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Abstract
There are many instances in genomics data analyses where measurements are
made on a multivariate response. For example, alternative splicing can lead to
multiple expressed isoforms from the same primary transcript. There are
situations where differences (e.g. between normal and disease state) in the
relative ratio of expressed isoforms may have significant phenotypic
consequences or lead to prognostic capabilities. Similarly, knowledge of single
nucleotide polymorphisms (SNPs) that affect splicing, so-called splicing
quantitative trait loci (sQTL) will help to characterize the effects of genetic
variation on gene expression. RNA sequencing (RNA-seq) has provided an
attractive toolbox to carefully unravel alternative splicing outcomes and
recently, fast and accurate methods for transcript quantification have become
available. We propose a statistical framework based on the
Dirichlet-multinomial distribution that can discover changes in isoform usage
between conditions and SNPs that affect relative expression of transcripts
using these quantifications. The Dirichlet-multinomial model naturally accounts
for the differential gene expression without losing information about overall
gene abundance and by joint modeling of isoform expression, it has the
capability to account for their correlated nature. The main challenge in this
approach is to get robust estimates of model parameters with limited numbers
of replicates. We approach this by sharing information and show that our
method improves on existing approaches in terms of standard statistical
performance metrics. The framework is applicable to other multivariate
scenarios, such as Poly-A-seq or where beta-binomial models have been
applied (e.g., differential DNA methylation). Our method is available as a
Bioconductor R package called DRIMSeq.
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            Amendments from Version 1

In version 2 of the manuscript, we have reworded sections in the 
Introduction to clarify the scope of existing methods, with respect 
to the term ‘differential splicing’. We have added additional 
analyses for differential splicing analyses, to better understand 
how the null P-value distributions compare across different 
simulation scenarios and dispersion estimators. For the detected 
tuQTLs, we added an analysis with respect to enrichment of 
splicing-related features. 

See referee reports

REVISED

Introduction
With the development of digital high-throughput sequencing  
technologies, the analysis of count data in genomics has become 
an important theme motivating the investigation of new, more  
powerful and robust approaches that handle complex overdisper-
sion patterns while accommodating the typical small numbers of 
experimental units.

The basic distribution for modeling univariate count responses is 
the Poisson distribution, which also approximates the binomial 
distribution. One important limitation of the Poisson distribution 
is that the mean is equal to the variance, which is not sufficient 
for modeling, for example, gene expression from RNA sequencing 
(RNA-seq) data where the variance is higher than the mean due to 
technical sources and biological variability1–5. A natural extension 
of the Poisson distribution that accounts for overdispersion is the 
negative-binomial distribution, which has been extensively studied 
in the small-sample situation and has become an essential tool in 
genomics applications1–3.

Analogously, the fundamental distribution for modeling  
multivariate count data is the multinomial distribution, which mod-
els proportions across multiple features. To account for overdisper-
sion, the multinomial can be extended to the Dirichlet-multinomial 
(DM) distribution6. Because of its flexibility, the DM distribu-
tion has found applications in forensic genetics7, microbiome data  
analysis8, the analysis of single-cell data9 and for identifying 
nucleosome positions10. Another extension of the multinomial is  
the Dirichlet negative multinomial distribution11, which allows  
modeling of correlated count data and was applied in the analy-
sis of clinical trial recruitment12. Notably, the beta-binomial  
distribution, such as those used in differential methylation from 
bisulphite sequencing data13–15, represent a special case of the DM.

Genes may express diverse transcript isoforms (mRNA variants) 
as a consequence of alternative splicing or due to the differences 
in transcription start sites and polyadenylation sites16. Hence, gene 
expression can be viewed as a multivariate expression of transcripts 
or exons and such a representation allows the study of not only the 
overall gene expression, but also the expressed variant composi-
tion. Differences in the relative expression of isoforms can have 
significant phenotypic consequences and aberrations are associated 
with disease17,18. Thus, biologists are interested in using RNA-seq 
data to discover differences in transcript usage between conditions 
or to study the specific molecular mechanisms that mediate these 

changes, for example, alternative splice site usage. In general terms, 
we collect all these together under the term “differential splicing” 
(DS)19.

Alternative splicing is a process regulated by complex protein-RNA 
interactions that can be altered by genetic variation. Knowledge 
of single nucleotide polymorphisms (SNPs) that affect splicing, 
known as splicing quantitative trait loci (sQTL), can help to charac-
terize this layer of regulation.

In this article, we propose the DM distribution to model relative 
usage of isoforms. The DM model treats transcript expression as 
a multivariate response and allows for flexible small-sample esti-
mation of overdispersion. We address the challenge of obtaining  
robust estimates of the model parameters, especially dispersion, 
when only a small number of replicates is available by apply-
ing an empirical Bayes approach to share information, similar to 
those proven successful in negative-binomial frameworks1,20. In  
particular, weighted likelihood is used to moderate the gene-wise 
dispersion toward a common or trended value.

The Dirichlet-multinomial framework, implemented as a  
Bioconductor R package called DRIMSeq, is applicable to both 
differential transcript usage (DTU) analysis between conditions 
and transcript usage quantitative trait loci (tuQTL) analysis. It 
has been evaluated and compared to the current best methods in 
extensive simulations and in real RNA-seq data analysis using 
transcript and exon counts, highlighting that DRIMSeq performs 
best with transcript counts. Furthermore, the framework can be 
applied to other types of emerging multivariate genomic data, such 
as PolyA-seq where the collection of polyadenylated sites for a 
given gene are measured21 and to settings where the beta-binomial 
is already applied (e.g., differential methylation, allele-specific 
differential gene expression).

Approaches to DS and sQTL analyses
RNA-seq has provided an attractive toolbox to unravel alternative 
splicing outcomes. There are various methods designed explic-
itly to detect DS based on samples from different experimental 
conditions19,22,23. Independently, a set of methods was developed 
for detecting genetic variation associated with changes in splicing 
(sQTLs). While sQTL detection represents a different application, 
it is essentially DS between groups defined by genotypes. In the 
following overview, we do not distinguish between applications 
but rather between the general concepts used to detect differences 
in splicing.

DS can be studied in three main ways: as differential transcript 
usage (DTU) or, in a more local context, as differential exon 
or exon junction usage (DEU) or as specific splicing events  
(e.g., exon skipping), and all have their advantages and  
disadvantages. A survey of the main methods can be found in 
Table S1 (Supplementary File). From the quantification perspec-
tive, exon-level abundance estimation is straightforward since it 
is based on counting read-region overlaps (e.g., featureCounts24). 
Exons from different isoforms may have different boundaries, thus 
the authors of DEXSeq25 quantify with HTSeq26 non-overlapping 
windows defined by projecting all exons to the linear genome. 
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However, this strategy does not utilize the full information from 
junction reads. Such reads are counted multiple times (in all exons 
that they overlap with), artificially increasing the total number of 
counts per gene and ignoring that junction reads support the iso-
forms that explicitly contain the combinations of exons spanned 
by these reads. This issue is captured in Altrans27, which quanti-
fies exon-links (exon junctions) or in MISO28, rMATS29, SUPPA30 
and SGSeq31, all of which calculate splicing event inclusion lev-
els expressed as percentage spliced in (PSI). Such events capture 
not only cassette exons but also alternative 3’ and 5’ splice sites, 
mutually exclusive exons or intron retention. GLiMMPS32 and 
Jia et al.33, with quantification from PennSeq34, use event inclu-
sion levels for detecting SNPs that are associated with differential  
splicing. However, there are (hypothetical) instances where  
changes in splicing pattern may not be captured by exon-level 
quantifications (Figure 1A in the paper by Monlog et al.35). 
Furthermore, detection of more complex transcript varia-
tions remains a challenge for exon junction or PSI methods (see 
Figure S5 in the paper by Ongen et al.27). Soneson et al.23 con-
sidered counting which accommodates various types of local  
splicing events, such as exon paths traced out by paired reads,  
junction counts or events that correspond to combinations of  
isoforms; in general, the default exon-based counting resulted  
in strongest performance for DS gene detection.

The above methods allow for detection of differential usage of 
local splicing features, which can serve as an indicator of differen-
tial transcript usage but often without knowing specifically which 
isoforms are differentially regulated. This can be a disadvantage 
in cases where knowing the isoform ratio changes is important, 
since isoforms are the ultimate determinants of proteins. Moreover, 
exons are not independent transcriptional units but building blocks 
of transcripts. Thus, the main alternative is to make a calculation 
of DS using isoform-level quantitations. A vast number of meth-
ods is available for gene isoform quantification, such as MISO28, 
BitSeq36, casper37, Cufflinks38, RSEM39, FlipFlop40 and more recent, 
extremely fast pseudoalignment-based methods, such as Sailfish41,  
kallisto42 and Salmon43. Additionally, Cufflinks, casper and  
FlipFlop allow for de novo transcriptome assembly. Recently, per-
formance of various methods was extensively studied44,45, including a 
webtool45 to allow further comparisons. Regardless of this progress, 
it remains a complex undertaking to quantify isoform expression 
from short cDNA fragments since there is a high degree of over-
lap between transcripts in complex genes; this is a limitation of the 
technology, not the algorithms. In the case of incomplete transcript 
annotation, local approaches may be more robust and can detect 
differential changes due to transcripts that are not in the catalog23,27.  
Nevertheless, DS at the resolution of isoforms is the ultimate 
goal within the DRIMSeq framework, and with the emergence of  
longer reads (fragments), transcript quantifications will become 
more accurate and methods for multivariate transcript abundances 
will be needed.

Whether the differential analysis is done at the transcript 
or local level, modeling and testing independently each  
transcript46,47 or exon ratio48 ignores the correlated structure of 

these quantities (e.g., proportions must sum to 1). Similarly, sepa-
rate modeling and testing of exon junctions (Altrans27) or splicing  
events (rMATS29, GLiMMPS32, Jia et al.33, Montgomery et al.49) of 
a gene leads to non-independent statistical tests, although the full  
effect of this on calibration (e.g., controlling the rate of false dis-
coveries) is not known. Nevertheless, with the larger number of  
tests, the multiple testing correction becomes more extreme. 
In sQTL analyses, this burden is even larger since there are  
many SNPs tested for each gene. There, the issue of  
multiple comparisons is usually accounted for by applying a per-
mutation scheme in combination with the false discovery rate  
(FDR) estimation27,32,35,46,48–50.

DEXSeq and voom-diffSplice4,5 undertake another approach, where 
the modeling is done per gene. DEXSeq fits a generalized linear 
model (GLM), assuming that (exonic) read counts follow the 
negative-binomial distribution. A bin is deemed differentially 
used when its corresponding group-bin interaction is significantly 
different. The exact details of voom-diffSplice are not published. 
Nevertheless, exons are again treated as independent in the 
gene-level model.

In contrast, MISO28, Cuffdiff38,51 and sQTLseekeR35 model alterna-
tive splicing as a multivariate response. MISO is designed for DS 
analyses only between two samples and does not handle replicates. 
Variability among replicates is captured within Cuffdiff via the 
Jensen-Shannon divergence metric on probability distributions of 
isoform proportions as a measure of changes in isoform relative 
abundances between samples. sQTLseekeR tests for the association 
between genotype and transcript composition, using an approach 
similar to a multivariate analysis of variance (MANOVA) without 
assuming any probabilistic distribution and Hellinger distance as 
a dissimilarity measure between transcript ratios. Very recently, 
LeafCutter52 gives intron usage quantifications that can be used for 
both DS analyses (also using the DM model) and sQTL analyses 
via a correlation-based approach with FastQTL50.

sQTLseekeR, Altrans, LeafCutter and other earlier methods for 
the sQTL analysis35,46–48 employ feature ratios to account for the 
overall gene expression. A potential drawback of this approach is 
that feature ratios do not take into account whether they are based 
on high or low expression, while the latter have more uncertainty in 
them. DRIMSeq naturally builds this in via the multinomial model.

Dirichlet-multinomial model for relative transcript 
usage
In the application of the DM model to DS, we refer to features of a 
gene. These features can be transcripts, exons, exonic bins or other 
multivariate measurable units, which for DS, contain information 
about isoform usage and can be quantified with (estimated) counts.

Assume that a gene has q features with relative expression defined 
by a vector of proportions π = (π

1
,…,π

q
), and the feature counts 

Y = (Y
1
, …, Y

q
) are random variables. Let y = (y

1
, …, y

q
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observed counts and 1
.jj

q
m y

=
=∑  Here, m is treated as an ancil-

lary statistic since it depends on the sequencing depth and gene 
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Detecting DTU and tuQTLs with the Dirichlet-multinomial 
model
Within DRIMSeq, the DM method can be used to detect the differ-
ential usage of gene features between two or more conditions. For 
simplicity, suppose that features of a gene are transcripts and the 
comparison is done between two groups. The aim is to determine 
whether transcript ratios of a gene are different in these two condi-
tions. Formally, we want to test the hypothesis H

0
 : π

1
 = π

2
 against 

the alternative H
1
 : π

1
 ≠ π

2
. For the convenience of parameter esti-

mation, we decide to use the DM parameterization with precision 
parameter γ

+
, which can take any non-negative value, instead of dis-

persion parameter θ, which is bounded to values between 0 and 1. 
Because our goal is to compare the proportions from two groups, 
γ

+
 is a nuisance parameter that gets estimated in the first step (see 

the following Section). Let l(π1, π2, γ+
) be the joint log-likelihood 

function. Assuming γ
+
=γ ^

+
, the maximum likelihood (ML) esti-

mates of π1, π2 are the solution of ( )
( )1 2
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d 1 2
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π π . Under the 

hypothesis H
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of 1 2
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. We test the null hypothesis using a  

likelihood ratio statistic of the form 
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which asymptotically follows the chi-squared distribution 2
–1qχ  

with q − 1 degrees of freedom. In comparisons across c groups, the 
number of degrees of freedom is (c − 1) × (q − 1). After all genes 
are tested, p-values can be adjusted for multiple comparisons with 
the Benjamini-Hochberg method.

In a DTU analysis, groups are defined by the design of an experi-
ment and are the same for each gene. In tuQTL analyses, the aim is 
to find nearby (bi-allelic) SNPs associated with transcript usage of 
a gene. Model fitting and testing is performed for each gene-SNP 
pair, and grouping of samples is defined by the genotype, typically 
translated into the number of minor alleles (0, 1 or 2). Thus, tuQTL 
analyses are similar to DTU analyses with the difference that 
multiple models are fitted and tested for each gene. Additional 
challenges to be handled in tuQTL analyses include a large number 
of tests per gene with highly variable allele frequencies (models) 
and linkage disequilibrium, which can be accounted for in the 
multiple testing corrections. As in other sQTL studies35,49,50, 
we apply a permutation approach to empirically assess the null 
distribution of associations and use it for the adjustment of nomi-
nal p-values (see Supplementary Note 2 in Supplementary File). 
For computational efficiency, SNPs within a given gene that exhibit 
the same genotypes are grouped into blocks. In this way, blocks 
define unique models to be fit, reducing computation and the 
degree of multiple testing correction.

Dispersion estimation with adjusted profile likelihood 
and moderation
Accurate parameter estimation is a challenge when only a small 
number of replicates is available. Following the edgeR strategy1,2,53, 
we propose multiple approaches for dispersion estimation, all based 
on the maximization and adjustment of the profile likelihood, since 
standard maximum likelihood (ML) is known to produce biased 
estimates as it tends to underestimate variance parameters by not 

expression, but not on the model parameters. The simplest way to  
model feature counts is with the multinomial distribution with  
probability function defined as: 

                                   
( )

=

 
= π 

 
∏

1
,jy

j

q

M
j

m
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y
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where the mean and the covariance matrix of Y are 𝔼(Y) = mπ and 
𝕍(Y) = diag(π) –ππT, respectively.

To account for overdispersion due to true biological variation 
between experimental units as well as technical variation, such 
as library preparation and errors in transcript quantification, we 
assume the feature proportions, Π, follow the (conjugate) Dirichlet 
distribution, with density function: 

		  ( )
( ) –1

11 ( )
j

j

q

qD
jjj

f
γ+

==

Γ γ
= π

Γ γ
∏ ,;π γ

∏
	       (2)

where γ
j
, j = 1, …, q are the Dirichlet parameters and + =

γ = γ∑ 1
.

q
jj  

The mean and covariance matrix of random proportions Π 
are 𝔼(Π) = γ/γ+

 = π and 𝕍(Π)={γ+diag(γ) − γγT}/{γ 2
+(γ

+ 
+ 1)},  

respectively. We can see that proportions Π are proportional to  
γ and their variance is inversely proportional to γ

+
, which is called 

the concentration or precision parameter. As γ
+
 gets larger, the  

proportions are more concentrated around their means.

We can derive the marginal distribution of Y by multiplying 
densities (1) and (2) and integrating over π. Then, feature counts  
Y follow the DM distribution6 with probability function defined  
as: 
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The mean of Y is unchanged at 𝔼(Y) = 𝔼{𝔼(Y|Π)} = 𝔼(mΠ) = 
mγ/γ

+
 = mπ, while the covariance matrix of Y is given by 𝕍(Y) = 

cm{diag(π) − ππT}, where c = (m+γ
+
)/(1+γ

+
) is an additional fac-

tor when representing the Dirichlet-multinomial covariance to the 
ordinary multinomial covariance. c depends on concentration 
parameter γ

+
 which controls the degree of overdispersion and is 

inversely proportional to variance of Y.

We can represent the DM distribution using an alternative param-
eterization: π = γ /γ+

 and θ = 1/(1 + γ
+
); then, the covariance of Y can 

be represented as 𝕍(Y) = n{diag(π) − ππT} {1 + θ(n − 1)}, where θ 
can be interpreted as a dispersion parameter. When θ grows (γ

+
 gets 

smaller), the variance becomes larger. From the knowledge of the 
gamma function, xΓ(x) = Γ(x + 1), we can write ( )
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Hence, the DM density function becomes: 
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such that for θ = 0, DM reduces to multinomial.
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allowing for the fact that other unknown parameters are estimated 
from the same data54,55.

In the DM model parameterization of our choice, we are interested 
in estimating the precision (concentration) parameter, γ

+
 (inverse 

proportional to dispersion θ). Hence, at this stage, proportions 
π1 and π2 can be considered nuisance parameters and the profile 
log-likelihood (PL) for γ+ can be constructed by maximizing the 
log-likelihood function with respect to proportions π1 and π2 for 
fixed γ

+
: 

	        ( ) ( )
1 2

ˆ ˆ; , , max , , , .PL l
,π π+ +γ = γ2 2y y1 1π π π π 	       (6)

The profile likelihood is then treated as an ordinary likeli-
hood function for estimation and inference about parameters of  
interest. Unfortunately, with large numbers of nuisance parameters, 
this approach can produce inefficient or even inconsistent esti-
mates54,55. To correct for that, one can apply an adjustment proposed 
by Cox and Reid56 and obtain an adjusted profile likelihood (APL): 

	 ( ) ( ) ( )+ +γ = γ
1

2
ˆ ˆ ˆ ˆ; , , ; , , – log det ,APL PL mI2 2y y1 1π π π π  

(7)

where det denotes determinant and I is the observed  
information matrix for π1 and π2. The interpretation of the cor-
rection term in APL is that it penalizes values of γ+ for which  
the information about π1 and π2 is relatively large. When data 
consists of many samples, one can use gene-wise dispersion  
estimates, i.e., the dispersion is estimated for each gene  
g = 1,…,G separately:

         ( ){ } ( ){ }ˆ ˆarg max arg max .g g
gAPL APL+ +γ = γ 1; , ,g g gy2π π        (8)

These estimates become more unstable as the sample size decreases. 
At the other extreme, one can assume a common dispersion for all 
genes and use all genes to estimate it:

                                  ( )
1

1
arg max .

G

g

g
gAPL

G +
=

  
 γ
  

∑                       (9)

Common dispersion estimates are more stable but the assumption 
of a single dispersion for all genes is rather strong, given that some 
genes are under tighter regulation than others57,58. Thus, moder-
ated dispersion is a trade-off between gene-wise and common 
dispersion and estimates are calculated with an empirical Bayes 
approach, which uses a weighted combination of the common and 
individual likelihood:

                 
( ) ( )

1

1
arg max

G

g

g g
g gAPL W APL

G
. .+ +

=

  
 γ + γ
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∑
        

(10)

If a dispersion-mean trend is present (see Figure S16, Figure S17, 
Figure S28 and Figure S29 in Supplementary File), as commonly 

observed in gene-level differential expression analyses1,3, one 
can apply shrinkage towards this trend instead of to the common 
dispersion:

                
( ) ( )1

arg max
g C

g g
g gAPL W APL

C
. ,+ +

∈

  
 γ + γ
  

∑
      

(11)

where C is a set of genes that have similar gene expression as 
gene g and W is a weight defining the strength of moderation (see 
Supplementary Note 1 for further details).

Estimation and inference: simulations from the 
Dirichlet-multinomial model
We first investigated the performance of the DM model and the 
approach for parameter estimation and inference in the case where 
only few replicates are available. We performed simulations that 
correspond to a two-group comparison with no DTU (i.e. null 
model) where feature counts were generated from the DM 
distribution with identical parameters in both groups. Simulations 
were repeated 50 times for 1000 genes. In these simulations, we 
can vary the overall expression (m), number of features (q), pro-
portions (prop) and sample size in one condition (n). Proportions 
follow a uniform or decaying distribution or are estimated based 
on kallisto transcripts or HTSeq exon counts from Kim et al. and 
Brooks et al. data (more details on these datasets below). In the 
first case, all genes have the same (common) dispersion, and in the 
second one, each gene has different (genewise) dispersion. Simu-
lations for evaluating the dispersion moderation are intended to 
better resemble a real dataset. For these instances (repeated 25 times 
for 5000 genes), genes have expression, dispersion and proportions 
that were estimated from the real data. See Supplementary Note 3 
for the additional details.

Figure 1A and Figure S1 confirm that using the Cox-Reid adjust-
ment (CR) improves the estimation (in terms of median absolute 
error and extreme error values) of the concentration parameter γ+ in 
comparison to raw profile likelihood (PL) estimates. Additionally, 
the median error of concentration estimates for Cox-Reid APL is 
always lower than for PL or maximum likelihood (ML) used in the 
dirmult package7 (Figure 1C, Figure S2). This translates directly 
into the inference performance where the CR approach leads to 
lower false positive (FP) rate than other approaches (Figure 1B, 
Figure S3).

Accurate estimates of dispersion do not always lead to expected 
control of FP rate. Notably, using the true concentration parameters 
in genes with many features (with decaying proportions) results in 
higher than expected nominal FP rates (Figure 1B, Figure S3 and 
Figure S6A). Meanwhile, for genes with uniform proportions, even 
with many features, the FP rate for true dispersion is controlled 
(Figure S3 and Figure S6B). Also, the Cox-Reid adjustment tends 
to underestimate the concentration (overestimate dispersion) for 
genes with many features and decaying proportions, especially 
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Figure 1. Results of two-group (3 versus 3 samples) DS analyses on data simulated from the DM null model. In the first scenario, 
all genes have the same (common) dispersion, and in the second one, each gene has a different (genewise) dispersion. All genes have 
expression equal to 1000 and 3 or 10 features with the same proportions estimated from kallisto counts from Kim et al. data set. For each of 
the scenarios, common, genewise, with and without moderation to common dispersion is estimated with maximum likelihood using the dirmult 
R package, the raw profile likelihood and the Cox-Reid APL. A: Absolute error of concentration γ+ estimates. B: False positive (FP) rate for 
the p-value threshold of 0.05 of the null two-group comparisons based on the likelihood ratio statistics. Dashed line indicates the 0.05 level. 
C: Median raw error of γ+ estimates. D: Distributions of p-values of the null two-group comparisons based on the likelihood ratio statistics. 
Additionally, results when true concentration estimates are used are indicated with the gray color.

for very small sample size (Figure 1C, Figure S2, Figure S5A, 
Figure S5E), which leads to accurate FP rate control not achieved 
even with the true dispersion (Figure S6A).

As expected, common dispersion estimation is effective when 
all genes indeed have the same dispersion, though this cannot be 
generally assumed in most real RNA-seq datasets (see results of 

simulations in the following section). In contrast, pure gene-wise 
estimates of dispersion lead to relatively high estimation error in 
small sample sizes (Figure 1A, Figure S1 and Figure S8). Thus, 
sharing information about concentration (dispersion) between 
genes by moderating the gene-wise APL is applied. This improves 
concentration estimation in terms of median error (Figure 1C and  
Figure S8) and by shrinking extremely large values (on the  
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boundary of the parameter space, see Figure S7) toward common 
or trended concentration. Therefore, moderated gene-wise esti-
mates lead to better control of the nominal FP rate (Figure 1B and  
Figure S10).

In these simulations, the overall best performance of the DM model 
is achieved when dispersion parameters are estimated with the  
Cox-Reid APL and the dispersion moderation is applied. This strat-
egy leads to p-value distributions that in most of the cases are closer 
to the uniform distribution (Figure 1D, Figure S4 and Figure S11).

Comparison on simulations that mimic real RNA-seq 
data
Next, we use the simulated data from Soneson et al.23, where 
RNA-seq reads were generated such that 1000 genes had isoform 
switches between two conditions of the two most abundant tran-
scripts. For each condition three replicates were simulated result-
ing in 3 versus 3 comparisons. Altogether, we summarize results 
for three scenarios: i) Drosophila melanogaster with no differential 
gene expression; ii) Homo sapiens without differential gene expres-
sion; iii) Homo sapiens with differential gene expression.

The aim of these analyses is to compare the performance of  
DRIMSeq against DEXSeq, which emerged among the top  

performing methods for detection of DTU from RNA-seq data23. 
For DRIMSeq, we consider different dispersion estimates: common, 
gene-wise with no moderation and with moderation-to-common 
and to-trended dispersion. We use the exonic bin counts provided  
by HTSeq (same input to the DEXSeq pipeline), and transcript counts 
obtained with kallisto. Additionally, we use HTSeq and kallisto 
counts that are re-estimated after the removal of lowly expressed 
transcripts (less than 5% in all samples) from the gene annota-
tion (pre-filtering) as proposed by Soneson et al.23 and kallisto fil-
tered counts that exclude the lowly expressed transcripts (also less 
than 5% in all samples). DRIMSeq returns a p-value per gene. To 
make results comparable, we used the module within DEXSeq that  
summarizes exon-level p-values to a gene-level adjusted p-value.

As expected, common dispersion estimates lead to worse perform-
ance (lower power and higher FDR) compared to gene-wise dis-
persions. DRIMSeq achieves the best performance with moderated 
gene-wise dispersion estimates, while the difference in performance 
between moderating to common or to trended dispersion is quite 
small, with moderated-to-trend dispersion estimates being slightly 
more conservative (Figure 2 and Figure S15).

As noted by Soneson et al.23, detecting DTU in human is harder 
than in fruit fly due to the more complex transcriptome of the first 

Figure 2. True positive rate (TPR) versus achieved false discovery rate (FDR) for three FDR thresholds (0.01, 0.05 and 0.1) obtained by 
DEXSeq and DRIMSeq. DRIMSeq was run with different dispersion estimation strategies: common dispersion and genewise dispersion with 
no moderation (genewise_grid_none), moderation to common dispersion (genewise_grid_common) and moderation to trended dispersion 
(genewise_grid_trended). Results presented for Drosophila melanogaster and Homo sapiens simulations with DTU (nonull) and no differential 
gene expression (node) using transcript counts from kallisto and exonic counts from HTSeq. Additionally, filtered counts (kallistofiltered5, 
htseqprefiltered5) are used. When the achieved FDR is smaller than the threshold, circles are filled with the corresponding color, otherwise, 
they are white.
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one; all methods have much smaller false discovery rate (FDR). 
Nevertheless, none of the methods manages to control the FDR at a 
given threshold in either of the simulations.

Annotation pre-filtering, suggested as a solution to mitigate high 
FDRs23, affects DEXSeq and DRIMSeq in a different way. For 
DEXSeq, it strongly reduces the FDR. For DRIMSeq, it increases 
power without a strong reduction of FDR. Moreover, the results 
for kallisto filtered and pre-filtered are almost identical (Figure S15 
and Figure S24), which means that the re-estimation step based on 
the reduced annotation is not necessary for kallisto when used with 
DRIMSeq or DEXSeq. Additionally, we have considered how other 
filtering approaches affect DTU detection.

From Figure S24, we can see that DS analysis based on transcript 
counts are more robust to different variations of filtering and indeed 
some filtering improves the inference. For exonic counts, filtering 
should be less stringent and the pre-filtering approach is the best 
performing strategy.

DRIMSeq performs well when coupled with transcript counts 
from kallisto. In the case when no filtering is applied to the data, it  
outperforms DEXSeq. When transcript counts are pre-filtered, both 
methods have very similar performance (Figure S15). For both 
differential engines, the performance decreases substantially with 
increasing number of transcripts per gene, with DRIMSeq hav-
ing slightly more power when genes have only a few transcripts  
(Figure S17). DRIMSeq has poor performance for the exonic  
counts in the human simulation, where achieved FDRs of more than 
50% are observed for an expected 5%; consequently, we recom-
mend the use of DRIMSeq on transcript counts only. On the other 
hand, the concordance of DRIMSeq and DEXSeq top-ranked genes 
is quite high and similar even for exonic counts (Figure S16).

The p-value distributions highlight a better fit of the DM model 
to transcript counts compared to exonic counts (it is more  
uniform with a sharp peak close to zero). Similarly, dispersion  
estimation gives better results for transcript counts (Figure S19 
and Figure S20). In particular, for exonic counts, a large number 
of genes have concentration parameter estimates at the boundary 
of the parameter space, unlike the situation for transcript counts  
(Figure S19 and Figure S20).

DS analyses on real datasets
To compare the methods further, we consider two public RNA-seq 
data sets. The first is the pasilla dataset59 (Brooks et al.). The aim 
was to identify genes regulated by pasilla, the Drosophila ortholog 
of mammalian splicing factors NOVA1 and NOVA2. In this experi-
ment, libraries were prepared from seven biologically independent 
samples: four control samples and three samples in which pasilla 
was knocked down. Libraries were sequenced using a mixture of 
single-end and paired-end reads as well as different read lengths. 
The second data set is from matched human lung normal and adeno-
carcinoma samples from six Korean female nonsmoking patients60, 
using paired-end reads (Kim et al.).

Both datasets have a more complex design than those used in the 
simulations; in addition to the grouping variable of interest, there 
are additional covariates to adjust for (e.g., library layout for the 

fruit fly data, patient identifier for the paired human study). In 
order to account for such effects, one should rather use a regres-
sion approach, which currently is not supported by DRIMSeq, but 
can be applied within DEXSeq’s GLM framework. To make the 
comparison fair, we fit multiple models. For the pasilla dataset, 
we compare four control samples versus three pasilla knock-down 
samples without taking into account the library layout (model full) 
as well as compare only the paired-end samples, which removes 
the covariate. To not diminish DEXSeq for its ability to fit more 
complex models, we run it using a model that does the four con-
trol versus three knock-down comparison with library layout as an 
additional covariate (model full 2). For the adenocarcinoma data, 
we do a two-group comparison of six normal versus six cancer 
samples (model full) and for DEXSeq, we fit an extra model that 
takes into account patient effects (model full 2). Additionally, we do 
so-called “mock” analyses where samples from the same condition 
are compared (model null), and the expectation is to detect no DS 
since it is a within-condition comparison (see Supplementary Note 5 
for the exact definition of these null models).

In the full comparisons with transcript counts, DRIMSeq calls 
similar or fewer DS genes than DEXSeq, and a majority of them 
are contained within the DEXSeq calls (Figure S26, Figure S27) 
showing high concordance between DRIMSeq and DEXSeq and 
slightly more conservative nature of DRIMSeq. Accounting for 
covariates in DEXSeq (model full 2) or performing the analysis on 
a subgroup without covariates (model full paired) results in more 
DS genes detected (Figure S28, Figure S29 and Figure S30).

In the ‘‘mock” analyses, as expected, both methods detect consid-
erably fewer DS genes, except in two cases. First, for the pasilla 
data (model null 3), where the two versus two control samples were 
from single-end library in one group and from paired-end library 
in the second group, leading to a comparison between batches in 
which both of the methods found more DS genes than in the com-
parison of control versus knock-down showing that the “batch” 
effect is very strong. Second, in the adenocarcinoma data (model 
null normal 1), where the two groups of individuals (each consist-
ing of three women) happened to be very distinct (Figure S25). 
Therefore, we do not include these two cases when referring to the 
null models.

Overall, in the full comparisons, there are more DS genes detected 
based on differential transcript usage than differential exon usage 
(Figure S26). For DEXSeq, this is also the case in the null compari-
sons, which shows that DEXSeq works better with exonic counts 
than with transcript counts. DRIMSeq, on the other hand, has better 
performance on transcript counts, for which it calls less DS genes 
in the null analysis than with exon counts. In particular, the p-value 
distributions under the null indicate that DM fits better to transcript 
counts than exon counts (Figure S14, Figure S31 and Figure S32).

Method comparisons based on real data are very challenging as 
the truth is simply not known. In this sense the pasilla data is very  
precious, as the authors of this study have validated alternative usage 
of exons in 16 genes using RT-PCR. Of course, these validations 
represent an incomplete truth, and ideally, large-scale independ-
ent validation would be needed to comprehensively compare the 
DTU detection methods. In Figure 3, Figure S33, Figure S34 and  
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Figure 3. Results of DS analysis on the pasilla dataset showing how many of the 16 validated genes are called by DRIMSeq and 
DEXSeq using different counting strategies and different models. On each curve, “X” indicates the number of DS genes detected for the 
FDR of 0.05. Model full - comparison of 4 control samples versus 3 knock-down. Model full paired - comparison of 2 versus 2 paired-end 
samples. Model full 2 - as model full but including the information about library layout (no results for DRIMSeq because currently, it is not able 
to fit models with multiple covariates).

Figure S35 again it is shown that DRIMSeq is slightly more con-
servative than DEXSeq. DRIMSeq performs poorly on exon-level 
but returns strong performance on transcript-level quantification 
(e.g., kallisto) and even outperforms DEXSeq when the sample size 
is very small (model full paired).

tuQTL analyses
To demonstrate the application of DRIMSeq to tuQTL analysis, we 
use the data from the GEUVADIS project46 where 465 RNA-seq 
samples from lymphoblastoid cell lines were sequenced, 422 of 
which were sequenced in the 1000 Genomes Project Phase 1. Here, 
we present the analysis of 91 samples corresponding to the CEU 
population and 89 samples from the YRI population. Expected 
transcript counts (obtained with Flux Capacitor) and genotype 
data were downloaded from the GEUVADIS project website. We 
choose to compare the performance of DRIMSeq with sQTLseekeR, 
because it is a very recent tool that performs well35, can be directly 
applied to transcript count data and models transcript usage as a 
multivariate outcome.

For both of the methods, we investigate only the bi-allelic SNPs 
with a minor allele present in at least five samples (minor allele fre-
quency approximately equal to 5%) and at least two alleles present 
in a population. Given a gene, we keep the SNPs that are located 
within 5 Kb upstream or downstream of the gene. We use the same 
pre-filtered counts in DRIMSeq and sQTLseekeR to have the same 
baseline for the comparison of the statistical engines offered by 
these packages. We keep the protein coding genes that have at least 
10 counts in 70 or more samples and at least two transcripts left 
after the transcript filtering, which keeps the one that has at least 
10 counts and proportion of at least 5% in 5 or more samples. The 
numbers of tested and associated genes and tuQTLs are indicated in 
Figure 4, Figure S38 and Figure S39.

In Figure 4A and Figure S40 we can see that the concordance 
between DRIMSeq and sQTLseekeR is quite high and reaches 75%. 
Nevertheless, there is considerable difference between the number 
and type of genes that are uniquely identified by each method. 
sQTLseekeR finds more genes with alternative splicing associated 
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Figure 4. Results of the tuQTL analysis on the CEU population from the GEUVADIS data. A: Concordance between sQTLseekeR 
and DRIMSeq. “X” indicates number of tuQTLs for FDR = 0.05. Panel B, C and D show characteristics of tuQTLs and genes detected by 
sQTLseekeR or DRIMSeq for FDR = 0.05. Values in brackets indicate numbers of tuQTLs or genes in a given set. Dark gray line corresponds 
to tuQTLs or genes that were identified by both of the methods (overlap). B: Distance to the closest exon of intronic tuQTLs. The light gray line 
(non_sqtl) corresponds to intronic tuQTLs that were not called by any of the methods. C: Distribution of mean gene expression for genes that 
are associated with tuQTLs. D: Distribution of the number of expressed transcripts for genes that are associated with tuQTLs. The light gray 
lines (all_genes) represent corresponding features for all the analyzed genes.

to genetic variation (Figure S38 and Figure S39), but these genes 
have fewer transcripts expressed and lower overall expression in 
comparison to genes detected by DRIMSeq (Figure 4C, Figure 4D,  
Figure S40C and Figure S40D). To further investigate character-
istics of detected tuQTLs, we measured enrichment of splicing-
related features as used in a previous comparison35. This includes 

the location of tuQTLs within exons, within splice sites, in the  
surrounding of GWAS SNPs and distance to the closest exon. 
tuQTLs detected by DRIMSeq show higher enrichment for all 
splicing related features (Table 1 and Figure 4B), than sQTLseekeR 
tuQTLs, suggesting that by accounting for the overall gene  
expression, one can detect more meaningful associations.
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Discussion
We have created a statistical framework called DRIMSeq based 
on the Dirichlet-multinomial distribution to model alternative 
usage of transcript isoforms from RNA-seq data. We have shown 
that this framework can be used for detecting differential isoform 
usage between experimental conditions as well as for identifying 
tuQTLs. In principle, the framework is suitable for differential 
analysis of any type of multinomial-like responses. From our 
simulations and real data analyses towards DS and sQTL analy-
ses, DRIMSeq seems better suited to model transcript counts rather 
than exonic counts.

Overall, there are many tradeoffs to be made in DS analyses. For 
example, deriving transcript abundances from RNA-seq data is 
more difficult (e.g., complicated overlapping genes at medium 
to low expression levels) than directly counting exon inclusion 
levels of specific events. On the other hand, local splicing events 
may be not able to capture biologically interesting splice changes 
(e.g., switching between two different transcripts) but have 
ultimately more ability to detect DS in case when the transcript 
catalog is incomplete. Despite these tradeoffs and given the results 
observed here, DRIMSeq finds its place as a method to make 
downstream calculations on transcript quantifications. With emerg-
ing technologies that sequence longer DNA fragments (either truly 
or synthetically), we may see in the near future more direct count-
ing of full-length transcripts, making transcript-level quantification 
more robust and accurate. Even with current standard RNA-seq 
data, ultrafast and lightweight methods make transcript counting 
more accessible and users will want to make comparative analyses 
directly from these estimates.

In principle, existing DS methods that allow multiple group 
comparisons could be adapted to the sQTL framework and  
vice versa; DRIMSeq is one of few tools that bridge these two 
applications. In particular, parameter estimation with DRIMSeq 

is suited for a situation where only a few replicates are available 
per group (common in DS analysis) as well as analyses over larger 
samples sizes (typical in sQTL analysis). For small sample sizes, 
accurate dispersion estimation is especially challenging. Thus, 
we incorporate estimation techniques analogous to those used in 
negative binomial frameworks, such as Cox-Reid APL; perhaps 
not surprisingly, raw profile likelihood or standard maximum  
likelihood approaches do not perform as well in our tests of esti-
mation performance. In addition, as with many successful genom-
ics modeling frameworks, sharing information across genes leads  
to more stable and accurate estimation and therefore better  
inference (e.g., better control of nominal FP rates).

In comparison to other available methods, DRIMSeq seems to be 
more conservative than both DEXSeq (using transcript counts) and 
sQTLseekeR, identifying fewer DTU genes and tuQTLs, respec-
tively. On the other hand, DEXSeq is known to be somewhat 
liberal23. Moreover, the sQTL associations detected by DRIMSeq 
have more enrichment in splicing-related features than sQTLseekeR 
tuQTLs, which could be due to the fact that DRIMSeq accounts 
for the higher uncertainty of lowly expressed genes by using 
transcript counts instead of transcript ratios.

Our developed DM framework is general enough that it can be 
applied to other genomic data with multivariate count outcomes. 
For example, PolyA-seq data quantifies the usage of multiple 
RNA polyadenylation sites. During polyadenylation, poly(A) tails 
can be added to different sites and thus more than one transcript 
can be produced from a single gene (alternative polyadenylation); 
comparisons between groups of replicates can be conducted with  
DRIMSeq. As mentioned, the DM distribution is a multivariate 
generalization of the beta-binomial distribution, as the binomial 
and beta distributions are univariate versions of the multinomial 
and Dirichlet distributions, respectively. Although untested here, 
the DRIMSeq framework could be applied to analyses where the 
beta-binomial distribution are used with the advantage of natu-
rally accommodating small-sample datasets. Interesting beta- 
binomial-based analyses include differential methylation using 
bisulphite sequencing data, where counts of methylated and 
unmethylated cytosines (a bivariate outcome) at specific genomic 
loci are compared, or allele-specific gene expression, where the 
expression of two alleles (again, a bivariate outcome) are compared 
across experimental groups.

One particularly important future enhancement is a regression 
framework, which would allow direct analysis of more complex 
experimental designs. For example, covariates such as batch, sam-
ple pairing or other factors could be adjusted for in the model. In the 
tuQTL analysis, it would allow studying samples from the pooled 
populations, with the subpopulation as a covariate, allowing larger 

Table 1. Enrichment in splicing related features for tuQTLs 
detected by DRIMSeq and sQTLseekeR in CEU and YRI 
populations for FDR = 0.05.

% within 
exons

% within 
splice sites

% within 1Kb 
of a GWAS

CEU YRI CEU YRI CEU YRI

DRIMSeq 26.09 35.89 19.76 21.42 12.75 15.43

sQTLseekeR 20.95 25.43 13.52 17.4 10.22 10.09

Overlap 26.85 40.58 16.17 25.36 13.42 18.14

Non tuQTLs 5.25 5.24 1.75 1.53 1.15 0.97
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sample sizes and increased power to detect interesting changes. 
Another potential limitation is that DRIMSeq treats transcript 
estimates as fixed, even though they have different uncertainty, 
depending on the read coverage and complexity of the set of 
transcripts within a gene. Although untested here, propagation of 
this uncertainty could be achieved by incorporating observational 
weights that are inversely proportional to estimated uncertainties 
or, in case of fast quantification methods like kallisto, by making 
effective use of bootstrap samples. At this stage, there is no 
consensus on how these approaches will perform and ultimately 
may require considerable additional computation.

Software availability
The Dirichlet-multinomial framework described in this paper is 
implemented within an R package called DRIMSeq. In addition to 
the user friendly workflow for the DTU and tuQTL analyses, it pro-
vides plotting functions that generate diagnostic figures such as the 
dispersion versus mean gene expression figures and histograms of 
p-values. User can also generate figures of the observed proportions 
and the DM estimated ratios for the genes of interest to visually 
investigate their individual splicing patterns.

The release version of DRIMSeq is available on Bioconductor  
http://bioconductor.org/packages/DRIMSeq, and the latest develop-
ment version can be found on GitHub https://github.com/markrob-
insonuzh/DRIMSeq.

Data availability
Data for simulations that mimic real RNA-seq was obtained from 
Soneson et al.23, where all the details on data generation and acces-
sibility are available.

Differential splicing analyses were performed on the publicly 
available pasilla dataset, which was downloaded from the NCBI’s 
Gene Expression Omnibus (GEO) under the accession number 
GSE18508, and adenocarcinoma dataset under the accession 
number GSE37764.

Data for the tuQTL analyses was downloaded from the GEUVADIS 
project website.

All the details about data availability and preprocessing are 
described in the Supplementary Materials.

Archived source code as at the time of publication
DRIMSeq analyses for this paper were done with version 0.3.3 
available on Zenodo https://zenodo.org/record/5308461 and Biocon-
ductor release 3.2. Source code used for the analyses in this paper  
is available on Zenodo https://zenodo.org/record/16730562.
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I appreciate that the authors have made an effort to address my comments and I'm particularly happy to
see that my suggestion to check the overlap of tuQTLs with splice site binding sites reveals an improved
enrichment by DRIMSeq. I also understand now the decision you took about not using the
'SummarizedExperiment' class. For the future development of DRIMSeq you may want to consider using
the MultiAssayExperiment class ( ) that allowshttp://bioconductor.org/packages/MultiAssayExperiment
multiple assay types over multiple sample sets.

The authors say that it is not worth made a comparison with Cufdiff because in the study by Soneson  et
 (2016), where both authors of DRIMSeq were involved, Cudiff was very conservative in detectingal.

differential isoform/transcript usage (DTU). In that paper the authors assess DTU by switching the two
most abundant isoforms and show that Cufdiff has a low true positive rate (TPR) at small magnitudes of
the difference in relative abundance between the two most abundant isoforms per gene. However, in
Supplementary Figure 10 of that paper, the authors show that at larger magnitudes of that difference, the
TPR of Cufdiff improves substantially while correctly controlling the false discovery rate (FDR).

In this paper the authors assess DTU following the same strategy of switching the two most abundant
isoforms and I think it would be again very interesting to see how Cufdiff and DRIMSeq compare at
different magnitudes of the change in isoform usage. The authors also argue that Frazee  (2014) et al.
find that Cuffdiff is very conservative. However, as far as I understand that paper, Frazee and co-workers
are not evaluating DTU but differential transcript expression (DTE), and therefore, in my view, the
experiments conducted on that paper do not warrant the conclusion that Cufdiff is overly conservative for
DTU.

The authors decided not to perform an enrichment analysis of tuQTLs on ESEs and ESSs because
Lalonde   (2011) concluded that ESE predictions themselves are a poor indicator of the effect ofet al.
SNPs on splicing patterns. However, Lalonde and co-workers scored ESE motifs with ESEfinder 3.0
(Cartegni   2003), a method based on SELEX experiments conducted about 10 years ago and Iet al.
would expect some advance in this field in the last decade. A recent study that seems to successfully use
more recent ESE and ESS data to assess their enrichment with respect to polymorphisms is Supek  et al.
(2014).

While these two aspects remain, in my opinion, open, I think the statistical model of DRIMSeq proposed
for DTU makes a lot sense and people interested in addressing biological questions that involve DTU

should give it try, and I'm happy to approve the paper.
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should give it try, and I'm happy to approve the paper.
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 Robert Castelo
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This article introduces a new statistical method, called DRIMSeq and implemented in a R/Bioconductor 
 of the same name, to detect isoform expression changes between two conditions from RNA-seqpackage

data. The same method can be used to search for significant associations between SNPs and isoform
quantifications obtained also from RNA-seq data (sQTLs).  The main novelty of this method with respect
to the existing literature on this problem, is the joint modelling of transcript quantification values derived
from isoforms of the same gene, by using a Dirichlet-multinomial model. This allows the method to
account of the intrinsic dependency between quantification values of these isoforms.

The assessment of DRIMSeq on differential isoform usage provides a comparison of its performance with
DEXSeq , a statistical method for differential exon inclusion from RNA-seq data, as function of two
different "isoform" quantification strategies: exonic-bin (not really "isoform") count values calculated with
HTSeq and transcript-quantification values calculated with kallisto .

The experimental results make perfect sense, DRIMSeq works better than DEXSeq with
transcript-quantification values and DEXSeq works better than DRIMSeq with exonic-bin count values.
However, while both methods, and both types of "isoform" quantification input data, allow one to study the
post-transcriptional processing of RNA transcripts, the kind of questions that can be addressed with each
of them are different. Exonic-bin count values and DEXSeq can be used to investigate differential exon

inclusion across conditions, which is a consequence of differential isoform usage, while
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inclusion across conditions, which is a consequence of differential isoform usage, while
transcript-quantification values and DRIMSeq can be used to directly investigate differential isoform
usage.

A potentially interesting outcome of this comparison in the paper could be some sort of guidelines about
when is it more sensible to investigate differential exon inclusion or differential isoform usage, depending
on factors such as the biological question at hand, sequencing depth or number of biological replicates.
However, this is apparently beyond the scope of this paper and the experimental results are in principle
geared towards convincing the reader that DRIMSeq improves on existing approaches to discover
changes in isoform usage, as suggested in the abstract. In my view, the experimental results do not
address this question and I would suggest the authors to compare DRIMSeq with methods that also work
with transcript-quantification values and assess differential isoform usage such as, for instance, Cuffdiff
or sleuth .

The experimental results on searching for sQTLs compare favourably DRIMSeq with an existing tool for
that purpose, sQTLseekR . Evaluating performance in this context is challenging and the idea of
assessing enrichment with respect to splicing-related features is a good one. However, the (two)
presented features in Table 1 could be made more precise. It is unclear that a SNP close to a GWAS hit
should be necessarily related to splicing and it is also unclear why one should expect splicing-related
enrichment more than a few hundred nucleotides away from the intervening exon. While it is technically
interesting to see a method being used to address two completely different research questions, in my
view, mixing both types of analyses makes the article less focused. I would argue that both questions
deserve separate papers, and that would allow the authors to investigate in depth critical aspects of both
types of analysis that are currently not addressed in the current article.

In summary, this article provides an interesting new methodology for the analysis of differential isoform
usage from RNA-seq data, it is well-written and the implemented software runs smoothly and is well
documented. However, in my view, the current experimental results of the article are not that informative
for the reader to learn what advantages DRIMSeq provides over other tools for differential isoform usage
analysis, and to decide whether he/she should be doing a differential isoform usage, or a differential exon
inclusion analysis, if this were a goal of the comparison with DEXSeq.

Minor comments:
I would replace the term "edgeR ideology" in page 5 by "edgeR strategy".
In page 9 it is described that the distributions of raw p-values shown in Supplementary Figures S28
and S29 fit "better" when derived from transcript quantification values than from exonic-bin count
values, but in fact in both cases the distributions are non-uniform for p-values distributed under the
null hypothesis. This can be easily shown with the data from vignette of the DRIMSeq package
when skipping the step that reduces the transcript set to analyze to speed up the building time of
the vignette. This is not openly discussed in the paper but I would argue that it is quite critical to
know under what technical assumptions the proposed hypothesis test leads to uniform raw
p-values under the null, as this has a direct consequence on the control of the probability of the
type-I error.
The sQTL analysis described in pages 9, 10 and 11 uses transcript-quantification values from
FluxCapacitor. If the entire first part of the paper shows the performance metrics of DRIMSeq using
kallisto, in my view, it would make more sense to use kallisto for this analysis as well.
With regard to the implementation in the R/Bioconductor software package DRIMSeq, the authors
have implemented a specialized S4 object class called 'dmDSdata' to act as a container for counts
and information about samples.  Since the package forms part of the Bioconductor project, I think it

would better for both, the end-user and the developer authors, that the package re-uses the

3
4

5
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4.  

would better for both, the end-user and the developer authors, that the package re-uses the
'SummarizedExperiment' class as container for counts and sample information. This would
facilitate the integration of DRIMSeq into existing or new workflows for the analysis of RNA-seq
data. As an example of the limitations derived from providing a completely new specialized object
class, the dimensions of a 'dmDSdata' object in terms of number of features and number of
samples cannot be figured out using the expected call to the 'dim()' accessor method. Of course
the authors may add that method to the 'dmDSdata' object class but, in general, there are obvious
advantages derived from enabling data interoperability through the use of common data structures
across Bioconductor software packages .
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 25 Nov 2016
, University of Zurich, SwitzerlandMark Robinson

Thank you for taking the time to read and review our paper.

 is a package designed for the differential exon usage (DEU) and returns exon-levelDEXSeq
p-values, which can be also summarized to the gene level. In principle, ’s implementationDEXSeq
could be used to address the question of differential isoform/transcript usage (DTU) as well, which
was done, for example, in the simulation study by Soneson  [1]. They use different countinget al.
strategies, among them transcript quantifications from  [2], coupled with ’skallisto DEXSeq
differential engine to detect differential transcript usage. , based on theDRIMSeq
Dirichlet-multinomial model, was developed to detect differential usage of any kind of multivariate
genomic features at the gene-level. Thus potentially, both  and  can be appliedDEXSeq DRIMSeq
to exon counts and to transcript quantifications. However, from our comparisons, which were
performed at the gene-level, the performance of  and  is different on theseDEXSeq DRIMSeq
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to exon counts and to transcript quantifications. However, from our comparisons, which were
performed at the gene-level, the performance of  and  is different on theseDEXSeq DRIMSeq
different types of counts.  performs better on exon counts and  on transcriptDEXSeq DRIMSeq
counts.

We have not used  [3] in our comparisons here because in the study by Soneson  [1], itCuffdiff et al.
performed poorly compared to . In particular,  was very conservative having lowDEXSeq Cuffdiff
false discovery rate (FDR) at the cost of very low power for detecting DTU. The conservative
nature of  for differential transcript expression, was also pointed out by Frazee  [4]. WeCuffdiff et al.
decided to compare  only to the top performing method, . The other toolDRIMSeq DEXSeq
proposed by the Reviewer, sleuth [5], is meant for differential transcript expression analyses, not
DTU.

The scope of this paper was not to justify exon or transcript level analysis, for that one could refer
to the comparison paper by Hooper [6], but to propose a methodologically-sound tool for
differential isoform usage analysis or detect transcript usage QTLs based on transcript
quantifications. We propose to use  since it outperformed  in this type of analysisDRIMSeq DEXSeq
and there are no other tools for differential transcript usage that were intended for transcript level
quantifications from the latest generation of fast quantification tools, such as  [2] or  kallisto Salmon
[7].

Importantly,  returns p-values per feature (exon or transcript), which can be alsoDEXSeq
summarized to the gene level.  performs gene-level tests and returns p-values per geneDRIMSeq
only. When the interest is in detecting specific exons or isoforms that change, one should use 

 because currently  does not provide any post hoc analysis (although in manyDEXSeq DRIMSeq
cases, the relevant information can be deduced from looking at the relative transcript expression
from ’s plots). We have not investigated the differences in performance due toDRIMSeq
sequencing depth or number of biological replicates, but we believe that the requirements would
be basically the same in these terms for both of the methods. What matters is the completeness of
annotation. Detecting DTU based on exon counts is generally more robust than that based on
transcript quantifications when the annotation is incomplete, which was investigated in detail by
Soneson  [1].et al.

To compare the performance of  and , we use the splicing-related featuresDRIMSeq sQTLseekeR
that were also used in the  paper [8] to compare  against other methods.sQTLseekeR sQTLseekeR
The Reviewer suggested to consider other splicing-related features, such as exonic splicing
enhancers (ESEs), exonic splicing silencers (ESSs) and splice sites. We have added the
frequency of tuQTL overlapping with the splice sites to Table 1. However, we have not performed
analyses on ESEs and ESSs since Lalonde  [9] concluded from their study that "ESEet al.
predictions themselves are a poor indicator of the effect of SNPs on splicing patterns".

By addressing differential splicing and sQTLs in one paper, our aim was to show that methods
used for these analyses are based on statistical approaches that in the end tackle ultimately the
same question: differential splicing between conditions. Both analyses employ the same methods
for gene feature quantification and potentially one main differential engine could be used with slight
analysis- specific adjustments, such as information sharing between genes for small sample size
data or using genotypes as grouping factor, which is done in . We believe we haveDRIMSeq
addressed in sufficient depth aspects of both of these analyses providing comparisons on
simulated and real data.

Addressing the minor comments:
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Addressing the minor comments:
We have replaced the term "edgeR ideology" in page 5 by "edgeR strategy".
 
As suggested, we have investigated in more depth, based on simulations from the DM
model, the p-value distributions under the null hypothesis of no differentialDRIMSeq 
transcript usage (Figures 1, S4, S6, S11, S14). Overall, using the Cox-Reid adjusted profile
likelihood and the dispersion moderation leads to p-value distributions that in most cases
are closer to the uniform distribution (Figures 1D, S4 and S11). The better fit of the DM
model to transcript counts in comparison to exon counts can be seen in Figure S14, where
the p-value distributions are more uniform for simulations that mimic  counts than forkallisto
simulations that mimic  counts.HTseq
 
Yes, using  counts would be more consistent with the rest of our manuscript.kallisto
Nevertheless, we decided to to use the Flux Capacitor counts because they were already
available on the GEUVADIS project website and have been used extensively in other
projects, for example, in the sQTLseekeR paper. Moreover, we think that using other counts
should not affect the comparison between DRIMSeq and sQTLseekeR.
 
We had already considered the SummarizedExperiment class while developing the
DRIMSeq package. However, it does not provide features and functionality that we need for
storing the count data and DRIMSeq results. In particular, the dimensions of Assays in
SummarizedExperiment must be the same. That is not the case for us for two reasons.
Firstly, each gene has multiple transcripts and, for example, the table with proportion
estimates per transcript is larger than a table with dispersion estimates which are available
per gene. Second, in the QTL analysis, table with transcript counts has different dimensions
than table with genotypes. Additionally, we use matrices instead of data frames to store our
data because the former occupies less space. Specifically, we have created a class called
MatrixList, which is adjusted to store data where each gene has multiple features quantified
and allows a quick access to these counts in per gene basis. We have not implemented the
dim() method on dmDSdata or dmSQTLdata because we want to keep consistency
between them and, for example, dmSQTLdata contains transcript counts and genotypes
which have different dimensions. Thus we decided to make the dim() methods available for
the counts and genotypes slots in these classes but not for the classes themselves.
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Nowicka and Robinson propose a novel method, called DRIMSeq, to test for differential transcript usage
between groups of samples using RNA-seq. The method is based on the Dirichlet-multinomial
distribution.
The authors evaluate different existing approaches to estimate the parameters of their model using
simulated experiments with a small number of replicates, which is a common scenario of high-throughput
sequencing experiments. Furthermore, Nowicka . provide a proof of principle of their method byet al
applying it to both simulated and real RNA-seq data. They also compare the performance of DRIMSeq
with DEXSeq and sQTLseekeR in detecting differential transcript usage and splicing quantitative trait loci
(sQTLs), respectively. DRIMSeq shows high concordance with DEXSeq. Furthermore, the authors
demonstrate that DRIMSeq performs better than DEXSeq when using transcript-level counts. DRIMSeq
and sQTLseekeR were also highly concordant. Nevertheless, sQTL genes detected by DRIMSeq were
expressed higher than those detected by sQTLseekeR, and sQTLs detected by DRIMSeq were in closer
proximity to exons compared to sQTLs detected by sQTLseeker. DRIMSeq is implemented as an
R/Bioconductor package.
 
Overall, the manuscript is well presented and is scientifically sound. The description of the method is
clear, the comparisons are fair, and the conclusions are supported by data and analyses.
 
Below some minor comments:
 

Transcription of multiple isoforms from a single gene can be the consequence of differences in the
following molecular mechanisms: transcription start sites, splicing, and termination of transcription. 
The terms “differential splicing” and “splicing QTLs”, which are used throughout the manuscript and
the package vignette, focus only on splicing. Consider a hypothetical example of an isoform switch
between conditions in which the two isoforms only diverge by the transcription start site of the first
exon. DRIMSeq should also detect this difference, and this would not be due to differential splicing.
Thus, the authors could use more generic terminology that describes all possible interpretations of
the outcome of their test. Perhaps “differential transcript usage” or “transcript usage QTLs”?
 

In equations 6-11,  and  are understandable from the context but are not defined in the text. PL APL
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In equations 6-11,  and  are understandable from the context but are not defined in the text. PL APL
 
It would be useful for the reader to include more information of the simulated data from Sonseson 

. (2016) in the main text of this manuscript (for example, number of replicates per condition).et al
 
The authors describe how DEXSeq can account for additional covariates in complex experimental
designs. This paragraph, as well as the figures and supplementary material associated to it, could
be understood as if DEXSeq fits GLMs only for complex experimental designs. In reality, DEXSeq
always fits GLMs, even for simple two-group comparisons.
 
There are some panels from the supplementary figures where data are missing. Specifically, Fig.
S13 has 3 empty panels and Fig. S21 the left panels are missing the data for “dexseq.prefilter5”
and “drimseq_genewise_grid_trended.filter5”.
 
The list of software for splicing event quantification is already very extensive, however a citation to
the Bioconductor package SGSeq (Goldstein , 2016) could also be added.et al.
 
As for the readability of the supplementary information, some abbreviations are not defined in each
supplementary figure caption. For example, in Fig. S5, n, m, DM, FP and nr_features are not
defined in its caption (some of them, however, are defined in previous captions).  Since many
abbreviations repeat several times through the supplementary information, it would be useful to
include a glossary of all abbreviations at the beginning of all supplementary figures. 
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 25 Nov 2016
, University of Zurich, SwitzerlandMark Robinson

Thank you for taking the time to read and review our paper.

As per your suggestion, we have now stressed that DRIMSeq can be applied to differential
transcript usage (DTU), which accounts for not only differential splicing but also the differences in
transcription start sites and differential transcript termination. In the QTL analysis, as we test for
associations between genotypes and transcript usage and not only splicing, following your
suggestion, we have also changed the term from splicing QTLs (sQTLs) to transcript usage QTLs

(tuQTLs).
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(tuQTLs).

We have addressed all the other minor comments which include:
defining the abbreviations of profile likelihood (PL) and adjusted profile likelihood (APL),
adding the sample size information about the simulations from Soneson  [1],et al.
in order to remove the misleading suggestion that DEXSeq fits GLMs only in the complex
designs, we have changed the names of the models used in real data analysis from "model
full glm" to "model full 2" and paraphrased the corresponding manuscript sections,
we have included results for the panels with missing data in the Supplementary Figures
S15, S16 and S24,
we have included the citation to SGSeq [2] - the Bioconductor package for analyzing splice
events from RNA-seq data,
in the Supplementary Materials, we have prepared a section explaining abbreviations used
in the subsequent Supplementary Figures.
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