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Abstract: Since the last few decades, the development of smart hydrogels, which can respond to
stimuli and adapt their responses based on external cues from their environments, has become a
thriving research frontier in the biomedical engineering field. Nowadays, drug delivery systems
have received great attention and smart hydrogels can be potentially used in these systems due to
their high stability, physicochemical properties, and biocompatibility. Smart hydrogels can change
their hydrophilicity, swelling ability, physical properties, and molecules permeability, influenced by
external stimuli such as pH, temperature, electrical and magnetic fields, light, and the biomolecules’
concentration, thus resulting in the controlled release of the loaded drugs. Herein, this review
encompasses the latest investigations in the field of stimuli-responsive drug-loaded hydrogels and
our contribution to this matter.

Keywords: smart hydrogels; stimuli-responsive hydrogels; drug delivery; controlled release; drug-loaded
hydrogels; biomedicine

1. Introduction

Hydrogels, as an important class of biomaterials, can be defined as coherent systems
composed of a three-dimensional polymer network, containing a huge amount of aqueous
phases that cannot dissolve the network through physical and chemical interactions due
to the presence of interconnections, called crosslinks [1–3]. Nowadays, hydrogels are an
appealing type of targeted drug delivery systems and have been used in many branches of
medicine and biomedical engineering, including cartilage and wound regeneration, bone
tissue engineering, biosensors, electronic and soft robotic component, and inflammation
relief [4–6].

In recent years, growing attention towards personalized pharmacotherapy and preci-
sion medicine has prompted the innovation of smart biomaterials [7,8]. Stimuli-responsive
hydrogels can be regarded as smart biomaterials, and external triggers, such as pH, temper-
ature, electrical and magnetic fields, light, and the concentration of the biomolecules, can
be used to evoke drug release (Figure 1A) [9]. The ‘stimuli-responsive hydrogel’ and ‘smart
hydrogel’ keywords appeared in the literature for first time in 1990 and 1991, respectively.
In 2021, more than 2800 (70% of them in last 5 years) papers that are directly related with the
synthesis and application of smart hydrogels have been published, as seen in Figure 1B [10].

Smart hydrogels undergo abrupt changes in their physical properties and macroscopic
alterations in response to a small external trigger [11,12]. The uniqueness of these hydrogels
resides in their nonlinear feedback [12]. Indeed, they can respond to triggers with a
reversible, intensity-scalable, reproducible, and predictable phase volume transition and
have the ability to return to their original shape after the trigger is removed [11,13]. These
transitions include changes in the physical state, solvent interactions, shape and solubility,
conductivity, and hydrophilicity [14].
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Figure 1. (A) Various external stimuli, including pH, temperature, electricity, magnetics, light, and 
biomolecules (including glucose and enzyme), are controlling the drug release from a smart hydro-
gel. (B) Stimuli-responsive hydrogel- and smart hydrogel-related original literature over the years. 
Data from Scopus, December 2021 [10]. 

Using smart hydrogels in drug delivery systems can reduce the dosing frequency, 
maintain the desired therapeutic concentration in a single dose, and minimize the drugs’ 
side effects by preventing the accumulation of the drugs in non-target tissues [15,16]. 
Moreover, smart hydrogels have an easy preparation process and are an ideal option for 
prolonged-release systems with incorporated drugs [17,18]. In this review, we do not in-
tend to provide an exhaustive synopsis of the field of hydrogels—which is vast—but high-
light advances and curiosities in the previous five years about stimuli-responsive hydro-
gels, with selected triggers for smart drug delivery applications. The classification of stim-
uli-responsive hydrogels along with their key features, properties, and applications are 
enlisted in Table 1. 

  

Figure 1. (A) Various external stimuli, including pH, temperature, electricity, magnetics, light, and
biomolecules (including glucose and enzyme), are controlling the drug release from a smart hydrogel.
(B) Stimuli-responsive hydrogel- and smart hydrogel-related original literature over the years. Data
from Scopus, December 2021 [10].

Using smart hydrogels in drug delivery systems can reduce the dosing frequency,
maintain the desired therapeutic concentration in a single dose, and minimize the drugs’
side effects by preventing the accumulation of the drugs in non-target tissues [15,16].
Moreover, smart hydrogels have an easy preparation process and are an ideal option for
prolonged-release systems with incorporated drugs [17,18]. In this review, we do not
intend to provide an exhaustive synopsis of the field of hydrogels—which is vast—but
highlight advances and curiosities in the previous five years about stimuli-responsive
hydrogels, with selected triggers for smart drug delivery applications. The classification of
stimuli-responsive hydrogels along with their key features, properties, and applications are
enlisted in Table 1.
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Table 1. Stimuli-responsive hydrogels with their key features, properties, and applications.

Type of Hydrogels Examples Key Features Properties Applications References

pH-responsive

Chitosan, guar gum
succinate,

kappa-carrageenan, PEI,
PAM, PAA, PDEAEMA,

PDMAEMA, PEAAc,
pHEMA, PMAA, PPAA,

and PVA

pH variation results in
swelling/deswelling
behavior due to the

changes in hydrophobicity
of the polymeric chains and

increase in electrostatic
repulsion between chains

Biocompatibility,
sustained release of
incorporated drugs,

increased
hydrophilicity, and

swelling, strong
electrostatic

interactions, and
stability

Drug delivery,
Sensing,

inflammation
responsive hydrogels,

wound and skin
healing.

[19,20]

Temperature
responsive

Poloxamer, Pluronic,
PAA, PNIPA, PNVCL

grafted with PEO, TMC
crosslinked with PEG,
glycerophosphate, and
methoxy poly(ethylene

glycol)-poly(pyrrolidone-
co-lactide)

Temperature variation
disturbs the equilibrium

exists between hydrophobic
and hydrophilic

segments of the polymeric
chain and increase the

sol-gel transformation rate

Unique physical
properties similar to

the extracellular
matrix, easy

functionalization
with drug molecules,

controlled
degradation

Drug delivery,
intraocular lenses,
tissue engineering.

[21–23]

Electric field
responsive

PPy nanoparticles loaded
in PLGA, PEG hydrogels,
Agarose, calcium alginate,

carbomer, chondroitin
sulphate, hyaluronic acid,

partially hydrolyzed
PAM, PDMA, and

xanthan gum

Upon the application of an
electric field, deswelling or
bending takes place, based
on the shape and position
of the gel relative to the

electrodes.

Biocompatibility,
minimal

invasiveness,
controlled release of
the cargo depending
on the strength or the
duration of applied

electric field

Drug delivery,
creams and

suspensions as
emulsion

stabilizer, in
cosmetics as

thickener and
stabilizer, buccal

delivery.

[24–26]

Magnetic field
responsive

Alginate-xanthan
cross-linked with Ca2+

magnetic nanoparticles,
Hemicellulose

crosslinked with GGM,
hemicellulose hydrogels
with magnetic iron oxide

(Fe3O4), methacrylate
chondroitin sulfate with
magnetic nanoparticles,

PNIPA, and
xanthan-bovine serum

albumin-magnetic
nanoparticles

Application of heating,
mechanical deformation, or
external magnetic field to
magnetic nanoparticles,
such as nanoparticles of

magnetite, maghemite, and
ferrite

Swelling behavior
responsive to

temperature too,
some of them dispose

of anisotropic
properties, successful

absorption and
controlled release of

drugs

Drug delivery,
sensing,

microfluidics, tissue
engineering.

[27–29]

Light responsive

Poly [2-((4,5-dimethoxy-2-
nitrobenzyl)
oxy)-N-(2-

(methacryloyloxy)ethyl)-
N,N-dimethyl-2-

oxoethan-1-aminium,
HPMC, Carbopol

hydrogels containing
diclofenac-sodium

chitosan microspheres,
Azo benzene-pHEMA,

azo benzene-bovine
albumin,

triphenylmethane
leuco derivatives, and

trisodium salt of copper
chlorophyllin-PNIPAM23

External stimulus of either
visible or UV light

initiates sol-gel
transformation

Control release,
reversible and

irreversible,
spatiotemporal

control over
functional groups,

reasonable
strengthens
according to
application.

Drug delivery, optical
delivery,

microfluidics,
self-sterilization and

self-cleaning.

[30–33]
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Table 1. Cont.

Type of Hydrogels Examples Key Features Properties Applications References

Biomolecules
responsive

Insulin, phenylborate
derivative

4-(1,6-dioxo-2,5-diaza-7-
oxamyl) phenylboronic

acid in combination with
PNIPA, and

poly(2-hydroxyethyl
methacrylate-co-N,N-
dimethylaminoethyl

methacrylate) in
combination with glucose

oxidase

Changes in biomolecule
concentration and pH in

hydrogel as a self-regulated,
can expand the

polyelectrolytes resulting in
swelling/deswelling

behavior.

Enzyme responsive,
achieves molecular
recognition, high

affinity, and
specificity, controlled

release,
biocompatibility.

Drug delivery,
insulin-delivery

system, cell culture,
sensing, tissue
engineering.

[34–36]

Abbreviations (pH-responsive hydrogels): Poly(ethyleneimine) (PEI); Poly(acrylamide) (PAM); Poly(acrylicacid)
(PAA); Poly(diethylaminoethyl methacrylate) (PDEAEMA); Poly(dimethylaminoethyl methacrylate)
(PDMAEMA); Poly(ethylacrylic acid) (PEAAc); Poly(hydroxyethyl methacrylate) (pHEMA); Poly(methacrylic
acid) (PMAA); Poly(propylacrylic acid) (PPAA); Poly(vinyl alcohol) (PVA). Abbreviations (temperature-responsive
hydrogels): Poly(N-isopropylacrylamide) (PNIPA); Poly(N-vinyl caprolactam) (PNVCL); Poly(ethylene oxide)
(PEO); N-trimethyl chitosan chloride (TMC); Poly(ethylene glycol) (PEG). Abbreviations (electric field-responsive
hydrogels): Polypyrrole (PPy); Poly lactic-co-glycolic acid (PLGA); Polydimethylaminopropyl acrylamide
(PDMA). Abbreviations (magnetic field-responsive hydrogels): O-acetyl-galactoglucomannan (GGM); Poly(N-
isopropylacrylamide) (PNIPA). Abbreviations (light field-responsive hydrogels): Hydroxypropyl methylcellulose
(HPMC); Poly(N-isopropylacrylamide) (PNIPAM).

2. pH-Responsive Hydrogels (PRHs)

PRHs are high molecular polymers that undergo a phase or volume transition when
the pH value of the external medium changes [37]. PRHs are usually developed by the
polyelectrolytes that contain weak acidic or basic function groups. Therefore, they can be
classified into two major categories, namely, cationic and anionic hydrogels, which have
alkaline groups (such as –NH2) and acidic groups (such as –COOH) on their molecular
chains, respectively [38,39]. The swelling of PRHs is affected by the pH value of the
surrounding medium at the pKa and pKb values of the pendant acidic and basic groups [38].
pH variations directly affect the interactions between solvent molecules and polymer
chains through the following mechanisms [19]. In anionic PRHs, when the pH of the
biological environment exceeds the pKa value of the acidic groups in the polymer chain,
due to the ionization of the acidic groups, negative and positive charges are formed on
the polymer chain and in the solution, respectively [40]. In contrast, when the pH value
of the environment is less than the pKb value of the alkaline group in cationic PRHs,
the basic groups will be ionized (protonated), resulting in more negative and positive
charges on the polymer chain [41]. As a result, in both PRHs, the hydrophilicity of the
polymer chains and the electrostatic repulsion between the chains are enhanced, causing
the polymer network to swell. pH variations can occur in the body due to certain diseases
such as chronic wounds, inflammation, cancer, and tumors, which are used for targeted
drug delivery to specific organs and tissues [42]. Recently, drug-loaded PLGA/Eudragit
S100 coatings were deposited on stainless steel microneedles (MNs) for smart release of
encapsulated therapeutics in response to wound pH levels to enhance the wound-healing
process (Figure 2A,B) [43]. Eudragit S100 is an anionic PRH based on methyl methacrylate
and methacrylic acid. The presence of –COOH groups in the polymer chain causes the
pH-responsive behavior. For a healthy skin pH (acidic microenvironments), the pendant
groups are uncharged whilst at pH values greater than their pKa (pKa~4) (i.e., above pH 7
(wound pH)), the polymer chains begin to disentangle and release the encapsulated drug.
As shown in Figure 2C, 76% of the loaded drug was released in wound pH conditions
during the first incubation hour.
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cultivated in the wound pH (pH 7.4) and healthy skin pH (pH 4.5) media. Reprinted with permis-
sion from [43]. 

In another study, the pH-responsive system was developed on titanium (Ti) implants 
to release the anti-inflammatory ibuprofen (IB) drug [50]. First, IB-loaded mesoporous sil-
ica nanoparticles (MSNs) were synthesized by immersion of particles into the drug solu-
tion. Then, chitosan hydrogel and IB-MSNs were deposited on the Ti surface by the co-
electrodeposition technique (Figure 3A). The SEM micrographs of the MSNs, chitosan, 
and chitosan-IB-MSNs are shown in Figure 3B–D, respectively. The results of the drug 
release studies confirmed that the release level of the hydrogel from the Ti surface is 

Figure 2. (A) Schematic illustration of a wound pH-dependent release system based on hydrogel-
coated MNs; scanning electron microscopy (SEM) images of (B(i)) MN with a porous PLGA coating
(B(ii)) MN with both porous PLGA and Eudragit S100 coatings; and (C) drug release profile for MNs
cultivated in the wound pH (pH 7.4) and healthy skin pH (pH 4.5) media. Reprinted with permission
from [43].

After implantation of the biomedical devices, immune cells play a crucial role in the
whole osteointegration process, including the chronic inflammatory response [44]. During
inflammatory conditions immune cells and osteoclasts release reactive oxygen species (ROS)
and chlorine-based acids, which significantly drop the pH in the implantation site [45,46].
The pH changes at the inflammatory medium resulted in drug release from the PRHs [47,48].
Chauhan et al. developed PRHs through crosslinking oxidized pullulan with poly(ethylene
glycol) (PEG) [49]. The anti-inflammatory dexamethasone (DEX) drug was loaded into the
synthesized hydrogel. The hydrogels provided a pH-sensitive sustained release of DEX
with 74.54 and 55.15% at pH 6.5 and 7.4, respectively. The hydrogels were also exhibited
high cell viability and osteogenic activities, which make them a good candidate for bone
repair applications in chronic inflammatory conditions.
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In another study, the pH-responsive system was developed on titanium (Ti) implants
to release the anti-inflammatory ibuprofen (IB) drug [50]. First, IB-loaded mesoporous
silica nanoparticles (MSNs) were synthesized by immersion of particles into the drug
solution. Then, chitosan hydrogel and IB-MSNs were deposited on the Ti surface by the co-
electrodeposition technique (Figure 3A). The SEM micrographs of the MSNs, chitosan, and
chitosan-IB-MSNs are shown in Figure 3B–D, respectively. The results of the drug release
studies confirmed that the release level of the hydrogel from the Ti surface is affected by the
pH of the medium. As seen in Figure 3E,F, the release rate at pH 10 and pH 7.4 was faster
than that of pH 4.0 in both coated samples. The release mechanism was expressed via a
two-stage process: release of IB from MSNs to chitosan, and then release of IB from chitosan
to the incubation medium. We expect that in the next few years, the anti-inflammatory
drug-loaded PRH layers will be applied on the different metallic implants surfaces to
reduce the chronic inflammation in the acidic microenvironment around the implant site.
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acteristic allows a therapeutic compound to be loaded onto the hydrogel in a liquid state, 
which can then be easily administered and solidified upon application [21]. TRHs can be 

Figure 3. (A) Schematic illustration of the co-electrodeposition of the chitosan- and IB-loaded MSNs
on a Ti substrate and the pH-responsive release: (A(i)) the front view, and (A(ii)) the side view
of chitosan-IB-MSNs on the Ti plate; (B) SEM image of the MSNs; (C) SEM image of the chitosan;
and (D) SEM image of the chitosan-IB-MSNs. Cumulative release profiles of IB: (E) IB-MSNs, and
(F) chitosan/IB-MSNs in different pH values. Reprinted with permission from [50].
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3. Temperature-Responsive Hydrogels (TRHs)

TRHs can change their shape, size, and volume in response to physiological temper-
ature changes and have hydrophobic groups, such as propyl, ethyl, and methyl groups
on their chains [51]. The primarily used TRHs are liquid or semi-solid at ambient tem-
perature, suffering a sol-to-gel transition when exposed to body temperature [52]. This
characteristic allows a therapeutic compound to be loaded onto the hydrogel in a liquid
state, which can then be easily administered and solidified upon application [21]. TRHs
can be divided into lower critical solution temperature (LCST) and upper critical solution
temperature (UCST) hydrogels, which exhibit non-linear responses to temperature, and
upon heating of them, the solubility of the LCST and UCST hydrogels decreases and in-
creases, respectively [21,22]. As shown on the LCST above, a higher level of insolubility and
hydrophobicity can result in gel formation, whereas the LCST below indicates components
of a mixture are completely soluble/miscible for all compositions [53]. Therefore, most
TRHs for drug delivery systems are produced at LCST, because the phase-transition temper-
ature of UCST is less than 25 ◦C, which limits their biomedical applications [54]. Polymers
used to synthesis LCST-based hydrogels are poly(N,N-diethyl acrylamide) (PDEAM),
poly (N-isopropylacrylamide) (PNIPAM), poly(methylvinylether) (PMVE), copolymer
blocks of poly(ethylene oxide), poly(N-vinylcaprolactam) (PVC), and poly(pentapeptide) of
elastin [54]. PNIPAAm is a non-biodegradable polymer showing LCST phase transition at
about 32 ◦C in an aqueous solution, and in recent years, a lot of research has been done on
it [55]. For example, a novel thermoresponsive β-cyclodextrin (β-CD)-modified PNIPAm
star polymer and adamantyl-terminated poly(ethylene glycol) (Ad-PEG, in 8 k and 20 k
grade) as self-assembly pseudo-block copolymers were synthesized via the host–guest
interaction [56]. Afterward, with the addition of α-cyclodextrin (α-CD) into the system,
a polypseudorotaxane-based supramolecular between the α-CD and PEG chain was pre-
pared. When the temperature increased from 25 to 37 ◦C, the hydrogels became stronger
due to the hydrophobic chains’ interactions in PNIPAM, as a dominant force. Then, the
enhanced hydrogel is released, with supramolecular micelles as anticancer doxorubicin
(DOX) drug carriers (Figure 4A). Figure 4B,C show the DOX release profiles from the hy-
drogels at 37 and 25 ◦C, respectively. In both temperatures, loaded-DOX could be released
sustainably from hybrid hydrogels for a longer time because of the dual-stage crosslinking
in their chains. As seen in Figure 3B, βCD-(N25)4/Ad-PEG/αCD hydrogels were able
to release DOX for up to four days. It has been also reported that, the PEG-20 k/αCD
hydrogel released DOX slower at 25 ◦C due to the lower solubility of CD in 25 ◦C water
than in water at 37 ◦C (Figure 4C).
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sized hydrogels (B) at 37 °C and (C) at 25 °C. Reprinted with permission from [56]. 
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planted in the patient with diabetes and aging [62,63]. Most of these infections are caused 
by bacteria biofilms that form on biomaterial surfaces [64,65]. The surface functionaliza-
tion of the implants with antibacterial and therapeutic agents offers a solution for the pre-
vention of biofilm formation and overcoming slow bone regeneration and healing [66,67]. 
The drug-loaded TRHs can be also used as coating materials in bone tissue engineering 
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noted as CGHH [68]. Optical microscope photographs of the hydrogel in Figure 5A shows 

Figure 4. (A) Schematic illustration of the supramolecular hydrogel formed between the βCD
PNIPAAm/Ad-PEG pseudo-block copolymer and α-CD, with a host–guest complexation between
the β-CD units and adamantyl groups and the polypseudorotaxane formation between the α-CD
and PEG chains. By increasing the temperature from the room temperature to body temperature, the
hydrogel can release the anticancer drug. Cumulative release profiles of DOX from the synthesized
hydrogels (B) at 37 ◦C and (C) at 25 ◦C. Reprinted with permission from [56].

Nowadays, Ti and its alloy are extensively used in orthopedic and dental implants for
their feasible mechanical features, satisfactory corrosion resistance, and good biocompati-
bility [57–59]. However, implant-associated infection is one of the major causes of Ti and its
alloys failure in the human body [60,61]. Infections will be worse if the Ti is implanted in
the patient with diabetes and aging [62,63]. Most of these infections are caused by bacteria
biofilms that form on biomaterial surfaces [64,65]. The surface functionalization of the
implants with antibacterial and therapeutic agents offers a solution for the prevention of
biofilm formation and overcoming slow bone regeneration and healing [66,67]. The drug-
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loaded TRHs can be also used as coating materials in bone tissue engineering for reducing
the bacteria-associated infection. Recently, a TRH composed of hydroxypropyl methylcellu-
lose (HMPC), chitosan (CS), and glycerin (Gly) was synthesized and denoted as CGHH [68].
Optical microscope photographs of the hydrogel in Figure 5A shows that CGHH was a
smooth film without any cracks at 37 ◦C. It turned to a porous network structure at 40 ◦C.
In the next step, the nanotubes (NT) were constructed on Ti by anodization process. Finally,
the CGHH hydrogel was deposited on the anodized Ti surface by dip coating to regulate
the ratio of M1 and M2 in a thermo-sensitive way, called CGHH@NT (Figure 5B). As seen
in Figure 5C, the dissolution rate of HPMC, CS, and Gly in CGHH under the sol and gel
state showed that, under the gel state, more Gly, and under sol state, more HPMC and CS
were released from the CGHH layer. The thermo-related immunoregulatory mechanism
of CGHH@NT is shown in Figure 5D schematically and the explanation of each stage
along with the corresponding number is given below. During bacterial invasion of the
implant’s surface (1), the organism’s innate immunity will activate, which then triggers
the release of inflammatory cells, including macrophages M0, M1, and M2 (2). When the
temperature exceeds the LCST of the CGHH, the hydrogel starts to transform from a sol
state to a gel state and releases a lot of Gly molecules (Figure 4D(iii)) (3 and 4). In this state,
macrophages polarize toward the M1 phenotype and promote inflammation, resulting in
the recruitment of inflammatory cells to the infection site and the improvement of their
ability to kill bacteria (5). The inflammatory response and local temperature will decrease
once the bacteria have been completely killed and the hydrogel will return to the sol state
(6). As seen in Figure 4D(i,ii), the hydrogel coating can release a large amount of HPMC and
CS molecules under the transition temperature, which results in macrophages polarization
toward the M2 phenotype (7), accelerating tissue healing and osteoblast differentiation (8).
Therefore, a smart transformation between the anti-inflammatory and pro-inflammatory
microenvironments will be obtained by using TRHs.

Studies in the field of bone tissue engineering have recently showed that the incor-
poration of bone morphogenetic protein (BMP) as a growth factor into the hydrogels
can promote in vivo bone formation on the implants’ surface [69]. Li et al. constructed
a porous Ti alloy (Ti-6Al-4V) and injected BMP-laden chitosan TRHs into pores of the
Ti6Al4V scaffolds [70]. Rheological studies showed that the values of the storage modulus
(G′) and loss modulus (G′′) for the BMP-loaded hydrogel were low at the low temperature
and increased with the temperature. They concluded this scaffold design provided a
controlled release of BMP, thus enhancing the biocompatibility and osteogenic proper-
ties. The research trend shows that future studies on smart TRHs will focus on their
drug delivery application for the treatment of chronic diseases, such as osteomyelitis,
hypercholesterolemia, and diabetes.
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4. Electrically and Magnetically Responsive Hydrogels (E and MRHs)

ERHs refer to group of electroactive and highly hydrated hydrogels that swell or de-
swell in response to an electrical current [24]. Polyaniline, polypyrrole, sulfonated styrene,
polythiophene, and polyvinyl alcohol are some examples of synthetic ERHs while natural
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examples include chitosan, alginate, and hyaluronic acid [25]. Drug release behavior from
ERHs under electrical stimulus can be controlled by three competing forces—polymer–
polymer affinity, ionic pressure, and rubber elasticity—collectively calledmosmotic pressure.
Disruption of the balance of these forces leads to swelling and de-swelling in ERHs [71,72].
The osmotic pressure of a hydrogel is equal to the surrounding aqueous environment at an
equilibrium state. When an electrical field is applied across an ERH in an aqueous medium,
H+ and OH− ions on the polymer chains move toward different sites with opposite charges
resulting in a non-uniform ion distribution, as seen in Figure 6A [71]. Therefore, the osmotic
pressure is increased inside the polymer, which results in the volume transition of ERHs [73].
Indeed, the osmotic pressure difference between the hydrogel and aqueous solution is
the driving force for drug release from ERHs [71,73]. Qu et al. explored the amoxicillin
and ibuprofen release from hydrogels prepared by mixing a chitosan-graft-polyaniline
(CP) copolymer and oxidized dextran (OD) as a cross-linker [74]. Figure 6B shows the
setup consisting of a working electrode (glassy carbon coated with solidified ERHs), an
Ag/AgCl reference electrode, and a platinum-mesh counter electrode schematically, which
was used for in vitro drug release in a phosphate-buffered saline solution. As shown in
Figure 6C,D, the cumulative release of both drugs significantly increased with the increase
in the applied voltage. Approximately 82% of the amoxicillin was released from the ERH in
60 min when a 3 V potential was applied, compared to a 34% release without any electrical
trigger (Figure 6C). In comparison, the ERH showed an almost 35% release of ibuprofen in
140 min when a 3 V electrical potential was applied, compared to a 15% release without
any stimulation (Figure 6D).

Among the smart hydrogels, MRHs have attracted intensive researches in drug de-
livery, hyperthermia therapy, tissue engineering, magnetic resonance imaging, and soft
actuators, owing to their unique features, including non-invasive remote actuation, quick
magnetic response, and temporal and spatial control [75]. Most of the MRHs are fabricated
by combining TRHs with superparamagnetic iron oxide nanoparticles (SPIONs) [27,75].
Under the effect of a magnetic field, SPIONs are vibrated, which leads to a magnetic hyper-
thermia, activation of the TRHs, and a change in their swelling state, thereby modulating
the drug release rate [76]. Chen et al. synthesized the SPIONs-incorporated poly(N-
isopropyl acrylamide) as MRHs for the controlled release of the anti-cancer drug [77].
According to Fick’s law, they reported that when the magnetic field is cut off, the hydro-
gel undergoes a volume transition, and the loaded drug is released into the surrounding
aqueous solution. Zhang et al. [76] developed an injectable and biodegradable MRH with
temperature-dependent dissolution and gelation properties for combination cancer therapy.
The solution containing poly(organophosphazene), SPIONs, and the drug could transform
a hydrogel at body temperature (37 ◦C), and then the hydrogel gradually dissolved at
a temperature of 43 ◦C under a high-frequency alternating magnetic field (13.3 kA·m−1

and 366 kHz, 60 min) to enhance the drug release. Although the design of the MRHs
can bring many advantages, there are still some challenges in the cytotoxicity of SPIONs
through oxidative stress. Surely, the upcoming studies will reveal complex and novel
behavior arising from the ability of hydrogels to decrease ROS generation via antioxidants
incorporation into their structures.
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5. Light-Responsive Hydrogels (LRHs)

Light as an external stimulus can promote drug release from hydrogels and offer a
number of advantages such as low-cost, ease of tunability of intensity and wavelength, and
a wide range of chemistries available to design the LRHs [30,31]. LRHs generally consist of
specific chemical moieties, called chromophores, as the functional part of the polymer chain,
and are sensitive to near-infrared radiation (NIR), visible light, and UV [30,32]. As shown
in Figure 7A, the chromophores can be located in the (1) crosslinking points, (2) along
the polymer backbone, (3) along the side chains, or (4) dissolved in the aqueous matrix of
hydrogels [33]. Depending on the location and chemical characteristics of the particles, the
response to irradiated light can be one or a combination of the following: (A) shrinking;
(B) the water uptake and an increase in hydrogel volume via partial de-crosslinking; (B*)
hydrogel degradation via de-crosslinking; (C) local increase in temperature through photo-
thermal excitation; (D) activation or deactivation of functional groups; and (E) capture
or release of the hydrogel matrix. Amongst the different wavelengths of the photochem-
ical spectrum, NIR-responsive hydrogels have superior potentials for pharmacological
treatments due to their deeper penetration in tissues (ca. 2 mm through the skin) and
harmlessness [78,79].

In photodynamic therapy, as a promising method in antibacterial material design,
photosensitizers are driven to create ROS after exposure to different wavelengths of light.
Recently, He et al. synthesized catechol motif-modified methacrylated gelatin containing
photosensitizer Chlorin e6-loaded mesoporous polydopamine nanoparticles [80]. This
smart LRH was deposited on the Ti implant surface by dip coatings. Because of the ROS-
generation property of Chlorin e6 under 660 nm laser stimuli, the hydrogel exhibited a
significant and prompt antibacterial activity against Escherichia coli and Staphylococcus aureus
bacteria when the laser power was 1 W·cm−2. In vitro and in vivo studies also showed
that the developed smart hydrogel coating possessed fibroblast activation under the laser
power of 100 mW·cm−2, promoting the wound repair.

An original design was proposed by Qiu et al., who developed DOX-loaded, hydrogel-
encapsulated black phosphorus nanosheets (BPNSs) by using low-melting-point agarose
and PEGylated BPNSs for cancer therapy [81]. The photo response of the prepared hydrogel
was evaluated under an 808-nm NIR laser with a power density of 1.0 W·cm−2. Evidence
exhibited the concentration of released DOX increases dramatically in the PBS solution
under NIR, compared with the unchanged concentration without NIR (Figure 7B). Thermal
camera analyses after in vivo injection also showed that the synthesized hydrogels had a
more significant temperature rise and localized drug distribution around the tumor site
than a free drug injection (Figure 7C,D). Moreover, the size of the LRH-treated tumor
was significantly smaller than the other treatments, as shown in the tumor growth curve
(Figure 7E). Although studies like this have been dedicated to the design and in vivo
characterization of LRHs, most of the current systems are restricted to proof-of-concept
studies due to the complexity of the photo-responsive materials. Nonetheless, we believe
that LRHs are promising approaches to the future of local cancer therapy, especially in the
case of non-surgically resectable tumors.
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increase in water uptake and, consequently, an increase in hydrogel volume. (A(B*)) de-crosslinking
completely leads to degradation of hydrogels. (A(C)) A localized increase in temperature is referred
to as photothermal excitation. (A(D)) activation or deactivation of reactive sites, (A(E)) release or
capture of substrates Reprinted with permission from [33]; (B) release rate of DOX with and without
laser exposure; (C) thermal images of mice bearing tumors after injection of DOX or BP@Hydrogel,
followed by exposure to 808-nm laser irradiation; (D) tumor temperature changes of mice bearing
MDA-MB-231 tumors during laser irradiation as indicated in (C); (E) the corresponding growth
curves of tumors in different groups of mice treated with PBS solution, DOX, BP@Hydrogel depot
only, and BP@Hydrogel depot with laser irradiation. Reprinted with permission from [81].

6. Biomolecule-Responsive Hydrogels

Biomolecule-responsive hydrogels are generally distinguished by their response to
glucose, specific enzymes, protein, and the antibody molecules [34,82]. The development
of materials for the self-monitoring of blood glucose to regulate the glucose level of diabetic
patients is one of the hot topics in materials science and today’s medicine [82]. The glucose-
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responsive hydrogels (GRHs) have attracted great attention in the field of drug delivery
to overcome diabetes-induced chronic inflammation [82,83]. In recent years, GRHs have
been used to build an automated insulin delivery system responding to blood glucose
concentrations [84]. The primary release mechanism from GRHs involves the diffusion
of glucose into the membrane, where glucose is converted into gluconic acid, which
lowers the pH and results in swelling in the hydrogel, followed by insulin secretion [85].
Examples of GRHs are glucose oxidase-loaded, lectin-loaded hydrogels, and hydrogels
with phenylboronic acid moieties. However, these smart hydrogels can also be used to send
therapeutic to tissues such as bone that have been damaged by diabetes [86]. Diabetes as a
metabolic disease cause a pathological high-glucose microenvironment in tissues, which
would significantly accelerate the progress of the preexist inflammation and prevent local
tissue regeneration [87]. Diabetic patients with bone tissue damages, such as osteoporosis
fractures and intervertebral disc degeneration (IVDD), struggle with chronic inflammatory
disease too, which is difficult and costly to treat and control in clinical practice [88]. Most
recently, a GRH based on hyaluronic acid (HA) and polyethylene glycol (PEG) loaded
with metformin (Met@HA-PEG) was designed for injection to intervertebral disc spaces
and introduced to create a stable anti-inflammatory microenvironment via dynamically
adjusted to the change of glucose concentration in IVDD (Figure 8A–C) [89]. As seen in
Figure 8D,E, in vitro biomechanical analyses on the intervertebral discs of rats proved
that injection of the Met@HA-PEG provided strong mechanical support for degenerated
intervertebral discs due to its elasticity. The drug release assessment of Met@HA-PEG
showed that 84.23% and 70.96% of the total metformin were released in the PBS solutions
with 4 g·L−1 and 0 g·L−1 glucose, respectively (Figure 8D), indicating the sensitivity of the
hydrogel to changes in glucose. Moreover, the synthesized GRH could decrease the ROS
effects on mitochondria and increase the generation of extracellular matrices in the nucleus
pulposus cells.

Living cells undergoes all major changes as a result of enzymes [63]. Enzymes are
biomolecules that play an indispensable role in many biological and chemical reactions
within cells [90]. They can act as a natural trigger and be used to design enzyme-responsive
hydrogels (EZRHs) [90,91]. One of the most popular methods for the synthesis of EZRHs
is the incorporation of an enzyme-catalyzed reaction [91]. To develop this type of hydro-
gel, the following points should be considered. They must contain enzyme-identifying
elements, such as linkers. The linkers in the hydrogel structure must be readily available
to the enzymes for identification. Moreover, the reaction between the linker and the en-
zyme must cause physical and chemical changes and then degradation or morphological
transformation of the EZRHs [92,93]. In drug-loaded EZRHs, therapeutic molecules can be
dispersed in the hydrogel structure by encapsulation and they are released locally based
on enzymatic activity and hydrogel degradation [94].

As another side of implant-associated infections, the bacteria present in the biofilm pro-
duce enzymes such as metalloproteinases, lipases, hyaluronidases (HAase), β-glucuronidase
(β-GUS), chymotrypsin (CMS), and glutamyl endonuclease (V8) by metabolic activity on
the implant surface [95,96]. These produced enzymes can be used as biological stimuli for
sustained drug and antimicrobial molecules release in EZRHs [95]. Recently, Ding et al.
developed EZRHs as a drug delivery platform for treating Staphylococcus aureus (S. aureus)-
associated infections and accelerating bone tissue growth on a Ti implant in vivo [97]. As
seen in Figure 9A, Ti substrates were modified by polydopamine (PDOP). Then MSNs
loaded with Ag nanoparticles (NPs) were synthesized. In next step, MSNs-Ag NPs were
capped with cationic polyallylamine hydrochloride (PAH) and biodegradable anionic
poly(L-glutamic acid) (PG) films layer by layer (LBL) and named LBL@MSN-Ag. Fi-
nally, LBL@MSN-Ag spherical particles were deposited on PDOP-coated Ti. The PG is a
polyamide, formed by amide linkage, and can respond to the V8 enzyme secreted by S.
aureus during its metabolic activity [98,99]. Therefore, it can be degraded in the microenvi-
ronment of bacterial infection with a high concentration of V8 and release of Ag NPs and
ions, resulting in the on-demand release of drugs along with a good antimicrobial perfor-
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mance at the implantation site. Moreover, the PG as a synthetic EZRH is biocompatible
and has the potential to promote cell and tissue growth (Figure 9B) [100]. The cumulative
release profile in Figure 9C proved that the release of Ag ions was very fast during the first
6 h of incubation in the presence of the V8 enzyme. The wettability studies (Figure 9D)
showed that the LBL@MSN-Ag coating on the Ti was hydrophilic with a contact angle of
12.4◦, which resulted in higher cell adhesion on the implant’s surface [101]. As shown in
Figure 9E, the number of viable bacterial colonies on the LBL@MSN-Ag treated Ti were
significantly lower than that of the untreated Ti implant, showing the high antibacterial
ability of the EZRH coatings in vivo.
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Reprinted with permission from [89].
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Figure 9. (A) The schematic illustration of the synthesis of LBL@MSN-Ag layer on PDOP-coated
Ti substrates; (B) the schematic presentation of the antibacterial and osteogenic responses of the
LBL@MSN-Ag layer on Ti nails in the presence of the V8 enzyme; (C) release profile of Ag ions from
LBL@MSN-Ag nanoparticles in PBS solution with and without V8 enzyme; (D) water contact angles
on different Ti surfaces; (E) spread plate images of S. aureus bacterium for Ti and LBL@MSN-Ag
samples after implantation for one week. Reprinted with permission from [97]. (F) The schematic
illustration of the possible interactions between PAR and HA-Aldehyde that can be coated on
the dental implants to improve the angiogenesis responses and prevent peri-implantitis; (F(i)) the
formation of an imine bond between the aldehyde group on HA and guanidine group on the PAR
backbone; (F(ii)) ionic interactions between the carboxylic group (anions) on HA and the protonated
guanidinium groups (cations) on the PAR chains; (F(iii)) the formation of imine bond between the
aldehyde group on HA and primary amine on the PAR N-terminal side. Reprinted with permission
from [102].
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In order to reduce the implant-associated infections, Knopf-Marques et al. synthesized
a smart antimicrobial coating by using the layer-by-layer method with poly(arginine) (PAR)
as polycation and hyaluronic acid (HA) as polyanion to prevent bacterial colonization
on Ti dental implants (Figure 9F) [102]. They found that incorporating 1.5 nmol of PAR
into hydrogel coatings significantly reduced bacterial growth up to 94% with insignifi-
cant cytotoxicity. Furthermore, a human vascular endothelial cell line was stimulated to
secrete vascular endothelial growth factor A (VEGFA) and to form cell–cell contacts by
Gel/HA charged with PAR. The synthesized composite hydrogel can be a versatile tool
for developing bacteria-responsive hydrogels with antimicrobial and therapeutic activities
on the surfaces of the medical implants. In another study, PAR-decorated polydopamine
nanoparticles were incorporated into the gelatin hydrogels matrix for bone tissue engi-
neering applications [103]. The results showed that the dispersed nanoparticles not only
enhanced the antibacterial and mechanical properties of the hydrogel but also provided
high stability and biocompatibility for the matrix [104].

7. Conclusions, Challenges, and Future Directions

The introduction of stimulus-responsive effects can enhance the functionality and
increase the range of applications of hydrogels in biomedical engineering. Smart hydrogels
as an emerging class of material responding to external triggers, such as pH, temperature,
electrical and magnetic fields, light, and concentration of biomolecules, can release the
drug cargo at specific locations with controllable kinetics. Based on the last five years’
studies, the main future direction is to improve the properties of the currently developed
smart hydrogels and provide them with novel, sophisticated features. In the near future,
research will move toward the synthesis of programmable smart hydrogels that are capable
of responding to the complex multi-stimulus and integrating multiple therapies. They are
likely to have an exciting future, while some challenges are facing this field. Up to now,
various smart hydrogels have been developed and introduced, but the commercialization
of smart hydrogels as drug delivery systems is not convincing; only a few cases have
entered into clinical use, including Jelmyto® (UGN-101) as a TRH that was lunched by
UroGen Pharma and received Food and Drug Administration (FDA) approval in April
2020 [105]. Indeed, given the recent advances in the pharmaceutical industry, there are
still no clear legal regulations and standards for the use of smart drug-loaded hydrogels
in therapeutic activities. Moreover, much progress needs to be made concerning in vivo
release by modeling the release profiles before commercializing them. Finally, the field of
smart hydrogels is in its infancy and its importance in designing efficient delivery systems
has become clear to everyone and can create many opportunities for 21st century medicine.
The next generations of smart hydrogels will most likely focus on gene-loaded hydrogels
with integrated sensors to treat genetic abnormalities. Another possible research area will
be pathogen-responsive hydrogels for local infection treatments. Recently, the “Gels4Bac”
project has been funded by the European Research Council (ERC) and will focus on the
selectively and local release of antimicrobial vesicles in the presence of specific pathogen
stimuli [106].
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Abbreviations

PRHs pH-responsive hydrogels
MNs Stainless steel microneedles
ROS Reactive oxygen species
DEX Dexamethasone
PEG Poly(ethylene glycol)
SEM Scanning electron microscopy
Ti Titanium
IB Ibuprofen
MSNs Mesoporous silica nanoparticles
TRHs Temperature-responsive hydrogels
LCST Lower critical solution temperature
UCST Upper critical solution temperature
PDEAM Poly(N,N-diethyl acrylamide)
PNIPAM Poly (N-isopropylacrylamide)
PMVE Poly(methylvinylether)
PVC Poly(N-vinylcaprolactam)
β-CD β-cyclodextrin
Ad-PEG Adamantyl-terminated poly(ethylene glycol)
α-CD α-cyclodextrin
DOX Doxorubicin
HMPC Hydroxypropyl methylcellulose
CS Chitosan
Gly Glycerin
CGHH Hydroxypropyl methylcellulose/Chitosan/Glycerin composite
NT Nanotube
BMP Bone morphogenetic protein
G′ Storage modulus
G′′ Loss modulus
ERHs Electrically responsive hydrogels
CP Chitosan-graft-polyaniline
OD Oxidized dextran
MRHs Magnetically responsive hydrogels
SPIONs Superparamagnetic iron oxide nanoparticles
LRHs Light-responsive hydrogels
NIR Near-infrared radiation
BPNSs Black phosphorus nanosheets
GRHs Glucose-responsive hydrogels
IVDD Intervertebral disc degeneration
HA Hyaluronic acid
Met Metformin
ERHs Enzyme-responsive hydrogels
HAase Hyaluronidases
β-GUS β-glucuronidase
CMS Chymotrypsin
V8 Glutamyl endonuclease
PDOP Polydopamine
Ag NPs Silver nanoparticles
PAH Polyallylamine hydrochloride
PG Poly(L-glutamic acid)
LBL Layer by layer
PAR Poly(arginine)
VEGFA Vascular endothelial growth factor A
FDA Food and Drug Administration
ERC European Research Council
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