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Abstract

Background and objectives

Vascular calcification (VC) is a major risk factor for elevated cardiovascular morbidity/

mortality. Underlying this process is osteoblastic signalling within the vessel wall involving

complex and interlinked roles for receptor-activator of nuclear factor-κB ligand (RANKL),

osteoprotegerin (OPG), and tumour necrosis factor-related apoptosis-inducing ligand

(TRAIL). RANKL promotes vascular cell osteoblastic differentiation, whilst OPG acts as a

neutralizing decoy receptor for RANKL (and TRAIL). With respect to TRAIL, much recent

evidence points to a vasoprotective role for this ligand, albeit via unknown mechanisms. In

order to shed more light on TRAILs vasoprotective role therefore, we employed in vitro cell

models to test the hypothesis that TRAIL can counteract the RANKL-mediated signalling

that occurs between the vascular cells that comprise the vessel wall.

Methods and results

Human aortic endothelial and smooth muscle cell mono-cultures (HAECs, HASMCs) were

treated with RANKL (0–25 ng/mL ± 5 ng/mL TRAIL) for 72 hr. Furthermore, to better recapit-

ulate the paracrine signalling that exists between endothelial and smooth muscle cells within

the vessel wall, non-contact transwell HAEC:HASMC co-cultures were also employed and

involved RANKL treatment of HAECs (±TRAIL), subsequently followed by analysis of pro-

calcific markers in the underlying subluminal HASMCs. RANKL elicited robust osteoblastic

signalling across both mono- and co-culture models (e.g. increased BMP-2, alkaline phos-

phatase/ALP, Runx2, and Sox9, in conjunction with decreased OPG). Importantly, several

RANKL actions (e.g. increased BMP-2 release from mono-cultured HAECs or increased

ALP/Sox9 levels in co-cultured HASMCs) could be strongly blocked by co-incubation with

TRAIL. In summary, this paper clearly demonstrates that RANKL can elicit pro-osteoblastic

signalling in HAECs and HASMCs both directly and across paracrine signalling axes. More-

over, within these contexts we present clear evidence that TRAIL can block several key
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signalling actions of RANKL in vascular cells, providing further evidence of its vasoprotec-

tive potential.

Introduction

Vascular calcification (VC) afflicts multiple patient populations, where it manifests as elevated

levels of mineral deposition within the intimal and medial regions of blood vessels. This has

adverse consequences for vessel wall homeostasis, and constitutes a significant risk factor for

elevated rates of cardiovascular (CV) morbidity and mortality [1,2]. VC can inhibit cardiac

valve function, decrease arterial compliance, and increase the risk of post-angioplasty dissec-

tion [3]. Moreover, VC is associated with increased risk of plaque rupture, aortic stiffness, left

ventricular hypertrophy, and increased pulse pressure, and is also significantly elevated in dia-

betic and chronic kidney disease sufferers, where it contributes to the premature ageing of

blood vessels [4–6].

Driving the VC process, much evidence now points to coordinated roles for a signalling

triad comprising receptor-activator of nuclear factor-κB ligand (RANKL), osteoprotegerin

(OPG), and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) [7,8]. Within

the vasculature, RANKL is known to exhibit pro-calcific actions, with RANKL expression dis-

tinctly elevated in areas of mineralization [9]. Consistent with this, numerous studies have

demonstrated that RANKL may promote trans-differentiation of vascular smooth muscle cells

(VSMCs) to an osteoblastic/chondroblastic phenotype either through direct interaction with

the VSMC RANK receptor [10,11], or by inducing the release of endothelial-derived pro-

osteoblastic paracrine signals such as bone morphogenetic protein-2/4 (BMP-2/4), which in

turn may act upon the underlying VSMCs [12,13]. OPG, produced in substantial quantities by

VSMCs (and non-vascular sources), acts as a soluble decoy receptor for RANKL to neutralize

its biological actions within the vasculature [14]. This anti-calcific action of OPG within the

vessel wall is supported by research demonstrating that OPG-/- mice display severe VC burden

[15], whilst atherogenic mice treated with recombinant OPG exhibit reduced levels of plaque

calcification and aortic osteocalcin [16]. It is also noteworthy that the roles for RANKL and

OPG within the vascular wall are, paradoxically, opposite to those observed for these same

ligands within bone morphogenesis [8].

OPG can also serve as a decoy receptor for TRAIL [17], although the precise role of the lat-

ter ligand within the VC process is much less well understood. In this respect however, a grow-

ing body of in vivo and clinical evidence now points to a vasoprotective role for TRAIL (for

review, see [18]). For example, circulating TRAIL levels are decreased following acute myocar-

dial infarction and heart failure, whilst lower levels of TRAIL following an acute CV event are

associated with increased mortality [19–21]. Serum TRAIL levels are also inversely correlated

with carotid intimal-medial thickness [22]. In animal studies, diabetic mice have shown

improvements in glucose clearance, insulin sensitivity, and normoglycaemic duration follow-

ing recombinant TRAIL treatment [23], whilst exogenous TRAIL administration has also

demonstrated anti-atherosclerotic activity in Apo-E-/- diabetic mice [24]. Of more direct rele-

vance to VC and the present study, a recent paper by di Bartolo and co-workers has demon-

strated how TRAIL deficiency leads to accelerated VC in ApoE-/- TRAIL-/- mice [25].

Moreover, previous work by Zauli et al. has demonstrated the ability of TRAIL to counteract

RANKL signalling in human peripheral blood osteoclastic precursors and Raw264.7 murine

monocytic cells [26,27].
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These latter observations by Zauli et al. [26,27] have therefore led us to hypothesize that

TRAIL may elicit its vasoprotective effects in-part by attenuating RANKL-induced osteoblastic

signalling in vascular cells. The specific goal of this paper was to address this important

hypothesis using in vitro vascular cell models. We have employed HAECs and HASMCs to

profile a broad array of RANKL effects, and to investigate the influence of TRAIL upon these

effects. Mono-culture experiments were initially employed, followed by a more physiologically

relevant non-contact co-culture model designed to better recapitulate the paracrine signalling

properties of the vessel wall. For these studies, a wide range of signalling molecules were moni-

tored, including OPG, BMP-2, alkaline phosphatase (ALP), runt-related transcription factor-2

(Runx2, an osteogenic transcription factor), and Sox9 (a chondrocytic transcription factor).

Our findings not only broaden our understanding of how RANKL may potentially elicit cal-

cific activation both within and between vascular cells, but they also clearly indicate for the

first time that TRAIL can attenuate specific actions of RANKL.

Materials and methods

Unless otherwise stated, all reagents were purchased from Sigma-Aldrich (Dublin, IRL). Both

human aortic endothelial cells (HAECs) and human aortic smooth muscle cells (HASMCs), as

well as their respective growth media were purchased from Promocell GmbH (Heidelberg,

Germany). Recombinant human RANKL and TRAIL were purchased from R&D Systems

(Minneapolis, MN, USA). Tumor necrosis factor-alpha (TNF-α) was purchased from Merck

Millipore (Danvers, MA, USA). Primers were sourced from Sigma Aldrich and Eurofins

Genomics (Ebersburg, Germany). ELISA DuoSet kits and alkaline phosphatase (ALP) activity

assay kits were purchased from R&D Systems and BioAssay Systems (Hayward, CA, USA),

respectively, whilst qPCR reagents were purchased from Applied Biosystems/ThermoFisher

Scientific (Paisley, UK).

Guidelines and ethical approval

All experimental protocols were carried out in accordance with Dublin City University health

and safety regulations. Institutional ethical approval and informed consent were not required

for this study (i.e. use of widely commercially available human-derived cell lines).

Cell culture

HAECs obtained from a 23 year old Caucasian male were cultured in endothelial cell growth

medium (Promocell GmbH, catalog no. C22020) with the following supplements; fetal calf

serum (0.05 mL/mL), endothelial cell growth supplement (0.004 mL/mL), epidermal growth

factor (10 ng/mL), heparin (90 μg/mL) and hydrocortisone (1 μg/mL). This media was also

supplemented with penicillin (100 IU/mL) and streptomycin (100 μg/mL). HASMCs obtained

from a 19 year old Caucasian male were cultured in smooth muscle cell growth medium (Pro-

mocell GmbH, catalog no. C22062) containing the same concentrations of antibiotics, in addi-

tion to fetal calf serum (0.05 mL/mL), epidermal growth factor (0.5 ng/mL), basic fibroblast

growth factor (2 ng/mL), and insulin (5 μg/mL). Cells were maintained in a humidified incu-

bator at 37˚C and 5% CO2. Passages 5–10 were used for experimental purposes. Cell number

and viability were routinely measured using the advanced detection and accurate measure-

ment (ADAM™) cell counter (Digital Bio, Seoul, KOR), both for seeding density purposes and

to allow normalization of results where necessary. This process involved the digital analysis of

cells on AccuChip slides following the addition of propidium iodide with or without a mem-

brane permeabilizing solution, providing total numbers of both viable and non-viable cells.
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Cell culture experiments were subsequently conducted in two formats: (i) mono-culture and

(ii) co-culture:

i. Mono-culture experiments. We investigated the dose-dependent effects of RANKL

(0–25 ng/mL) on osteoblastic activity in both HAECs and HASMCs over 72 hr, a treatment

period and dose range previously employed by Davenport et al. [12,28] and shown to yield

robust responses. In parallel experiments designed to examine the protective effects of TRAIL

towards RANKL-induced signalling, cells were grown to confluency in standard 6-well culture

dishes and treated for 72 hr with RANKL (5 or 25 ng/mL), in the absence and presence of

5 ng/mL TRAIL. Following all treatments, conditioned media (released protein) and cells

(mRNA, cell protein) were routinely harvested for analysis. OPG and BMP-2 levels were moni-

tored by ELISA, whilst ALP enzyme activity was monitored by QuantiChrom™ ALP Assay Kit

(BioAssay Systems). mRNA expression levels for a range of genes linked to pro-calcific signal-

ling (OPG, ALP, BMP-2, Runx2, and Sox9) were also assessed by qPCR. HAECs were exposed

to TNF-α (100 ng/mL) as a positive control for BMP-2 production, whilst HASMCs were

exposed to 10 mmol/L β-glycerophosphate as a positive control for induction of osteoblastic

activity. All samples were stored at -80˚C and assayed within three months.

ii. Co-culture experiments. The effect of HAEC paracrine signalling on HASMC osteo-

blastic activity was next investigated using a non-contact transwell co-culture model. Sublum-

inal compartment; HASMCs were seeded at a density of 1.5x105 cells per well into standard

6-well culture dishes and grown to confluency. Luminal compartment; HAECs were seeded

into permeable (0.4 μm pore) transwell culture inserts (Merck Millipore, MA, USA) at a den-

sity of 2x105 HAECs per insert and grown to confluency. Transwell inserts were then posi-

tioned into HASMC plate wells to establish co-culture conditions. A 50:50 mixture of HAEC:

HASMC growth media was employed throughout the subsequent co-culture treatment period

as previously described [12]. At the commencement of co-culture, HAECs were treated for

72 hr with RANKL (5 or 25 ng/mL), TRAIL (5 ng/mL), or both (5 or 25 ng/mL RANKL

+ 5 ng/mL TRAIL). In our view, this paradigm best represents the in vivo situation, whereby

endothelial cells would be continuously exposed to these ligands, whilst engaging in ongoing

paracrine signalling with the underlying medial smooth muscle cells. Post-treatment,

HASMC-conditioned subluminal media and HASMCs (mRNA, cell protein) were harvested

for analysis of ALP activity, OPG/BMP-2 levels and gene expression.

Quantitative real-time PCR (qPCR)

Extraction of total RNA and preparation of cDNA was achieved using the TRIzol™ RNA

extraction protocol (ThermoFisher Scientific) and the Applied Biosystems™ high-capacity

cDNA reverse transcription kit (Thermo Fisher Scientific), respectively. Prior to cDNA prepa-

ration, all RNA samples were routinely pre-treated with DNase1 (Sigma-Aldrich). Amplifica-

tion of target cDNA sequences using gene-specific primers was achieved using the

LightCycler196 real-time PCR system (Roche Diagnostics, West Sussex, UK). PCR reaction

mixtures (10 μL) were as follows: 5 μL of FastStart Universal SYBR Green/Rox Mastermix

(Roche Diagnostics), 1.5 μL of RNase-free water, 2.5 μL of cDNA, 0.5 μL each of 10 μmol/L for-

ward and reverse primers. PCR reaction conditions were as follows: denaturation at 95˚C for

10 min followed by 45 cycles of: (i) denaturation at 95˚C for 10 sec, (ii) annealing at 59˚C for

10 sec, and (iii) elongation at 72˚C for 10 sec. Each cDNA sample was assayed in triplicate and

results analysed by the comparative CT method. GADPH was routinely used for normalization

purposes. All primer pairs were designed for optimal efficiency according to MIQE guidelines

and were pre-screened for correct product size (1% agarose gel electrophoresis). Primer pairs

also underwent melt-curve analysis for confirmation of PCR product purity and detection of
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primer-dimers. GAPDH (238 bp): Forward 5’-gagtcaacggatttggtcgt-3’; Reverse

5’-ttgattttggagggatctcg-3’; ALP (293 bp): Forward 5’-gcctggctacaag
gtggtg-3’; Reverse 5’-ggccagagcgagcagc-3’; Runx2 (315 bp): Forward 5’-
ggtaccagatgggactgtgg-3’; Reverse 5’-gaggcggtcagagaacaaac-3’; Sox9 (85

bp): Forward 5’-agcgaacgcacatcaagac-3’; Reverse 5’-ctgtaggcgatctgt
tgggg-3’; OPG (241 bp): Forward 5’-ggcaacacagctcacaagaa-3’; Reverse 5’-
ctgggtttgcatgcctttat-3’; BMP-2 (199 bp): Forward 5’-caagccaaacacaaa
cagcg-3’; Reverse 5’-ccaacgtctgaacaatggca-3’.

Enzyme-linked immunosorbent assay (ELISA)

OPG and BMP-2 DuoSet1 ELISA Kits (R&D Systems) were employed as per manufacturer

instructions (with minor volume modifications) to accurately measure absolute levels of OPG

and BMP-2 in HAEC/HASMC lysates and conditioned media. Briefly, F96 Maxisorp™ Nunc-

Immuno™ 96-well plates (Bio-Sciences Ltd., Dun Laoghaire, IRL) were coated with 50 μL/well

of the provided capture antibody and incubated overnight at room temperature. The plate was

then blocked by adding 150 μL of Reagent Diluent (1% high grade BSA) to each well and incu-

bated for 1 hr at room temperature. HAEC/HASMC total protein lysates were routinely pre-

diluted (depending on total protein levels) in Reagent Diluent for analysis of OPG and BMP-2

levels. HAEC-conditioned media samples remained undiluted, whilst HASMC-conditioned

media samples were diluted for OPG analyses only. Dilution, when applied to lysate and

media samples, was determined to work optimally within the 1:20 to 1:50 range. This ensured

that microplate readings remained within the measurable linear range for ELISA analysis

(46.9–3000 pg/mL for BMP-2; 62.5–2000 pg/mL for OPG). All samples and standards were

subsequently assayed in duplicate at 50 μL/well and incubated for 2 hr at room temperature.

Following sample incubation, 50 μL of the provided detection antibody was added to each well

and then incubated for a further 2 hr at room temperature. Post-incubation, 50 μL of streptavi-

din-HRP was dispensed to each well and incubated for 20 min at room temperature in the

dark. 50 μL of substrate solution was then added to each well and incubated for a further 20

min at room temperature in the dark. Reactions were terminated with the addition of 25 μL of

stop solution (0.16 M sulfuric acid) to each well and the plate subsequently read at 570 nm

with wavelength correction at 450 nm to account for plate optical imperfections. For normali-

zation purposes, OPG and BMP-2 levels in protein lysates were routinely presented as pg/mg

of total protein, whilst conditioned media levels were presented as pg/105 cells.

Alkaline phosphatase activity assay

Previous researchers have successfully employed the Quantichrom™ Kit (BioAssay Systems) to

monitor ALP activity, a critical marker of osteoblastic activation [29]. For this paper, ALP

activity was measured in vascular cell conditioned media and total protein lysate samples

according to the manufacturer’s protocol. This colorimetric kinetic assay is based on the prin-

ciple that ALP, if present in the sample, will hydrolyse p-Nitrophenyl phosphate (pNPP) into

p-nitrophenol and phosphate, forming a yellow product with a maximum absorbance at 405

nm. For analyses, 50 μL of media or 5 μL of lysate (~5–10 μg protein) was added to each well.

The working solution, consisting of assay buffer pH 10.5, 0.2 mol/L magnesium acetate and 1

mol/L pNPP, was then added to the sample to a total volume of 200 μL/well and subjected to a

4 min incubation at 37˚C. The plate was read at both 0 and 4 min, with distilled H2O (negative

control) and tartrazine (yellow liquid with a fixed absorbance) loaded for run calibration. All

samples were assayed in duplicate. The subsequent colour change was measured via microplate

reader at 405 nm and the absorbance at 4 min compared with baseline (0 min). ALP activity
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(IU/l) was then determined from the absorbance difference via formula provided by the manu-

facturer. Results are presented as fold change in ALP activity compared to control (0 ng/mL)

to eliminate microplate reader variations.

Statistical analysis

Results are expressed as mean±standard error of the mean (SEM). Experimental points were

typically performed in triplicate with a minimum of three independent experiments (n = 3).

Statistical comparisons between control and experimental groups was by ANOVA in conjunc-

tion with a Dunnett’s post-hoc test for multiple comparisons. A value of �P�0.05 versus control

was considered significant. A Student’s t-test was also routinely employed for pairwise com-

parisons (δP�0.05).

Results

The current paper presents a detailed analyte profile of how RANKL elicits osteoblastic activa-

tion within vascular cells, adding greater depth to an earlier paper on this subject by our group

[12]. Moreover, within this context, a central objective of the current paper was to address the

specific hypothesis that TRAIL can elicit anti-calcific effects through blockade of RANKL

action. A panel of analytes intrinsic to osteoblastic signalling was assayed and an overview of

findings (many of which are novel) is highlighted in Table 1.

It should be noted that receptors for RANKL (RANK) and TRAIL (DCR1, DCR2, DR4, and

DR5) were all expressed at the mRNA level in both cell types (data not shown). Moreover, via-

bility testing was incorporated into all studies with>90% viability routinely confirmed for the

highest concentrations of RANKL and TRAIL tested (data not shown).

Given the high volume and diversity of data contained within Table 1, we have decided for

reasons of narrative focus to selectively highlight results for just one characteristic target within

HAEC (BMP-2) and HASMC (OPG) mono-culture studies. In this respect, HAEC-derived

BMP-2 has previously been shown to cause osteoblastic activation of underlying HASMCs

[12], whilst HASMCs are a major producer of anti-calcific OPG within the vessel wall. For our

Table 1. Effect of RANKL±TRAIL (72 hr) upon key osteoblastic targets within HAEC and HASMC mono-cultures, as well as HAEC:HASMC co-

cultures.

Target Sample Type HAEC HASMC HAEC:HASMC

R T R + T R T R + T R T R + T

BMP-2 mRNA n.c. n.c. n.c. n.c. # n.c. n.c. # n.c.

Cellular Protein " n.c. " " n.c. n.c. n.c. n.c. n.c.

Released Protein " n.c. n.c. n.c. n.c. n.c. " n.c. n.c.

OPG mRNA - - - # n.c. # # n.c. n.c.

Cellular Protein n.c. " n.c. " " " " n.c. n.c.

Released Protein n.c. " n.c. # n.c. # # n.c. #

ALP mRNA n.c. n.c. - n.c. n.c. n.c. " # n.c.

Activity " # # " n.c. " " n.c. n.c.

Runx2 mRNA n.c. n.c. - " # n.c. n.c. n.c. n.c.

Sox9 mRNA - - - n.c. n.c. n.c. " n.c. n.c.

Key: ALP, alkaline phosphatase; BMP-2, bone morphogenetic protein-2; OPG, osteoprotegerin; R, 25 ng/mL RANKL; Runx2, runt-related transcription

factor 2; Sox9, sex-determining region-Y box 9; T, 5 ng/mL TRAIL; ", increase; #, decrease; n.c. no change;—not determined; Arrows reflect direction of

change relative to untreated control.

https://doi.org/10.1371/journal.pone.0188192.t001
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co-culture studies however, we present a broader analysis to highlight the influence of RANKL

and TRAIL on several key factors (OPG, ALP, Runx2, Sox9).

Direct effects of RANKL±TRAIL on HAEC BMP-2 levels

In initial studies, the effects on BMP-2 expression and release following HAEC exposure to

RANKL (0–25 ng/mL, 72 hr) were assayed. RANKL had no effects on BMP-2 mRNA levels

(Fig 1A) and only moderate effects on BMP-2 protein levels (Fig 1B). Most notably however,

RANKL was observed to increase BMP-2 release from HAECs in a dose-dependent manner

(Fig 1C). Furthermore, inclusion of TRAIL at 5 ng/mL was found to completely block the

effects of RANKL on BMP-2 release from HAECs, whilst simultaneously increasing intracellu-

lar accumulation of BMP-2 (Fig 1B and 1C).

Fig 1. Direct effects of RANKL±TRAIL on BMP-2 levels in HAECs. HAECs were treated for 72 hr with

RANKL (0–25 ng/mL) in the absence and presence of TRAIL (5 ng/mL) and then analyzed by qPCR for (A)

BMP-2 mRNA. Cells and conditioned media were also harvested for ELISA analysis of (B) BMP-2 cellular

protein and (C) released BMP-2, respectively. *P�0.05 versus 0 ng/mL RANKL; δP�0.05 versus

corresponding 5 and 25 ng/mL RANKL treatments.

https://doi.org/10.1371/journal.pone.0188192.g001
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Direct effects of RANKL±TRAIL on HASMC OPG levels

The effects on OPG expression and release following HASMC exposure to RANKL

(0–25 ng/mL, 72 hr) were investigated. RANKL decreased OPG mRNA levels (Fig 2A). It also

increased cellular OPG protein levels in HASMCs in a dose-dependent manner, whilst

decreasing OPG release (Fig 2B and 2C). Inclusion of 5 ng/mL TRAIL had no effect on

Fig 2. Direct effects of RANKL±TRAIL on OPG levels in HAECs. HAECs were treated for 72 hr with RANKL

(0–25 ng/mL) in the absence and presence of TRAIL (5 ng/mL) and then investigated by qPCR for (A) OPG mRNA.

Cells and conditioned media were also harvested for ELISA analysis of (B) OPG cellular protein and (C) released

OPG, respectively. *P�0.05 versus 0 ng/mL RANKL (or control); δP�0.05 versus 25 ng/mL RANKL.

https://doi.org/10.1371/journal.pone.0188192.g002
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RANKL-induced changes in either OPG mRNA or release. However, it appeared to prevent

RANKL-induced increases in cellular OPG protein (when baseline effects of 5 ng/mL TRAIL

are taken into account) (Fig 2B).

Paracrine effects of RANKL±TRAIL on HASMC osteoblastic activation in

a co-culture model

A transwell co-culture model comprising HAECs in the luminal compartment and HASMCs

in the subluminal compartment was set up (Fig 3). HAECs were then treated with RANKL

(0–25 ng/mL, 72 hr) and their subsequent paracrine effect upon osteoblastic signalling within

the underlying HASMCs was investigated. RANKL treatment of HAECs decreased HASMC

OPG mRNA levels and release in a dose-dependent manner, whilst increasing intracellular

HASMC OPG protein levels (Fig 4A–4C). Importantly, inclusion of 5 ng/mL TRAIL with

RANKL in the HAEC compartment completely reversed the RANKL-induced changes to

both OPG mRNA and intracellular protein levels within the underlying HASMC layer (Fig 4A

and 4B).

In addition to OPG, other osteoblastic events in HASMCs were examined. RANKL treat-

ment of HAECs dose-dependently increased HASMC ALP mRNA and enzymatic activity lev-

els (Fig 5A and 5B), as well as Sox9 (but not Runx2) mRNA levels (Fig 6A and 6B).

Importantly, inclusion of 5 ng/mL TRAIL with RANKL in the HAEC compartment

completely reversed the RANKL-induced changes to both ALP (Fig 5A and 5B) and Sox9

(Fig 6B) within the underlying subluminal HASMC layer.

Discussion

Vascular calcification (VC) is a major risk factor for elevated CV morbidity and mortality asso-

ciated with aging and systemic diseases (e.g. diabetes mellitus, chronic kidney disease). Under-

standably, a deeper knowledge of the mechanisms underpinning VC development is essential

if therapeutic interventions are to be devised. The pivotal involvement of RANKL, OPG and

TRAIL within osteoblastic events leading to VC, regulatory proteins known to be active within

the vasculature, has been highlighted within the scientific literature [for review, see 8],

although much still remains to be discovered about their integrative roles. In the present

study, we set out to broaden our fundamental knowledge of how RANKL influences osteoblas-

tic signalling at the immediate endothelial and smooth muscle cell levels, as well as across a

more physiologically relevant paracrine co-culture model of these two cell types. Moreover, we

test the hypothesis that key osteoblastic signalling events promoted in vascular cells by

Fig 3. Schematic of the HAEC:HASMC transwell co-culture model. HAECs within the luminal compartment were

treated for 72 hr with RANKL (0–25 ng/mL) in the absence and presence of TRAIL (5 ng/mL). Within the subluminal

compartment, HASMCs were then analyzed for key targets (OPG, ALP, Runx2, Sox9, BMP-2.

https://doi.org/10.1371/journal.pone.0188192.g003

TRAIL attenuates RANKL actions in vascular cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0188192 November 16, 2017 9 / 19

https://doi.org/10.1371/journal.pone.0188192.g003
https://doi.org/10.1371/journal.pone.0188192


RANKL can be attenuated by TRAIL. In support of this hypothesis, a growing body of evi-

dence now points to the vasoprotective effects and therapeutic benefits of TRAIL. Moreover,

recent in vivo studies have demonstrated how TRAIL deficiency can lead to accelerated calcifi-

cation in ApoE-/- mice [25], whilst earlier in vitro studies in human and murine pre-osteoclast

cells have reported on the ability of TRAIL to counteract RANKL-mediated signalling [26,27].

In initial experiments, we investigated the direct effects of RANKL on HAECs in mono-

culture with particular focus on BMP-2, a pro-osteogenic protein known to elicit osteoblastic

activation in underlying HASMCs [1,12]. RANKL treatment of HAECs elevated BMP-2

Fig 4. Effects of RANKL±TRAIL on HASMC OPG levels within a HAEC:HASMC co-culture model.

HAECs within the luminal compartment were treated for 72 hr with RANKL (0–25 ng/mL) in the absence and

presence of TRAIL (5 ng/mL). Subluminal HASMCs were then analyzed by qPCR for (A) OPG mRNA.

Subluminal HASMCs and conditioned media were also harvested for ELISA analysis of (B) OPG cellular

protein and (C) released OPG, respectively. *P�0.05 versus 0 ng/mL RANKL (or control); δP�0.05 versus

corresponding 5 and 25 ng/mL RANKL treatments.

https://doi.org/10.1371/journal.pone.0188192.g004
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cellular levels (slightly) and BMP-2 release (substantially). By contrast, there was no significant

effect of RANKL on BMP-2 mRNA expression. In support of our hypothesis, co-incubation of

HAECs with TRAIL completely blocked the RANKL-induced release of BMP-2, but not the

RANKL-induced elevation in cellular concentrations of BMP-2 (in fact, cellular concentra-

tions of BMP-2 actually rose slightly). Thus, we suspect that the blockade of RANKL-induced

BMP-2 secretion by TRAIL may be causing an accumulation of BMP-2 within the cell.

Interestingly, separate control HAEC experiments demonstrated how TRAIL could dose-

dependently increase the expression and release of OPG (S1 Fig), a decoy receptor for

both RANKL and TRAIL. Given the statistically negligible levels of OPG release induced by

Fig 5. Paracrine effects of RANKL±TRAIL on HASMC ALP levels within a HAEC:HASMC co-culture model. HAECs within the

luminal compartment were treated for 72 hr with RANKL (0–25 ng/mL) in the absence and presence of TRAIL (5 ng/mL). Within the

subluminal compartment, HASMCs were then harvested and analyzed for (A) ALP mRNA and (B) ALP enzymatic activity by qPCR

and ELISA, respectively. *P�0.05 versus 0 ng/mL RANKL (or control); δP�0.05 versus 25 ng/mL RANKL.

https://doi.org/10.1371/journal.pone.0188192.g005
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5 ng/mL TRAIL (the concentration routinely used in our co-incubation studies with RANKL),

it is unlikely that any attenuation of RANKL action by TRAIL observed in these studies can be

attributed to elevated RANKL inactivation arising from induced release of OPG decoy recep-

tor. It is also worth noting that, to our knowledge, there are no existing papers proposing a

mechanism for TRAIL-dependent blockade of RANKL action in endothelial cells. One earlier

study by Osako and co-workers has demonstrated that estrogen, acting through estrogen

receptor alpha, can block RANKL-mediated production of BMP-2 in HAECs via a mechanism

involving dephosphorylation of SMAD-1/5/8 and increased expression of the calcification

inhibitor, matrix Gla protein (MGP) [13]. There is however no current evidence within the lit-

erature linking TRAIL action to these signalling pathways within the vasculature.

Fig 6. Paracrine effects of RANKL±TRAIL on HASMC osteoblastic transcription factors within a HAEC:HASMC co-culture

model. HAECs within the subluminal compartment were treated for 72 hr with RANKL (0–25 ng/mL) in the absence and presence

of TRAIL (5 ng/mL). Within the subluminal compartment, HASMCs were then analyzed by qPCR for (A) Runx2 and (B) Sox9

mRNA. *P�0.05 versus 0 ng/mL RANKL (or control); δP�0.05 versus 25 ng/mL RANKL.

https://doi.org/10.1371/journal.pone.0188192.g006
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We next investigated the direct effects of RANKL on HASMCs with particular focus on

OPG, an anti-calcific ligand produced and released in high quantities by HASMCs. We noted

that RANKL treatment of HASMCs decreased OPG mRNA expression and release. These

novel findings indicate how the osteoblastic effects of RANKL in HASMCs may possibly be

achieved in-part through suppression of the release of its endogenous decoy receptor (and

most likely also explain the parallel OPG intracellular accumulation). This conclusion is con-

sistent with the recent work of Callegari et al., who show that RANKL-induced calcification is

enhanced in murine VSMCs isolated from OPG-/- ApoE-/- mice relative to WT mice [30], and

also of Panizo et al., who demonstrate how the osteoblastic effects of RANKL in VSMCs can be

abolished by co-incubation with exogenous OPG [10]. Importantly, co-incubation of

HASMCs with TRAIL had no effect on RANKL-induced suppression of OPG, nor indeed did

TRAIL have any effect on RANKL-induced increases in activation of ALP (Table 1) or NF-κB

(data not shown) in HASMCs. Also noteworthy from this series of experiments, RANKL treat-

ment of HASMCs was seen to increase OPG cellular concentrations, a phenomenon that

could be blocked by co-incubation of cells with TRAIL. In our view, it is unlikely that this

effect of TRAIL is attributable to either increased OPG release (Fig 2C) or decreased OPG

mRNA translation (Fig 2B). It may be possible however that the specific combination of

RANKL with TRAIL may be increasing ubiquitination and proteasomal turnover of OPG pro-

tein within the cell, thereby decreasing RANKL-induced cellular OPG levels.

In order to more accurately recapitulate in vitro the paracrine signalling axis that exists

within the vessel wall between endothelial and smooth muscle cells, we next investigated how

RANKL treatment of HAECs could influence osteoblastic events within underlying HASMCs

using a non-contact transwell co-culture model. In this respect, RANKL treatment of HAECs

was shown to elicit a range of osteoblastic responses in underlying HASMCs, including reduc-

tion in OPG levels coupled with elevations in ALP and Sox9 (a chondrocytic differentiation

factor that has been shown to occur in VSMC calcification, and that is associated with many of

the same gene/protein alterations associated with osteogenic differentiation [31–33]). Most

importantly for our hypothesis, these HASMC responses could all be completely blocked by

co-incubation of RANKL with TRAIL in the HAEC compartment. Moreover, there was no

evidence of significant RANKL/TRAIL diffusion from the luminal to subluminal compart-

ments across the endothelial monolayer. Our findings with co-culture therefore clearly support

our hypothesis and highlight for the first time the ability of TRAIL to directly counteract spe-

cific signalling actions of RANKL particularly at the endothelial cell level, with putative conse-

quences for osteoblastic activation in the underlying smooth muscle cells. It can be noted that

the application of co-culture models to successfully demonstrate the paracrine contribution of

various cell types to VSMC calcification has been highlighted previously [34,35]. In particular,

the importance of paracrine signalling is also highlighted in a recent paper by Davenport et al.
[12], who showed that conditioned media harvested from the subluminal aspect of RANKL-

treated HAECs, when incubated with independent HASMC reporter cultures, led to an

increase in ALP levels in HASMCs. These authors also demonstrated that this effect could be

blocked by noggin, a specific neutralizing ligand for the released BMP-2 present within the

HAEC conditioned media. In this respect, our current paper further reinforces the physiologi-

cal significance of this BMP-2 observation made by Davenport et al. by demonstrating that the

RANKL-induced release of BMP-2 from HAECs could be completely blocked by TRAIL.

Moreover, in separate investigations we have shown how treatment of HASMCs with recombi-

nant BMP-2 can in-turn induce expression of a range of osteogenic markers such as ALP,

Sox9, and Runx2 (S2 Fig). Furthermore, we have demonstrated using our HAEC:HASMC co-

culture model that when HAECs are treated with RANKL, the expected induction of underly-

ing HASMC ALP levels can be almost completely blocked by inclusion of BMP-2-neutralizing

TRAIL attenuates RANKL actions in vascular cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0188192 November 16, 2017 13 / 19

https://doi.org/10.1371/journal.pone.0188192


noggin within the subluminal compartment (S3 Fig). These data have led us to propose that

TRAIL can block key signalling actions of RANKL on endothelial cells, including BMP-2

release, resulting in attenuation of its associated osteogenic signalling actions upon underlying

smooth muscle cells. Whilst beyond the scope of the current paper, a deeper clarification of

this paracrine signalling relationship constitutes an ongoing goal of this research, with our pre-

liminary studies clearly pointing to the ability of TRAIL to block RANKL-dependent activation

of the non-canonical NF-κB/p52 pathway at the endothelial cell level (data not shown).

Whilst our general focus in this paper has been the osteoblastic signalling that ultimately

leads to calcification, considerable efforts were also made to investigate the impact of RANKL

(±TRAIL) on actual ‘end-point’ calcification levels in our HASMCs. In initial experiments, β-

glycerophosphate treatment was found to induce HASMC osteoblastic signalling (S4 Fig), con-

firming the responsiveness of our cells to an established mineralizing stimulus [36]. Moreover,

when HASMCs were incubated in osteoblastic differentiation medium for 21 days (S5 Fig), we

noted the characteristic activation of early calcific markers such as ALP and bone sialoprotein

(BSP), in conjunction with the suppression of smooth muscle alpha 2 actin (ACTA2) and

transgelin (TAGLN) [37,38] (S1 Supplementary Methods). Following 21 days of osteoblastic

differentiation however, we did not see activation of osteocalcin (OCN), a late-stage calcifica-

tion marker in VSMCs and osteoblasts that is closely linked to the mineralisation process

[39–41] and unsurprisingly therefore, did not see positive alizarin red staining for calcium in

our differentiated HASMCs (S7A Fig), even with RANKL treatment. By way of a positive

methodological control, parallel incubation of mouse MC3T3-E1 pre-osteoblasts in osteoblas-

tic differentiation medium for 21 days induced significant elevation in levels of all signalling

markers (S6 Fig) and yielded positive alizarin red staining for calcium deposition (S7 Fig)

(S1 Supplementary Methods). We note previous studies that have achieved end-point calcifica-

tion and positive alizarin red staining in VSMCs have specifically employed ‘calcifying’

VSMCs that have either been clonally selected for the mineralizing phenotype [39] or were iso-

lated directly from calcified vessels [40] with subsequent multi-passage culturing in high cal-

cium medium. In this respect, the apparent lack of end-point calcification in our HASMC

cultures after 21 days’ of osteoblastic differentiation may be attributable to a combination of

culture heterogeneity and our deliberate exclusion of calcium from the standard HASMC cul-

ture medium. To expand further upon this conclusion, it is noteworthy that the issue of culture

heterogeneity has previously been raised by Olesen et al. in their recent thorough exploration

of VC in VSMCs, wherein they propose that calcium deposition is an “unreliable endpoint”

with a high degree of variability between vascular cell donors [42]. Moreover, the use of cal-

cium- and phosphate-supplemented osteogenic media to help differentiate VSMCs towards

end-point calcium deposition can be regarded as a potential confounding factor within experi-

ments as these elements can directly induce mineralization, thereby potentially obscuring the

pro-calcific effects of other agents under investigation (e.g. RANKL).

In summary, the present study has comprehensively profiled a broad range of osteoblastic

signalling effects of RANKL in HAECs and HASMCs using both mono- and co-culture mod-

els, adding fresh detail to an earlier study on this subject by our group [12] and demonstrating

that RANKL can act on both cell types either directly or via paracrine signalling axes. Within

this context, we also present clear evidence that TRAIL can block key RANKL signalling

effects, particularly at the endothelial cell level, with consequences for underlying smooth mus-

cle cells. To our knowledge, this is the first time this specific inhibitory relationship between

RANKL and TRAIL has been investigated and confirmed within vascular cell models, provid-

ing fresh evidence of TRAIL’s vasoprotective potential.
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Supporting information

S1 Fig. Effects of TRAIL on calcification signals in HAECs. HAECs were treated for 72 hr

with TRAIL (0–50 ng/mL) and analyzed by ELISA for OPG levels in conditioned media (A)

and in cell lysates (B). �P�0.05 versus 0 ng/mL TRAIL.

(TIF)

S2 Fig. Effects of BMP-2±Noggin on osteoblastic markers in HASMCs. Cells were treated

for 72 hr with BMP-2 (5 ng/mL) in the absence and presence of Noggin (100 ng/mL), and then

analyzed by qPCR for (A) ALP, (B) Sox9, and (C) Runx2 mRNA. �P�0.05 versus 0 ng/mL

BMP-2 (or control). δP�0.05 versus 5 ng/mL BMP-2. Note: Recombinant human BMP-2 (Cat-

alog Number: PHC7145) was sourced from ThermoFisher Scientific (Waltham, MA, USA).

Recombinant human Noggin (Catalog Number: 6057-NG) was sourced from R&D Systems

(Minneapolis, MN, USA).

(TIF)

S3 Fig. Effects of RANKL±Noggin on HASMC ALP levels within a HAEC:HASMC co-cul-

ture model. HAECs within the luminal compartment were treated for 72 hr with RANKL (0–

25 ng/mL) in the absence and presence of Noggin (100 ng/mL). Within the subluminal com-

partment, HASMCs were then analyzed by qPCR for (A) ALP mRNA, whilst subluminal con-

ditioned media was harvested and analyzed for (B) ALP enzymatic activity. �P�0.05 versus 0

ng/mL RANKL (or control); δP�0.05 versus corresponding 5 or 25 ng/mL RANKL.

(TIF)

S4 Fig. Effects of β-glycerophosphate on osteoblastic marker levels in HASMCs. Cells were

treated for 72 hr with β-glycerophosphate (10 mM) and then analyzed by qPCR for (A) ALP,

(B) BMP-2, (C) Runx2 and (F) Sox9 mRNA. HASMCs were also harvested and analyzed for

(D) ALP activity and (E) BMP-2 levels using enzyme assay and ELISA, respectively. �P�0.05

versus 0 mM β-glycerophosphate.

(TIF)

S5 Fig. Effects of osteoblastic differentiation on marker levels in HASMCs. Cells were

treated for 21 days with either standard media or osteoblastic differentiation mediaγ and then

analyzed by qPCR for (B) BSP, (C) OCN, (D) ACTA2 and (E) TAGLN mRNA. HASMCs were

also harvested and analyzed for (A) ALP enzymatic activity. �P�0.05 versus Undifferentiated.

Key: BSP, bone sialoprotein; OCN, osteocalcin; ACTA2, smooth muscle alpha 2 actin;

TAGLN, transgelin. γOsteoblastic differentiation media details: Minimum essential medium

eagle (Sigma-Aldrich, M8042) supplemented with 0.292 g/L L-glutamine (Sigma-Aldrich,

G6392), 100 nM dexamethasone (Sigma-Aldrich, D4902), 50 μM ascorbic acid 2-phosphate

(Sigma-Aldrich, 49752), 10 mM β-glycerophosphate (Sigma-Aldrich, G9422), 10% FBS

(Sigma-Aldrich, F6178) and 1% Pen/Strep (Sigma-Aldrich, P4333).

(TIF)

S6 Fig. Effects of osteoblastic differentiation on marker levels in mouse MC3T3-E1 pre-

osteoblasts. Cells were treated for 21 days with either standard media or osteoblastic differen-

tiation media and then analyzed by qPCR for (A) BSP, (B) ALP, (C) Sox9, (D) OCN and (E)

Runx2 mRNA. Conditioned media was also harvested and analyzed for (F) ALP enzymatic

activity. �P�0.05 versus Undifferentiated. γOsteoblastic differentiation media details: As out-

lined in S5 Fig above.

(TIF)
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S7 Fig. Effects of osteoblastic differentiation on calcification levels in mouse MC3T3-E1

pre-osteoblasts. Cells were treated for 21 days with either standard media or osteoblastic dif-

ferentiation media� and then analyzed by alizarin red staining for calcium deposition. Light

microscopy showing alizarin red staining levels in MC3T3-E1 (but not in HASMCs) under

10X magnification (A) and for MC3T3-E1 cells in 6-well plates (B). Extraction of alizarin red

dye from undifferentiated and differentiated MC3T3-E1 cells and quantitative spectroscopic

analysis is also shown in the histogram (B, lower). �P�0.05 versus Undifferentiated. γOsteo-

blastic differentiation media details: As outlined in S5 Fig above.

(TIF)

S1 Supplementary Methods. This includes methods specifically associated with supporting

figures (S5–S7 Figs) and includes culture of MC3T3-E1 pre-osteoblasts, alizarin red stain-

ing protocols, and qPCR primer sequences for human (BSP, OCN, ACTA2, TAGLN) and

murine (BSP, OCN) calcification markers.

(PDF)
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