod-

els, such as cell-lines, primary cells, or subcellular fractions.
To quantify proteins, multiple reaction monitoring (MRM)

quantitative proteomics has become increasingly popular in

the last few years.16,17 MRM analysis of proteins utilizes a

triple quadrupole mass spectrometry (MS) instrument to

achieve greater selectivity (i.e., quantifying a specific parent

mass and selected daughter ions from the same). When

coupled to liquid chromatography (LC), the specificity of the

MS can allow for the rapid, multiplexed quantification of

absorption, distribution, metabolism, and excretion (ADME)

proteins with excellent selectivity and reproducibility.16,17

Further, MRM methods are not limited by the availability of

antibodies as with immunoblotting (e.g., Western blotting)

and multiple proteins can be quantified simultaneously by

liquid chromatography tandem mass spectrometry (LC-MS/

MS).17 Despite the aforementioned advantages over the

conventional methods, method development in MRM prote-

omics is an iterative exercise involving a significant initial

outlay of time and money. MRM method development

becomes more challenging if the “best performing” surro-

gate peptides are not readily identifiable. Although compre-

hensive databases already exist, such as SRMAtlas (www.

srmatlas.org/), they do not provide experimentally optimized

instrument conditions and data demonstrating the useful-

ness of surrogate peptides. Therefore, we present here the

development of optimized quantification methods for 284

human ADME proteins (Table 1, Figure 1), which are com-

piled in a publicly accessible database (QPrOmics; www.

qpromics.uw.edu/qpromics/assay/). The key information

includes unique surrogate peptides, parent and fragment

m/z values, and predicted or observed collision energy and

cone voltage or declustering potential for both light and

Table 1 List of major absorption, distribution, metabolism, and excretion proteins for which surrogate peptides were selected.

Phase I Enzymes

ADH1A, ADH1B*, ADH1C*, ADH4, ADH5, ADH6, ADH7, ADHFE1, ALDH1A1*, ALDH1A2*, ALDH1A3*, ALDH1B1, ALDH2, ALDH3A1, ALDH3A2, ALDH3B1,

ALDH3B2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, ALDH8A1, ALDH9A1, AOX1*, CBR1, CBR3, CES1*, CES2, CYB5R3, CYP1A1*, CYP1A2*, CYP1B1,

CYP11A1, CYP11B1, CYP11B2, CYP17A1, CYP19A1, CYP20A1, CYP20A1, CYP21A2, CYP24A1, CYP26A1, CYP26C1, CYP27A1, CYP27B1, CYP2A13,

CYP2A6*, CYP2A7, CYP2B6, CYP2C8*, CYP2C9*, CYP2C18*, CYP2C19, CYP2D6*, CYP2D7P1, CYP2E1*, CYP2F1, CYP2J2*, CYP2R1, CYP2S1,

CYP3A4*, CYP3A5*, CYP3A7, CYP3A43*, CYP4A11, CYP4B1, CYP4F11, CYP4F12, CYP4F2, CYP4F3, CYP4F8, CYP4Z1, CYP7A1, CYP7B1, CYP8B1,

CYP39A1, CYP46A1, CYP51A1, DDO, DHRS1, DHRS2, DHRS3, DHRS4, DHRS4L1, DHRS4L2, DHRS7, DHRS7B, DHRS7C, DHRS9, DHRS12, DHRS13,

DHRSX, DPEP1, DPYD*, EPHX1*, EPHX2*, FMO1*, FMO2*, FMO3*, FMO4, FMO5, FMO6P, GPX1, GPX2, GPX3, GPX4, GPX5, GPX6, GPX7, GSR, GSS,

HAGH, HSD11B1, HSD17B11, HSD17B14, LOC728667, LOC731356, LOC731931, METAP1, NOS1, NOS2A, NOS3, PDE3A, PDE3B, PLGLB1, PON1,

PON2, PON3, SULF1, XDH

Phase II Enzymes

CHST1, CHST2, CHST3, CHST4, CHST5, CHST6, CHST7, CHST8, CHST9, CHST10, CHST11, CHST12, CHST13, GSTA1*, GSTA2, GSTA3*, GSTA4,

GSTA5*, GSTCD, GSTK1, GSTM1*, GSTM2*, GSTM3*, GSTM4*, GSTM5, GSTO1, GSTO2, GSTP1*, GSTT1*, GSTT2, GSTZ1, HNMT, MGST1, MGST2,

MGST3, NAT1*, NAT2*, NNMT, PNMT, SULT1A1*, SULT1A2*, SULT1A3, SULT1B1, SULT1C1/C2*, SULT1E1, SULT2A1*, SULT2B1*, SULT4A1, TPMT,

UGT1A1*, UGT1A3*, UGT1A4*, UGT1A5*, UGT1A6, UGT1A7, UGT1A8*, UGT1A9*, UGT1A10*, UGT2A1*, UGT2B4*, UGT2B7*, UGT2B10, UGT2B11,

UGT2B15*, UGT2B17, UGT2B28, UGT8*

Transporters

ABCA1 (CERP), ABCA4, ABCB1 (P-gp, MDR1)*, ABCB2 (TAP1), ABCB3 (TAP2), ABCB4 (MDR3), ABCB5, ABCB6 (PRP, UMAT), ABCB7, ABCB8 (MABC1),

ABCB11 (BSEP), ABCC1 (MRP1), ABCC2 (MRP2)*, ABCC3 (MRP3), ABCC4 (MRP4)*, ABCC5 (MRP5), ABCC6 (MRP6), ABCC8 (SUR1), ABCC9 (SUR2),

ABCC10 (MRP7), ABCC11 (MRP8), ABCC12 (MRP9), ABCC13, ABCG1 (WHT1), ABCG2 (BCRP)*, SLC2A4 (GLUT4), SLC2A5 (GLUT5), SLC5A6 (SMVT),

SLC6A6, SLC7A5 (LAT1), SLC7A7, SLC7A8 (LAT2), SLC10A1 (NTCP), SLC10A2 (NTCP2), SLC13A1 (NAS1), SLC13A2 (NADC1), SLC13A3 (NADC3),

SLC15A1 (PEPT1), SLC15A2 (PEPT2), SLC16A1 (MCT1), SLC19A1 (FLOT1), SLC22A1 (OCT1)*, SLC22A2 (OCT2)*, SLC22A3 (OCT3)*, SLC22A4

(OCTN1)*, SLC22A5 (OCTN2)*, SLC22A6 (OAT1)*, SLC22A7 (OAT2), SLC22A8 (OAT3)*, SLC22A9 (OAT7)*,SLC22A10 (OAT5), SLC22A11 (OAT4),

SLC22A12 (URAT1)*, SLC22A13 (OAT10), SLC22A14 (OCTL2), SLC22A15 (FLIPT1), SLC22A16 (OCT6), SLC22A17 (BOIT), SLC22A18 (BWR1A),

SLC22A18AS (BWR1B), SLC27A1 (FATP1), SLC28A1 (CNT1)*, SLC28A2 (CNT2)*, SLC28A3 (CNT3)*, SLC29A1 (ENT1), SLC29A2 (ENT2), SLC47A1

(MATE1), SLC47A2 (MATE2K), SLCO1A2 (OATP1A2)*, SLCO1B1 (OATP1B1)*, SLCO1B3 (OATP1B3)*, SLCO1C1 (OATP1C1), SLCO2A1 (OATP2A1),

SLCO2B1 (OATP2B1), SLCO3A1 (OATP3A1), SLCO4A1 (OATP4A1), SLCO4C1 (OATP4C1), SLCO5A1 (OATP5A1), SLCO6A1 (OATP6A1)

Nuclear Receptors

AHR, CAR, FXR, GCR, HNF4a, PGR, PXR

Proteins shown in bold were detected in different human tissues and the asterisk (*) indicates availability of surrogate peptide with change in amino acid due

to single nucleotide polymorphism.

UniProt IDs provided in Supplementary Table S2.
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heavy peptides. In addition, the database provides informa-

tion on unique surrogate peptides to distinguish selected

nonsynonymous single nucleotide polymorphisms (SNPs),

annotations of potential post-translation modifications

(PTMs), subcellular localization of each protein, and whether

the peptide is conserved in different species. These methods

have extensive applications in the field of systems pharma-

cology, in which quantitative understanding of DMEs and

transporters is critical. Also presented here is the application

of these MRM methods to determine inter-tissue differences

in protein expression of DMEs and transporters in human tis-

sue samples.

MATERIALS AND METHODS

The total protein quantification bicinchoninic acid assay kit,

iodoacetamide, dithiothreitol, and ammonium bicarbonate

(ABC) were purchased from Pierce Biotechnology (Rock-

ford, IL). The ProteoExtract native membrane protein

extraction kit was procured from Calbiochem (Temecula,

CA). Synthetic signature peptides and heavy labeled surro-

gate peptides were obtained from Thermo Fisher Scientific

(Rockford, IL). Formic acid was purchased from Sigma-

Aldrich (St. Louis, MO). Chloroform, MS-grade acetonitrile,

methanol, and formic acid were purchased from Fischer

Scientific (Fair Lawn, NJ). Sodium deoxycholate (98% puri-

ty) was obtained from MP Biomedicals (Santa Ana, CA).

Surrogate peptide selection
A simple outline of the peptide selection strategy is

depicted in Figure 2. Initially, target proteins were selected

based on mRNA databases of in vivo signal in multiple

body tissues.18 Two hundred eighty-four proteins were cho-

sen as the most significant with regard to drug disposition.

There proteins include 131 phase I DMEs, 66 phase II

DMEs, 79 transporters, and 8 nuclear receptors (Figure 1).

SRMAtlas (Institute for Systems Biology, Seattle, WA) was
used to predict the 10–20 best peptides for each protein,
and the 10 best fragments from each peptide. These pre-
dicted peptide sequences were subsequently imported into
the Skyline program (University of Washington, Seattle,
WA). The Skyline program analyzed the entered peptide
sequences and produced initial MS settings (i.e., parent
and product m/z, collision energy, and cone voltage) for
both Waters Xevo TQ-S MS instrument (Waters, Hertford-
shire, UK) and AB Sciex 6500 Triple Quadrupole instrument
(Framingham, MA).

The peptides predicted by SRMAtlas were further ana-
lyzed using MS Homology (National Center for Biotechnolo-
gy Information) to determine if the peptide sequence is
unique to a specific protein. This project focused on human
data, but also compiled peptides that are conserved in
common preclinical species (rat, mouse, dog, and monkey).
If a peptide sequence was unique to a protein, it was fur-
ther analyzed to determine if there were any potentially
problematic areas, including PTM sites, SNPs, sequence
conflicts, mutagenesis sites, and splice variants. Additional-
ly, surrogate peptides for transporters were analyzed to
ensure they were not located in the predicted transmem-
brane region of the protein. Although the aforementioned
criteria were taken into consideration for peptide selection,
some optimized peptides do include these areas as no
alternative was available. Complete information on peptide
features is contained in the database.

After this initial selection process, the Sequence Specific
Retention Calculator (Manitoba Centre for Proteomics and
Systems Biology, Winnipeg, Manitoba, Canada) was used
to calculate the hydrophobicity index of each peptide. Pepti-
des with a calculated hydrophobicity between 7 and 45
were given priority importance, as those that fall outside of
this range are prone to poor LC characteristics and/or solu-
bility problems. The number of peptides per protein was
reduced to a maximum of three based on the outlined

Figure 1 Distribution of drug metabolizing enzymes (DMEs), drug transporters (DTs), and nuclear receptors (NRs) for which quantifi-
able targeted peptides are identified (a) or detected in human tissue subcellular fractions (b). Values indicate the number of proteins.
DME-I and DME-II represent phase I and phase II DMEs, respectively.
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criteria, as well as an analysis of tandem mass spectrome-

try (MS/MS) fragmentation data reported by PeptideAtlas,

MRMaid data, and SRMAtlas ranking.

Development of generic liquid chromatography

methods and optimization of tandem mass

spectrometry parameters for shortlisted peptides
From the original list of proteins, 107 clinically relevant

DMEs were selected for further method validation and

application to in vivo samples. DMEs were defined as

“clinically relevant” if they were demonstrated to be relevant

to the metabolism of a currently marketed drug. Methods

were optimized using heavy peptides on two triple-

quadrupole LC-MS instruments (Xevo TQ-S and AB ScieX

6500 Triple Quadrupole MS instruments both coupled to

ACQUITY UPLC; Waters, Hertfordshire, UK) in electrospray

ionization-positive ionization mode. From the calculated

hydrophobicity (i.e., Sequence Specific Retention Calcula-

tor) for each peptide, in-house developed calibration curves

were used to generate a predicted retention time for two

specific columns used (Supplementary Table S1; Supple-

mentary Figure S1). The predicted retention times allowed

the creation of scheduled MRM methods to maximize the

number of peptides analyzed per run without compromising

dwell time. LC methods were developed to improve peptide

separation (Supplementary Table S1). Collision energy

and cone voltage/declustering potential, depending on the

platform, were optimized for each peptide in order to

Figure 2 Quantitative proteomics workflow for surrogate peptide selection, method optimization, and validation for quantification of
native peptides. For peptides relevant to post-translation modifications (PTMs), and non-synonymous single nucleotide polymorphisms
(SNPs), the workflow can be modified to specifically target these sites. ADME, absorption, distribution, metabolism, and excretion;
MRM, multiple reaction monitoring; MS, mass spectrometry.
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improve sensitivity in the two different MS/MS systems

(Supplementary Table S2). Although the three best frag-

ments for light peptides were retained, dwell time was

improved by selecting only two fragments for the respective

heavy peptides. The optimized methods are provided in

Supplementary Table S2, and are also available for down-

load from the QPrOmics database (www.qpromics.uw.edu/

qpromics/assay/). Representative screenshots of QPrOmics

database are provided in Supplementary Figures S4

and S5.

Procurement of human tissue subcellular fractions
Human liver and kidney samples were obtained from the

tissue bank of School of Pharmacy University of Washing-

ton (Seattle, WA) and the University of Washington Kidney

Research Institute, respectively. In addition to these sam-

ples, pooled subcellular fractions of human livers, kidneys,

intestines, and lungs were obtained from Xenotech (Kansas

City, KS). The Xenotech samples are considered as nonhu-

man subjects, precluding the need for approval. The num-

ber of samples in each pool is detailed in Supplementary

Table S3.

Quantification of differential tissue expression of

absorption, distribution, metabolism, and excretion

proteins using liquid chromatography tandem mass

spectrometry
All tissue samples were analyzed using Waters Xevo TQ-S

LC-MS/MS. For peptide quantification, total membrane pro-

tein was isolated from six kidney and six liver samples, as

per previously published protocol.19 Specifically, the tissue

was prepared using the ProteoExtract native membrane

protein extraction kit. The tissue was homogenized in 2 mL

of Extraction Buffer I mixed with 10 uL of protease inhibitor

cocktail, and then incubated for 10 minutes while gently

rocking. The resulting homogenate was centrifuged at

16,000 xg for 15 minutes at 48C, and the supernatant was

discarded. The remaining pellet was resuspended in 1 mL

of Extraction Buffer II mixed with 10 uL of protease inhibitor

cocktail. This solution was then incubated while gently

shaking at 48C for 30 minutes, and subsequently centri-

fuged at 16,000 xg for 15 minutes at 48C.
For tissues extracted in-house, total protein was quanti-

fied using Pierce bicinchoninic acid protein assay kit. Com-

mercially sourced fractions included company-provided

protein concentrations. The extracted tissue membrane and

commercially sourced subcellular fractions were diluted to a

concentration of 2 mg/mL of total protein. The protein sam-

ple (100 mL) was denatured, reduced, and alkylated, as per

previously established protocol.20 The proteins were subse-

quently digested with trypsin in a 1:25 trypsin to protein

ratio for 18 hours at 378C. Digestion was then stopped by

adding 30 mL of quenching solvent consisting of 80% aceto-

nitrile and 0.1% formic acid. The quenching solvent con-

tained a pool of all the heavy internal standard peptides

listed in Supplementary Table S2. The final concentration

of individual internal standards in the LC-MS sample was

�2–200 ng/mL. The samples were centrifuged for 5

minutes at 5,000 xg and 48C, and the supernatant was ana-

lyzed for quantification of 107 shortlisted proteins using

optimized LC-MS/MS methods, as discussed above. The

pooled tissue samples were processed and analyzed in

triplicates.

Data analysis
The tissue expression data were processed using Mas-

sLynx software version 4.1 (Waters). Superimposability of

multiple fragments and their co-elution with heavy peptide

peaks were taken into consideration to assign qualitative

accuracy. Briefly, the heavy labeled standard peaks were

used to define the elution time for the respective native

peptides. Any peaks deviating more than 0.05 minutes from

their heavy labeled standard were considered unreliable

and discarded. MS response was calculated using the aver-

age of peak areas of at least three representative frag-

ments for native peptides and two fragments for heavy

peptides. Some peptides retain more than three fragments

for the native form because there were multiple daughter

ions that demonstrated similar MS response. The area

ratios of these fragments (e.g., average three fragments of

light peptide vs. average of two fragments of heavy pepti-

des) were considered to address LC-MS/MS related (i.e.,

technical) variability. By including the same known amount

of heavy peptide to each sample, the inter-run variability

and matrix effects (ion suppression) were controlled. The

average of the area ratios of multiple peptides were used to

determine differential tissue expression of each protein.

Limit of detection and lower limit of quantification were

defined as the points where the peptide peak was more

than twofold and fivefold higher than the surrounding back-

ground. Technical replicates of each subcellular fraction

were run to validate measurements. Deviation more than

20% was used as the variability cutoff. If the replicates var-

ied by more than 20%, the data was considered unreliable.
Once area ratios for each peptide were established, the

relative expression level for the liver was set as “100,” and

the values from other tissues for the same protein were com-

pared. If no expression was seen in a tissue, it was deter-

mined to be “0.” If the liver had no expression, the kidney was

considered as “100,” and other tissue expression was com-

pared to the kidney. If neither liver nor kidney had expression,

then the intestinal value was set to “100.” The protein expres-

sion across tissues was compared by Student’s t-test, with P

values<0.05 considered to be significant.

RESULTS
QPrOmics workflow for development of peptide

quantification methods
A high throughput strategy was adopted to select and vali-

date surrogate peptides that can be used to quantify in vivo

expression levels of proteins. Using sequence specific in

silico predicted hydropathy (SSRT number), peptide reten-

tion time was reasonably predicted in two LC columns

(Supplementary Figure S1; Supplementary Table S1).

This allowed a relatively narrow scan window, and increased

the number of peptides that could be quantified with each

method without affecting optimum dwell time and sensitivity.

By multiplexing the methods using predicted retention time,

energy and cone voltage, or declustering potential could be
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efficiently optimized, reducing the overall time and cost. A

list of the optimized parameters for both MS instruments is

given in Supplementary Table S2. The methods were

reduced to a minimum of three light peptide fragments and

two heavy peptide fragments, with the fragments giving the

best response selected. Note that some peptides have more

than three fragments selected; this was done because simi-

lar response was produced by multiple fragments, and it was

determined that using these additional fragments would

improve reproducibility without compromising the overall run

time. By using multiple fragments per peptide, the identity of

the peptide can be assured. Using this optimized workflow,

in silico methods were generated to quantify surrogate pepti-

des for a total of 284 important DMEs and transporters.

From this initial list, heavy labeled peptides for 107 of these

proteins were used to refine MS settings. Once the MS set-

tings were optimized, heavy labeled peptide cocktails were

spiked into tissue samples to serve as retention time calibra-

tors, and native peptides were detected in the samples using

the presented methods. All the detected proteins are validat-

ed by multiple peptides and multiple fragments of each pep-

tide to ensure the accurateness of the information. The fully

optimized peptides include surrogates for phase I and phase

II DMEs, transporters, and nuclear receptors.
Further, a MySQL based (Cupertino, CA), open-access

database repository for optimized methods was developed.

The key output of the database includes protein name, Uni-

prot ID, surrogate peptide sequence, parent and fragment m/

z, column specific retention time, and MS-specific parame-

ters (i.e., cone voltage, collision energy). In addition, the

database will also provide information on cellular localization

of the particular protein, relevant information about surrogate

peptide modifications (i.e., SNPs, PTMs, splice variants, and

mutagenesis), transmembrane regions, and interspecies

sequence homology. As an open access database, these

parameters can be downloaded in Excel format (Microsoft,

Redmond, WA). Currently, the database contains parameters

for two different LC columns, two MS instruments (Xevo TQ-

S and AB Sciex 6500), and five species (human, dog, mon-

key, rat, and mouse). The user-friendly database can be

searched using a variety of criteria, including protein name,

Uniprot ID, or peptide sequence, and the output can be

refined by specifying MS instrument or species.

Differential subcellular expression of drug

metabolizing enzymes in human liver
Although subcellular fractions were procured for multiple

organs, only the liver had all three fractions (cytosolic,

microsomal, and S9) available. Because S9 fraction is a

crude homogenate containing proteins from multiple subcel-

lular fractions, it was used primarily for method develop-

ment and not for the inter-tissue comparison. Both CES,

ADH1A and ADH1B, were expressed at detectable levels in

both cytosol and microsome (Supplementary Figure S2).

Differential tissue expression of drug metabolizing

enzymes
The comparison of differential tissue expression for DMEs

was done based on analysis of microsomal fractions.

Seventy-three DMEs were detected in human liver, kidney,

intestine, and/or lung microsomal samples (Table 1 and

Figures 3 and 4; Supplementary Figure S3). As shown in

Figure 3, of 73 detected DMEs, the liver expressed 62, the

intestine 53, the kidney expressed 49, and the lung only

expressed 15. Thirty-five DMEs were present in at least three

of the major elimination organs that were analyzed. The rela-

tive inter-tissue variability is shown in Figure 4 and Supple-

mentary Figure S3. CYP1A2, CYP2B6, CYP3A7, and

uridine 50-diphosphate glucuronosyltransferase (UGT)2B4

were primarily detectable in the liver, whereas ALDH1A2 and

UGT1A10 were distinctly present in the kidneys and intes-

tines, respectively. No proteins were found to be unique to

the lungs, although FMO2 was found only in the lungs and

kidneys.

Differential tissue expression of drug transporters
Drug transporter expression was quantified using membrane

fractions isolated from pools of six livers and six kidneys

(Supplementary Table S3). Of 27 detected transporters, 9

were present in both the liver and kidneys, whereas 8 were

specific to the liver and 10 were specific to the kidneys. In

our limited sample size, SLC22A4 and SLC47A2 had rela-

tively higher abundance in the liver, whereas SLC22A8,

SLC47A1, ABCB1, and ABCC2 were more highly expressed

in the kidneys (Figure 5). ABCC4 and ABCG2 were present

in both liver and kidneys, but the liver expression was below

the lower limit of detection for ABCC4 and the kidney

expression was below the lower limit of detection for

ABCG2. For this study, the requirement for detectability was

that the analyte peak was greater than twofold higher than

the surrounding background.

DISCUSSION

The quantification of DME and transporter expression in

human tissues is important for predicting the in vivo disposi-

tion characteristics of xenobiotics.21–24 Moreover, quantifica-

tion of enzyme or transporter induction or suppression can

be selectively performed using proteomics methods.25

Recently, such methods have been applied to quantify the

interindividual or interspecies differences between human

and preclinical models in order to better scale up experimen-

tal data.10,19,20,26 Although immunoblotting techniques are

available for the quantification of some ADME proteins, this

method suffers distinct disadvantages over quantitative pro-

teomics.17 These limitations include lack of selectivity, lack of

reproducibility, low throughput, and cumbersome experimen-

tal procedures. These shortcomings can be avoided by

replacing immunoblotting methods with LC-MS/MS proteo-

mics. However, developing methods for surrogate peptide

quantification can be time and cost prohibitive.16 Additionally,

conventional proteomics laboratories utilize high-end instru-

ments, such as NanoLC coupled to high resolution MS. Sim-

ilarly, although mRNA expression is often used as a

surrogate of protein expression, mRNA data do not always

correlate well with protein expression and activity, particularly

in human tissues due to the instability of mRNA and the

time elapsed between tissue acquisition and storage.27

Therefore, quantification methods for important ADME
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proteins have been developed here using triple quadrupole
MS instruments, which are commonly available in ADME
laboratories both in industry and academia settings.28–30

These methods are available in an open access data-
base and a detailed method can be downloaded and

quickly personalized by any laboratory with a triple quadru-
pole MS instrument. The database is continuously growing
with the uploading of multiple methods developed in-house,
covering several species and commonly used MS instru-
ments. Additionally, the database will allow other

Figure 3 Qualitative tissue protein expression analysis of multiple absorption, distribution, metabolism, and excretion (ADME) proteins.
(a) Diagram indicating distribution of number of identified proteins in various tissues. (b) List of ADME proteins detected in various
tissues.
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laboratories to submit validated methods in order to
increase its scope.

Currently, with regard to drug disposition, a few dozen
ADME proteins dominate the field (e.g., CYPs, UGTs, and P-
glycoprotein). Because any ADME protein can be clinically
relevant based on its individual contribution to the metabo-
lism (fraction metabolized) or transport (fraction transported)
of a particular drug, the availability of high throughput, broad-
ly applicable targeted proteomics methods will allow rapid
and precise characterization of the expression profile of mul-
tiple proteins in precious biological samples. In contrast,
although global proteomics can characterize multiple pro-
teins simultaneously, the technique currently lacks the sensi-
tivity to quantify low abundance proteins.31 Moreover, global
proteomics methods require expensive equipment and highly
specific expertise in both the operation of the instruments
and the data analysis.

A cursory evaluation of differential tissue expression data
verifies that the liver is the primary elimination organ,

followed closely by the intestines and kidneys, with the lungs
having the least diversity of expressed DMEs. The DME pro-
files of the liver and intestines overlap significantly, with the
majority of enzymes in the CYP and UGT families. This mir-
rors the importance of CYPs and UGTs in first pass metabo-
lism of xenobiotics. Although the kidneys are typically viewed
as organs of elimination through transport, we detected 53
major DMEs expressed in kidney tissue. The majority of the
detected proteins in the kidneys are phase II enzymes, which
serve to add polar groups that modify xenobiotics and
improve their renal elimination characteristics. Beyond the
traditional organs of elimination, the lungs were found to
express 15 DMEs, including CES, EPHX1, NAT1, and multi-
ple glutathione S-transferase (GST)s. Although the abun-
dance of DMEs is generally lower in the lungs, the huge
surface area and high blood perfusion make the lungs poten-
tially important organs for drug disposition and toxicity,
including allergic response. The potential for the lungs to
have metabolic impact is increased further by the fact that an

Figure 4 Differential tissue expression of selected absorption, distribution, metabolism, and excretion proteins in the human liver, kid-
neys, intestines, and lungs using the population mean protein values. The data only represent variability of individual proteins across
tissues and not the relative abundance of multiple proteins. ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; CES, car-
boxylesterases; CYP, cytochrome P450; FMO, flavin-containing monooxygenase; UGT, uridine 50-diphosphate glucuronosyltransferase.
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i.v. dosed drug will pass through the lungs before reaching
systemic circulation, resulting in a lung “first pass” effect.

Although there have not yet been significant issues caused

by lung metabolism, their role as organs of elimination cannot

be discounted.
The ubiquity of key players like CYPs and UGTs is already

well characterized, as is their significance in drug disposition,
but the prevalence of multiple non-CYP and non-UGT DMEs

in three or more major elimination organs warrants further

analysis. For example, the presence of both major isoforms

of CES in all four organs studied here is important for the pre-

diction of activation, deactivation, and toxification of ester and
amide containing moieties, including prodrugs and common

environmental toxins, like flame retardants and pesticides.

CES present unique opportunities and difficulties due to their

broad specificity and ubiquity.32

When compared with historical data, these data align well
with expression levels of FMOs, many CYPs and UGTs, most

GSTs, and CES. This validates the utility of quantitative proteo-

mics to accurately determine inter-tissue variability. Moreover,

some unique expression profiles for multiple under-researched

DMEs were found. Although mRNA assays have historically
provided the majority of differential tissue expression data, they

cannot be used as a direct surrogate of protein activity. On the

other hand, direct activity measurement is not practical due to

the requirement of having highly specific probe substrates and

individual assays for each protein. Whereas CYP enzymes
have a panel of available activity assays, non-CYP enzymes

are severely underserved. Furthermore, even for CYPs, activity

assays cannot be taken as surrogates for in vivo expression.
Therefore, proteomic data provides a cost-effective and practi-

cal solution to the current limitations of selectivity and high-

throughput. In looking at historical data, FMO1 mRNA expres-

sion is reported to be highest in the kidneys, FMO2 in the kid-

neys and lungs and FMO3 primarily in the liver.33,34 The data
on CYP2B6, CYP2C19, CYP3A4, CYP2C9, GSTM2, and

GSTM3 from this experiment also matches well with the protein

data reported by Song et al.35

The methodology and data presented here have some limi-

tations. For example, quantitative proteomics is targeted and

as such cannot be used in quantification of proteins in a
shotgun-style approach. Additionally, the number of samples

available served as a limitation, particularly regarding the

lungs (n 5 4), which can cause aberrations in the data and

subsequent interpretation. Although quantification methods
for nuclear receptors were validated using protein standards,

these signaling proteins were undetected in in vivo samples.

This lack of detection indicates low abundance of these pro-

teins and requires further enrichment strategies, such as

conventional or chromatin immunoprecipitation.36

Although there are techniques that produce global prote-
ome results, such as sequential windowed acquisition of all

theoretical fragment ion mass spectra, they require highly

specialized equipment and experience and cannot provide

the same sensitivity. Triple quadrupole MS are widely avail-

able and do not require the same specialization to use. In
the validation of these methods, the inter-tissue variability

of a wide variety of proteins was characterized. These data

Figure 5 Relative expression (fold difference) of transporters detected in the liver and kidneys. Relative expression is defined as either
the kidney expression divided by liver expression, or liver expression divided by kidney expression. The fold differences are statistically
significant except for ABCC2 (Student’s t-test; P< 0.05). The table provides list of transporters detected in the liver and kidneys.
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are critical to the creation of broadly applicable PBPK mod-
els. From here, the next steps will involve profiling more
body tissues and the integration of the protein data into a
comprehensive PBPK model.
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