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Abstract: Thyroid cancer (TC) invariably remains the most prevalent endocrine cancer
in the world. Major histological forms of TC include papillary (PTC), follicular (FTC),
medullary (MTC), and anaplastic thyroid carcinoma (ATC), each of which has a unique
clinical and molecular profile. The incidence rate of TC is higher in females, and unfortu-
nately, it has tended to increase over the last several years. Yet the treatment of advanced or
aggressive TC forms has improved recently because of developments in immunotherapy
and targeted medicines, including PD-1 inhibitors and tyrosine kinase inhibitors (e.g.,
lenvatinib, sorafenib). Imaging, fine-needle aspiration biopsies, and molecular testing are
implemented in the diagnostic process, e.g., in search of mutations that might affect prog-
nosis and provide the most successful treatment option. Chemotherapy, immunotherapy,
radioactive iodine therapy (RAI), surgery (such as a total thyroidectomy), and molecularly
targeted therapies are currently standard treatment modalities in TC. Optimizing patient
outcomes requires better diagnostic precision and individualized treatment regimens based
on the genetic profile and tumor subtype. To improve survival and quality of life, it is
critical to comprehend the complex etiology of TC and the changing therapeutic landscape.

Keywords: papillary thyroid cancer; follicular thyroid cancer; medullary thyroid cancer;
anaplastic thyroid cancer; epidemiology; thyroid cancer; thyroid carcinoma

1. Introduction
Thyroid cancer (TC) remains the most common endocrinological cancer worldwide,

with a disturbingly increasing incidence rate over recent years [1,2]. The reason for this
is not only a greater awareness of this malignancy and in-depth diagnosis leading to the
early detection of less typical clinical symptoms but also its increasing occurrence due to a
continually changing world and environmental threats associated with this. Environmental
factors that are currently distinguished as potential risk factors for TC include the increasing
usage of environmental chemicals as well as exposure to heavy metals, radiation, and air
pollution [3–7]. Being exposed to the abovementioned factors constitutes an increasing
global problem that might result in an increasing incidence of various endocrinological
diseases and malignancies, including TC. An increase in the TC occurrence rate is associated
with countries with a high or very high Human Development Index (HDI), where TC
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accounts for 91% of new cases [8]. In the following narrative review, we aimed to summarize
the most recent knowledge regarding TC, including information about its epidemiology
and changes in its trends, causes, prognostic and diagnostic factors, classification, and—
most importantly—the current updates on TC treatment strategies and novel therapeutic
approaches.

2. Epidemiology of Thyroid Cancer
Currently, TC is ranked as the 7th most prevalent cancer worldwide, with a mortality

rate ranked as 24th highest among all cancers [9]. TC is three times more common in
females than in males; the less aggressive histologic subtypes are more prevalent in females,
while the more aggressive ones are equally frequent in both genders [10]. TC is often
diagnosed at a younger age compared to any other adult cancer; the mean age at which TC
is diagnosed is 51 [11]. Clinicopathological manifestations of TC differ depending on the age
of the patient; e.g., younger patients more commonly present with lymph node metastasis,
neurovascular, or capsular invasion, indicating that younger individuals usually present a
more aggressive course of this malignancy [12]. Further, TC is half as common in black than
in white individuals; the ranking of the incidence rate of TC nowadays is as follows, starting
with the highest prevalence in white populations, followed by Asians/Pacific Islanders,
American Indian/Alaskan natives, and black individuals [13]. Generally, TC occurrence is
higher in non-Hispanic males and females than in Hispanic males and females [13]. TC
incidence increased by over 200% from 1992 to 2018, while the mortality rate continually
remained unchanged [14]. The incidence rate of TC increased in the majority of countries;
this increase was the most significant in younger individuals, but generally, rates increased
in all individual groups, irrespective of age [15]. The epidemiological landscapes based on
the GLOBOCAN database indicate that the mortality rate of TC is less than 1 per 100,000 in
most of the investigated countries for both genders; South Korea was indicated to have the
highest incidence-to-mortality-rate ratio in both sexes [16]. It was also noted that there are
no significant differences between the mortality rates in high-HDI countries and low- and
medium-HDI countries [16].

3. Classification of Thyroid Cancer
3.1. Papillary Thyroid Cancer

Papillary thyroid cancer (papillary thyroid carcinoma, PTC) is the most common type
of TC, accounting for nearly 90% of all TC cases [17,18]. Even though PTC is rare in children,
it remains the most common pediatric thyroid malignancy, accounting for about 90% of
TC in children [19]. Although it is the most prevalent type of TC and might occur in any
age group, the peak of its most probable incidence is observed to be between 30 and 50
years of age [20]. The prognosis and the clinical outcome of PTC correlate with tumor size;
it was observed that carcinomas that are less than 1.5 cm have a much better prognosis.
PTC is observed to be a relatively mild cancer that can be easily operated on; however, in
some cases, this type of carcinoma might present significant aggressive behavior associated
with such factors as the induction of epithelial–mesenchymal transition, epigenetic modifi-
cations, or tumor cell metabolic programming leading to a higher probability of distant
metastases and postoperative recurrence [17,21]. There are several aggressive variants of
PTC, including the tall cell variant (TCV), diffuse sclerosing variant (DSV), columnar cell
variant (CCV), hobnail variant (HV), and solid variant (SV) [22]. PTC usually spreads to the
lymph nodes of the neck (primarily to the pretracheal and paratracheal lymph nodes), and
the frequency of this type of metastasis is observed in approximately 70% of patients [23].
However, it must be considered that even though cancerous spread via lymph nodes might
be associated with a worse recovery and higher risk of recurrence, in the case of PTC, the
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presence of lymph node metastasis is not associated with a higher mortality rate [24,25].
Only 10% of patients with PTC are estimated to present metastasis at the initial presentation
of this malignancy [26]. Distant metastases are not common in PTC, but when they occur,
the most common sites include the lungs, bones, liver, and brain [27]. There are several
factors associated with a poor prognosis of PTC, but the most prevalent ones include older
age at diagnosis (patients > 55 years old), distant metastases and extrathyroidal growth,
large tumor size, male sex, aggressive subtypes of PTC, presence of an aneuploid cell
population, vascular invasion, and solid and less differentiated areas [28,29]. The overall
survival rate of PTC is very high irrespective of the age group; it was estimated that the cure
rate might even reach 100% [30]. Similarly, in the case of pediatric patients, the mortality
rate associated with PTC is estimated as low to even absent [19].

3.2. Follicular Thyroid Cancer

Follicular thyroid cancer (FTC) is the second most common malignancy of the thyroid
gland, accounting for about 20% of all cases of TC [31]. It is estimated that FTC accounts
for approximately 10% of thyroid malignancies in iodine-sufficient areas while accounting
for about 25–40% in areas characterized by iodine deficiency [32,33]. This type of cancer,
similar to PTC, more often occurs in females, with a female-to-male ratio equal to 3:1; the
mean age at diagnosis is estimated to be 60 years old, while the peak onset age ranges
from 40 to 60 years old [34–36]. It is estimated that about 80% of FTC cases present mild
symptoms with a good prognosis, while the remaining 20% are characterized by aggressive
behavior [31]. It was observed that the prognosis of FTC is associated with the size of the
tumor, with carcinomas less than 1.5 cm indicating a good prognosis [37]. FTC can be
divided into three subtypes, including minimally invasive, encapsulated angioinvasive, and
widely invasive variants [38]. Previously, there was another subtype of FTC distinguished,
namely Hurthle cell carcinoma; however, the World Health Organization has classified it
as a different type of thyroid malignancy [38]. Cases of minimally invasive FTC are more
often diagnosed in younger patients; however, it must be taken into consideration that this
variant has also been observed to be a probable precursor of more aggressive variants [39].
Invasive follicular carcinoma is primarily characterized by vascular invasion and extension
beyond the thyroid gland [40,41]. FTC is characterized by slower progression compared
to other thyroid malignancies [42–45]. It was estimated that about 20% of nonfunctioning
follicular adenomas might possess oncogenic mutations that can ultimately lead to the
onset of FTC [46]. However, it must be taken into consideration that FTC cannot be
distinguished from follicular thyroid adenoma based only on cytologic features [47]. FTC is
more aggressive than PTC and tends to metastasize significantly more often; even though
distant metastases are not that common for FTC, they are more often observed in this type
of carcinoma than in PTC [48–50]. Approximately 6–20% of patients with FTC may present
distant metastases, which are most often located in the lungs, followed by the bones, liver,
brain, and skin [51,52]. The probability of metastases in the case of FTC is greater for
older patients [49]. While metastasis to the lymph nodes is not common, vascular invasion
is characteristic of FTC [53]. It was estimated that fewer than 10% of patients present
metastases into the lymph nodes [54,55].

3.3. Medullary Thyroid Cancer

Medullary thyroid cancer (MTC) is a relatively rare neuroendocrine cancer originating
from the thyroid parafollicular C cells responsible for calcitonin production [56]. This
malignancy accounts for about 1–5% of all TC cases and may appear spontaneously or as a
part of several hereditary syndromes, including multiple endocrine neoplasia (MEN) types
2A and 2B and familial medullary thyroid cancer (FMTC) [57]. Among all MTCs, the major-
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ity are sporadic, while about 25% account for those associated with MEN2 syndrome [58].
Sporadic MTC has been observed to be more prevalent in females, while the hereditary type
of MTC is equally prevalent independently of gender [59]. It is estimated that MTC is the
least common among all TCs, accounting for <5% of all thyroid malignancies [60]. The age
peak for spontaneous MTC is between 40 and 60 years, with a mean age of 50 years; other
trends are observed in cases of MTC associated with genetic diseases [61]. MTC associated
with either MEN2A or MEN2B may appear in early childhood, while this malignancy
usually occurs in the second to fourth decade when it is a component of FMTC [62–67].
In cases when a patient has a family history of MTC and/or MEN2 and presents positive
for the RET gene mutation, prophylactic surgery may be performed to prevent the onset
of MTC [68]. The prognosis of MTC depends on several factors, including the patient’s
age, surgical resection status, and the histologic grade of the carcinoma. Generally, older
patients presenting high-grade lesions with incomplete surgical treatment present signifi-
cantly worse prognoses [69]. MTC is characterized by a rather poor prognosis primarily
because of its high probability of metastases compared to other thyroid malignancies, as
well as delayed diagnosis [57]. Further, high-grade tumors are characterized by poorer
overall survival rates compared to low-grade carcinomas because of a higher incidence rate
of distant metastases and a higher risk of local recurrence. In addition to metastases in the
lymph nodes, distant metastases of medullary thyroid carcinoma can occur in the lungs,
liver, or bones, as well as the brain [70].

3.4. Anaplastic Thyroid Cancer

Anaplastic thyroid carcinoma (ATC) is a very rare but also very aggressive form of
undifferentiated thyroid cancer. This thyroid malignancy accounts for approximately 2%
of all TCs [71]. Even though it is very infrequent, ATC accounts for approximately 50% of
deaths associated with thyroid malignancies [72]. ATC is more often diagnosed in females;
this type of cancer also usually occurs among people of the age over 65 years [73,74]. The
etiopathology of ATC is still not fully explained. It is hypothesized that since most of these
cancers occur in the setting of a long-standing goiter, its onset might be associated with an
undiagnosed differentiated TC [75,76]. It is estimated that about 20–50% of patients with
ATC present metastases to distant parts of the body, and the most common sites include the
lungs, bones, and brain [77–79]. The average survival rate of patients diagnosed with ATC
is about five to six months after diagnosis; fewer than 20% of patients are alive one year
after diagnosis [80,81]. Factors that might facilitate a better prognosis include a younger
age of the patient, tumor size less than 6 cm, unilateral tumor, and lack of lymph node and
distant metastases [82].

4. Risk Factors and Causes of Thyroid Cancer
TC, being one of the most common malignancies, can be caused by multiple factors.

These can be divided into modifiable and unmodifiable [83]. Among modifiable factors, we
can distinguish obesity, smoking and secondhand smoking (SHS), heavy alcohol consump-
tion, lack of exercise, and exposure to high levels of radiation. Within the unmodifiable
factors, we can include sex, genetic factors such as gene mutations or inherited genetic
syndromes, and preexisting benign thyroid disease (Figure 1) [84].
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Figure 1. Modifiable and unmodifiable factors in developing thyroid cancer.

4.1. Modifiable Factors
4.1.1. Obesity

Obesity is an unquestionable risk factor for many diseases, including cancers. It can
be highlighted as one of the primary TC causes [85,86]. Regardless of sex, a body mass
index (BMI) of 25.0–29.9 is associated with an increased risk of thyroid cancer compared
to that for a lower BMI. Obesity may contribute to thyroid cancer through multiple mech-
anisms, including chronic inflammation, oxidative stress, immune dysfunction, elevated
thyroid-stimulating hormone (TSH), insulin resistance, adipokines, and increased aro-
matase activity. Persistent low-grade inflammation can generate reactive oxygen species,
accelerate cell division, and impair tumor suppression. Higher TSH levels may encour-
age thyroid cell proliferation, genetic mutations, and cancer formation. Insulin resistance
leads to increased insulin-like growth factor 1 (IGF-1), which activates cancer-promoting
pathways like AKT/mTOR/PI3K and ERK/RAS/MAPK, supporting tumor growth and
survival. Additionally, adipokines such as adiponectin, leptin, and resistin may play a role
in thyroid carcinogenesis [87]. A 2018 study on obese mouse models showed a link between
the overactivation of the JAK/STAT3 signaling pathway and lymphatic metastasis of TC.
Obesity affects adipokine levels by increasing leptin and reducing adiponectin. Leptin stim-
ulates cancer cell growth through JAK2/STAT3 and MAPK signaling, whereas adiponectin
counteracts tumor progression by blocking the PI3K/AKT/mTOR pathway via AMPK
activation. Lower adiponectin levels in obesity may play a key role in TC development
and progression [88]. Chronic inflammation activates the transcription of nuclear factor
kappa-light-chain-enhancer of activated B (NF-kB), STAT3, and activator protein 1 (AP1),
which, cooperatively with hypoxia, promote cancer cell growth and angiogenesis. Tu-
mors contain many immune cells such as tumor-associated lymphocytes, tumor-associated
macrophages (TAMs), immature dendritic cells, mast cells, and myeloid-derived suppres-
sor cells. The presence of mast cells and macrophages in tumors is linked to poor TC
prognosis. Proinflammatory cytokines produced by NF-kB transcription play a crucial
role in cancer progression. The BRAF V600E mutation and RET/PTC gene rearrangement
enhance NF-kB activity, increase inflammatory mediator expression, and contribute to
lymph node metastases in PTC (Figure 2) [89].
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Figure 2. Molecular obesity mechanisms associated with thyroid cancer.

4.1.2. Smoking and Secondhand Smoking

Cigarette smoking and SHS are established risk factors for many diseases and have
been implicated in TC. Even minimal SHS exposure induces immediate inflammatory
responses, lasting for hours [90]. SHS contains toxic compounds such as thiocyanate, which
disrupts thyroid hormone synthesis, and proinflammatory cytokines, for instance IL-1β
and IL-6, which may exacerbate thyroid autoimmunity. Additionally, cigarette smoke
delivers carcinogens like PAHs and nitrosamines into the bloodstream, leading to chronic
inflammation, DNA damage, and potential malignant transformation in thyroid cells [83].
However, emerging evidence challenges the traditional view, suggesting that smoking
may exert a protective effect on TC [91]. This protective effect is partly explained by the
smoking-induced suppression of TSH, which normally promotes thyroid cell proliferation.
Studies indicate that smoking lowers TSH levels while increasing free triiodothyronine
(FT3) and free thyroxine (FT4). Conversely, TSH levels tend to rise after smoking cessation
Additionally, smoking influences estrogen metabolism and activates the aryl hydrocarbon
receptor (AHR) pathway, potentially reducing estrogen’s stimulatory effects on the thyroid.
Another proposed mechanism includes increased sympathetic nervous system activity,
leading to higher TSH levels [92–95]. What is more, heavy smokers who quit have a
higher likelihood of developing TC than consistent smokers [96]. These conflicting findings
highlight the complexity of the smoking–TC relationship and indicate the need for further
research.

4.1.3. Alcohol Consumption

Despite popular beliefs, recent studies show that alcohol consumption is negatively
correlated with the occurrence of TC [97]. Light to heavy alcohol consumption, when
combined with smoking and SHS, is noted to have a submultiplicative effect on TC [95].
Potential mechanisms underlying alcohol’s protective role include alterations in thyroid
hormone metabolism, disruptions in thyroid gland function, and impairment of the regula-
tion of the hypothalamic–pituitary–thyroid axis [98]. Regular alcohol intake has been linked
to lower TSH levels. Surprisingly, abstinence may increase the probability of developing
TC [99]. Meta-analyses estimate that regular alcohol consumption may be associated with
up to a 10% lower risk of TC [92]. Nonetheless, the toxic effects of alcohol on the thyroid
and their broader systematic health risks must be taken into cautious consideration when
interpreting these findings.

4.1.4. Lack of Exercise

There is strong scientific evidence that both physical inactivity and obesity indepen-
dently elevate the risk of various cancers, whereas regular activity successfully reduces the
risk of developing cancer [96]. Recent studies have highlighted the potential role of long
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non-coding RNAs (lncRNAs) as crucial molecular mediators linking physical activity to
cancer prevention. Regular exercise has been shown to modulate the expression of multiple
lncRNAs, which are typically upregulated in cancer. These lncRNAs participate in key
cellular functions, including epigenetic modifications, cell proliferation, and apoptosis
regulation, forming a complex network that may contribute to cancer protection. Abnor-
mal expression of lncRNAs has been strongly associated with various diseases, including
cancer, where they contribute to tumor progression, metastasis, and changes in the tu-
mor microenvironment (TME). Emerging research suggests that both exercise and cancer
can influence lncRNA levels, highlighting their potential role in disease regulation [100].
Regular exercise regulates the inflammatory response, lowering inflammatory markers
like C-reactive protein (CRP), tumor necrosis factor-alpha, and interleukins such as IL-6.
Additionally, exercise promotes an anti-inflammatory state by boosting the production of
cytokines like IL-1ra and IL-10, which contribute to overall immune balance and disease
prevention [101]. Another mechanism highlighting the importance of regular physical
activity is the lowering of IGF1 levels, which helps regulate cell growth and prevents cancer
progression. Exercise also boosts antioxidant enzyme production, strengthening the body’s
defense against oxidative damage with adequate nutrient intake [91]. Furthermore, regular
physical activity modulates key processes involved in tumorigenesis, such as proliferation,
angiogenesis, and metastasis [96,102]. In TC patients, postoperative exercise significantly
reduces the risk of bone fractures, a common complication following thyroidectomy [103].
Overall, physical activity offers many benefits for health and enhances the quality of life in
patients being treated for TC [104].

4.1.5. Exposure to High Levels of Radiation

Historically, exposure to high levels of radiation was limited to specific populations.
Today, the widespread use of mobile phones has introduced a new, persistent source of
radiofrequency (RF) radiation. Emerging studies associate RF radiation from cell phones
with an increased risk of TC [105,106]. RF exposure can alter gene-encoded proteins such
as PAK6, MDM2, HDAC4, and DACT2, which are involved in tumor growth, progression,
suppression, transcription, and apoptosis [105]. However, despite a better understanding
of the process behind radiation-induced TC development, there are still no specific markers
recognized. Similarities in histological types, oncogenic drivers, and gene expression
profiles between radiation-induced and sporadic thyroid tumors suggest that they do not
differ from typical markers. With the thyroid gland being highly sensitive to radiation,
research has shown that radiation exposure in the head, neck, and chest increases the
lifelong risk of developing thyroid malignancies. Radiation therapy in these areas can
disrupt thyroid function, often leading to hypothyroidism, which in turn may contribute
to cancer development [107]. With the rise in radiological procedures, particularly among
pediatric patients, current research is shifting toward assessing risks associated with low-
dose radiation exposure [108]. Recent genomic studies on Chernobyl-related TCs have
revealed a dose-dependent rise in small deletions and structural variants, likely resulting
from DNA double-strand breaks [108,109]. These enable PTC development after radiation
exposure [109].

4.2. Unmodifiable Factors
4.2.1. Sex

Thyroid cancer incidence is significantly higher in women than in men, a difference
thought to be related to reproductive activity and estrogen exposure. Throughout the
menstrual cycle, fluctuations in estrogen levels affect circulating TSH concentrations by
modulating thyroxine-binding globulin (TBG) levels, altering free thyroxine availability,
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and stimulating TSH secretion. Estrogens influence TC pathogenesis by promoting cell
proliferation, inducing DNA damage, and modulating stress responses. The presence of
estrogen receptors (ERα and ERβ) in thyroid tissue, along with the local conversion of an-
drogens into estrogens, suggests direct hormonal involvement in tumor biology. ERα tends
to promote thyroid tumor growth, while ERβ inhibits it. Additionally, estrogen-induced
DNA adducts and changes in autophagy regulation contribute to tumor progression. Men
with TC tend to have worse outcomes than women. This is partly due to later diagnosis,
older age at presentation, and more advanced disease stages. However, male sex remains
an independent risk factor, especially in patients with BRAF mutations [110]. A 2020 study
reported that men with differentiated thyroid cancer (DTC) have a higher risk of recurrence
than women. The risk was over three times higher in men with early stage disease but
showed no significant difference in advanced stages. Despite receiving more aggressive
treatment, men still had higher recurrence rates [111].

4.2.2. Genetic Factors

A 2021 population-based study shows global trends in TC incidence. It reveals various
patterns among different subtypes. PTC has seen the most significant rise, especially
in high-income and transitioning countries, mainly due to increased detection through
advanced imaging. Other subtypes, including FTCs and MTCs, have remained relatively
stable without clear temporal trends. The rarest and most aggressive form, ATC, has
fortunately shown declining incidence rates in most regions. Overdiagnosis, particularly of
PTC, has been a major factor in these trends, leading to calls for more cautious screening
and diagnosis approaches [112].

4.3. Genes
4.3.1. Papillary Thyroid Cancer

PTC is the most common thyroid malignancy worldwide, regardless of age. Its
diagnostic criteria have evolved over the years. Radiation exposure is a well-established
risk factor, alongside environmental factors like obesity [113]. PTC is primarily driven by
mutations that lead to the constitutive activation of the MAP kinase (MAPK) signaling
pathway. These mutations occur in key oncogenes such as BRAF, RAS, RET, and NTRK,
which function as upstream regulators of the pathway. The activation of MAPK effectors
plays a critical role in tumor initiation, progression, and maintenance [114]. Although PTC
generally has a favorable prognosis with a >90% 10-year survival rate, recurrence (especially
in neck lymph nodes) occurs in 20–30% of cases. Early diagnosis is crucial, as traditional
FNA cytology has limitations. A valuable biomarker, BRAF V600E mutation, may be crucial
for PTC identification [115]. PTC can be hereditary, and some of these cases are linked to
known syndromes such as Cowden syndrome, Gardner syndrome, and the Carney complex,
where specific genetic mutations have been identified [116]. BRAF V600E is the most
frequent mutation, resulting from a T-to-A transversion at nucleotide 1799. This mutation
leads to the continuous activation of BRAF kinase, which subsequently phosphorylates
MEK and ERK, driving uncontrolled cell proliferation. It is associated with aggressive
tumor features, extrathyroidal invasion, and poorer prognosis. Additionally, AKAP9–
BRAF fusion, caused by chromosomal inversion, has been identified in radiation-induced
PTC [114]. RAS mutations (in NRAS, HRAS, and KRAS) occur in about 10–20% of cases and
are more frequently associated with the follicular variant of PTC [114,117]. Additionally,
RET/PTC rearrangements, resulting from chromosomal translocations, are present in
10–20% of cases. RET/PTC1 and RET/PTC3 mutations are the most common variants,
particularly in radiation-induced pediatric PTC cases [114,117,118]. These mutations play
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a crucial role in tumor initiation and progression, influencing prognosis and potential
therapeutic targets (Table 1) [117].

Table 1. The most common mutations in chosen types of thyroid cancer.

Type of
Cancer/Mutation

Papillary
(PTC)

Medullary
(MTC)

Follicular
(FTC)

Anaplastic
(ATC)

RET/PTC + + − +

RAS − + + +

BRAF V600E + − − +

PAX8-PPARγ − − + +

NTRK + − − +

MET + − − −
CDKN1B − + −

TERT − − − +

TP53 − − − +

PTEN − − − +

ALK − − − +

PIK3CA − − − +

EIF1AX − − − +

4.3.2. Medullary Thyroid Cancer

MTC is a rare neuroendocrine tumor, accounting for 3–5% of thyroid malignancies.
Despite its low incidence, MTC is responsible for a significant proportion of TC-related
deaths. It can occur sporadically or as part of hereditary syndromes like multiple endocrine
neoplasia type 2 (MEN2) and FMTC. Calcitonin and carcinoembryonic antigen (CEA) serve
as crucial diagnostic and prognostic markers for MTC [119,120]. Mutations in the RET proto-
oncogene play a crucial role in the development of MTC and are classified into germline
and somatic mutations. The RET gene encodes a receptor tyrosine kinase involved in cell
proliferation, differentiation, and survival. Mutations can affect different RET domains,
leading to distinct clinical outcomes. Extracellular RET mutations, especially in codon 634,
are commonly linked to MEN2A syndrome, often resulting in early onset MTC. Codon
918 mutations are strongly associated with MEN2B syndrome, which is characterized by
early and aggressive MTC, often with metastases in infancy. Intracellular mutations are
usually seen in FMTC and result in milder disease progression. Genetic testing for RET
mutations is recommended for all MTC patients to guide risk assessment, early diagnosis,
and prophylactic thyroidectomy in at-risk individuals [119]. About 70% of RET wild-type
sporadic MTCs harbor RAS mutations, with HRAS being the most common, followed by
KRAS and rare NRAS mutations. RET and RAS mutations are usually mutually exclusive,
though rare cases with both mutations exist. Within the other molecular alterations, we can
distinguish CDKN2C loss, found in 20% of tumors and associated with distant metastases
and reduced survival, and mTOR pathway activation, linked to lymph node metastases
and more prevalent in RAS-mutant MTC. Increased EZH2 and SMYD3 expression are
observed in aggressive tumors. MiRNA overexpression is linked to metastasis and worse
outcomes [121]. A 2025 case report shows a possibility of a connection between a germline
pathogenic variant in the CDKN1B gene [multiple endocrine neoplasia type 4 (MEN4)] and
MTC. This case highlights the coexistence of MTC and MEN4 linked to a novel CDKN1B
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germline frameshift mutation, expanding the understanding of MEN4-associated endocrine
tumors [122].

4.3.3. Follicular Thyroid Cancer

FTC is the second most prevalent type of differentiated TC. It originates from follicular
cells, which are responsible for producing and secreting thyroid hormones. FTC is more
common in women and typically presents during the fifth and sixth decades of life. Risk
factors for FTC include iodine deficiency, age over 50 years, and female sex [34]. FTC
is characterized by several genetic mutations that play pivotal roles in its pathogenesis.
Mutations in the RAS family of oncogenes—specifically NRAS, HRAS, and KRAS—are
among the most prevalent, detected in approximately half of FTC cases. They have been
associated with poor prognosis and distant metastases. These mutations often occur at
codon 61 and lead to the constitutive activation of signaling pathways that drive tumor
development. Additionally, TERT promoter mutations are found in about 25% of FTCs
and are linked to aggressive clinical outcomes, including advanced TNM stage, recurrence,
and higher mortality rates. The PAX8-PPARγ fusion gene is present in approximately
one-third of FTC cases and contributes to tumorigenesis through altered transcriptional
regulation [123,124]. Furthermore, mutations in the EIF1AX gene have been identified
in a subset of FTCs, often co-occurring with RAS mutations, suggesting a collaborative
role in cancer progression [125]. Other mutations, such as EZH1, have been identified in
follicular-patterned lesions, typically in lower-grade tumors [124].

4.3.4. Anaplastic Thyroid Cancer

ATC, representing 5–10% of TCs, is an extremely aggressive tumor with low survival
rates. Distant metastases are present at the time of diagnosis in 30–40% of cases. Under
microscopic examination, it exhibits a diverse cellular structure and a complete loss of
follicular differentiation. ATC is frequently linked to coexisting DTC or a prior history
of DTC, which suggests that certain DTC clones may undergo morphological changes
leading to dedifferentiation. ATCs exhibit significantly higher frequencies of TP53, TERT
promoter, PIK3CA, and PTEN mutations. Additionally, ATCs carry mutations in ATM,
NF1, NF2, CDKN2A, CDKN2B, and RB1 [123,126,127]. ATCs frequently harbor TP53 muta-
tions, disrupting tumor suppression and enabling uncontrolled growth. TERT promoter
mutations, often co-occurring with BRAF or RAS alterations, enhance telomerase activity
for indefinite proliferation. Disruptions in cell cycle regulators such as CDKN2A, CDKN2B,
and RB1 further drive unregulated division. The PI3K/AKT/mTOR pathway is commonly
activated via PIK3CA and PTEN mutations, promoting survival and metabolic reprogram-
ming. DNA repair deficiencies, including ATM and NF1/2 mutations, increase genomic
instability. Epigenetic regulators like ARID1A, SMARCA4, and histone-modifying enzymes
are frequently mutated, contributing to aggressive phenotypes. Structural alterations, such
as CNVs, impact tumor suppression. EIF1AX mutations, often with RAS alterations, may
dysregulate protein synthesis. TAMs create an immunosuppressive microenvironment,
further supporting tumor progression [127].

4.3.5. Preexisting Benign Thyroid Disease

Individuals with a history of benign thyroid diseases, including hyperthyroidism and
goiter, are at an increased risk of developing TC. This association is likely mediated by
chronic alterations in TSH levels, which may promote abnormal thyroid cell proliferation
Additionally, studies have shown that a family history of benign thyroid conditions fur-
ther raises the likelihood of TC, indicating a potential genetic link [107]. Patients with
preexisting thyroid-specific autoimmune diseases, such as Hashimoto thyroiditis (HT) and
Graves’ disease, have a significantly increased risk of developing TC [128,129]. A 2021
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study showed a connection between HT and an increased risk of developing thyroid malig-
nancies, especially PTC and MTC. Several mechanisms have been proposed to explain this
association. One mentions the inflammatory process in HT resulting in DNA damage and
further mutations. Another highlights the possible thyroid tissue proliferation caused by
the constant increase in TSH levels. However, specific mechanisms are still unknown [130].
Interestingly, thyroid cancers arising in patients with preexisting autoimmune thyroid
disease tend to present as smaller tumors with lower rates of lymph node metastasis. This
observation suggests that immune-mediated factors may not only increase cancer risk but
also modulate tumor behavior. Chronic inflammation, oxidative stress, and dysregulated
TSH signaling are regarded as key contributors to thyroid carcinogenesis in this context
(Table 2) [129].

Table 2. Comparison of four major types of thyroid cancer.

Cancer Type PTC FTC MTC ATC

Incidence
(% of all TC cases) 90% 20% 1–5% 2%

Age 30–50 years old 40–50 years old 40–60 years old Over 65 years old

Prognosis Relatively mild
cancer

80% mild; 20%
aggressive Poor prognosis Very poor prognosis

Metastatic potential

70% of patients
present metastases to
the lymph nodes of

the neck

Metastases present
more often than in

PTC cases

High probability of
metastasis

20–50% of ATC cases
present metastases

5. Symptoms and Diagnosis of Thyroid Cancer
Thyroid cancer (TC) can present a wide range of symptoms. Research on the distress,

anxiety, and depression experienced by individuals with advanced TC shows that over
half of the participants experience various symptoms, with sleep disturbances, fatigue,
and emotional distress being the most prevalent and severe. Moreover, symptoms like
hoarseness, numbness, and a noticeable lump in the thyroid region are often observed,
typically due to tumor interaction with the recurrent laryngeal nerve and parathyroid
gland. Over 30% of patients report symptoms of anxiety and depression [131]. However,
in many cases, an enlarged thyroid, which may be structurally abnormal, is diagnosed
incidentally—often following an X-ray of the chest or neck conducted for reasons unre-
lated to thyroid malignancies. Approximately 50% of thyroid cancer cases are discovered
incidentally, particularly in asymptomatic patients. These often involve small papillary thy-
roid cancers (PTCs). Additionally, TC is frequently identified histologically when thyroid
glands are removed for benign conditions, revealing small tumors incidentally [132]. The
diagnosis of TC typically involves a combination of physical examination, imaging studies
(e.g., ultrasound), and fine-needle aspiration biopsy (FNAB). Further tests, including molec-
ular markers and radioactive iodine scans, are used to determine the cancer’s type and
extent [133]. The abnormal and continuous growth of cancerous cells within the thyroid
leads to gland enlargement, which can be detected during regular check-ups. The enlarged
thyroid may be unrecognized by the patient if the growth is minor and asymptomatic, or
it may be easily identified if it causes discomfort or difficulty in swallowing [134]. The
increase in the number of malignant cells can manifest as an enlarged gland or the presence
of detectable nodules, which can be felt during a physical examination. Alarm symptoms
identified during palpation often lead to further diagnostic testing, including serum TSH
levels and neck ultrasound. Alarming ultrasound features that may prompt a biopsy
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include microcalcifications, neovascularization, disorganized internal vascularity, irregu-
lar margins, and a taller-than-wide shape [135]. Thyroid nodules, though often causing
concern, are malignant in only a small percentage of cases, especially in adults. Ultra-
sonography (US) and fine-needle aspiration cytology (FNAC) remain the primary methods
for assessing malignancy risk. Advances in US technology, such as elastography, have
improved diagnostic accuracy, particularly for indeterminate nodules [136]. More recently,
the introduction of molecular testing for genetic mutations has significantly enhanced the
diagnosis of various thyroid malignancies and facilitated targeted therapy [137]. Molec-
ular tests provide additional diagnostic accuracy beyond cytology alone. The Bethesda
System for Reporting Thyroid Cytopathology (TBSRTC) classifies thyroid nodules into six
categories based on cytologic evaluation. Molecular testing has been especially useful for
Bethesda III and IV nodules, where cytology’s indeterminate nature presents a challenge
in clinical decision-making. These tests can identify gene mutations and alterations cor-
related with varying malignancy risks. Aggressive TC is associated with BRAF V600E,
RET/PTC, and TERT promoter mutations, whereas NRAS, HRAS, KRAS, BRAF K601E,
and PAX8/PPARG alterations are more commonly linked to benign nodules, non-invasive
follicular thyroid neoplasms with papillary-like nuclear features (NIFTPs), or low-risk
differentiated thyroid cancers (DTCs). Preoperative molecular testing can optimize surgical
decisions, particularly for Bethesda V and VI nodules, when compared to cases without
molecular testing [123,138–140]. Both RNA and DNA–RNA molecular tests can be used
to diagnose malignancy in indeterminate thyroid nodules, with no significant difference
between the two. Both demonstrate high sensitivity and reasonable specificity [141]. Ultra-
sonography (US) remains the primary method for evaluating thyroid lesions. If malignancy
is suspected or the ultrasound results are inconclusive, single-photon emission computed
tomography (SPECT) or ultrasound-guided fine-needle aspiration (FNA) may be used for
follow-up. Computer tomography (CT) is typically employed to assess metastasis, while
magnetic resonance imaging (MRI), with its excellent soft-tissue contrast and high resolu-
tion, is helpful in distinguishing between benign and malignant nodules. Radioiodine is the
preferred diagnostic and therapeutic approach due to the preservation of sodium–iodide
symporter (NIS) in well-differentiated thyroid tumors. For poorly differentiated or ded-
ifferentiated TC, PET/CT and PET/MRI are particularly useful, with emerging evidence
suggesting that PET/MRI may offer superior staging for TC, both at initial diagnosis and
during follow-up evaluations [142,143]. Papillary thyroid cancer (PTC) often lacks clinical
manifestations, with neither hyperthyroidism nor hypothyroidism typically present, as PTC
rarely affects hormone production. The diagnosis is often made when an enlarged gland is
detected, either by the patient or during a clinical examination, typically due to swallowing
or breathing difficulties [26,144]. Extrathyroidal growth of PTC occurs in about 10% of pa-
tients [145], and distant metastases are an uncommon manifestation of the disease [146,147].
Follicular thyroid cancer (FTC) usually presents as a solitary thyroid nodule, often accom-
panied by thyroiditis or nodular hyperplasia. Patients may remain asymptomatic for a long
time, with symptoms appearing only in cases of significant gland enlargement, potentially
leading to dyspnea, tracheal compression, or dysphagia. Currently, it is not possible to
differentiate follicular thyroid adenomas from carcinomas based solely on cytomorphologic
criteria. However, the use of reverse-transcriptase polymerase chain reaction (PCR) for TSH
receptor and thyroglobulin messenger RNA can significantly improve the differentiation
between these malignancies. FTC is confirmed through pathological examination showing
follicular cells that lack nuclear atypia, with diagnosis primarily based on evidence of
capsular and vascular invasion [34]. Medullary thyroid cancer (MTC) manifests similarly
to PTC or FTC, presenting as a thyroid nodule with comparable symptoms. However,
MTC is characterized by the excessive secretion of calcitonin, which can lead to symptoms
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such as diarrhea and flushing. Other substances, such as prostaglandins, serotonin, and
vasoactive intestinal peptide (VIP), may also contribute to diarrhea in MTC. Serum levels
of carcinoembryonic antigen (CEA) should be measured as part of the diagnostic workup
for MTC [57,148,149]. Anaplastic thyroid cancer (ATC) typically presents with a rapidly
growing mass that compresses surrounding structures, leading to dysphagia and dyspnea.
A firm, painful neck lump, often accompanied by swollen lymph nodes, is common in
ATC [150]. About half of ATC cases present with metastases at diagnosis and are classified
as stage IV tumors. Therefore, it is crucial to conduct ultrasound, CT, MRI, and FNAB
to assess tumor extent, local invasion, and possible distant metastases (Table 3) [71]. In
recent years, high-throughput sequencing technologies have made major contributions to
the molecular characterization of thyroid cancer [151]. Next-generation sequencing (NGS),
whole-exome sequencing (WES), and RNA sequencing (RNA-Seq) provide a complete
detection of point mutations, gene fusions, and expression profiles across numerous thyroid
cancer subtypes [152]. NGS panels that target common changes like BRAF V600E, RAS
mutations, RET/PTC rearrangements, and PAX8-PPARy fusions can improve diagnosis
accuracy and inform treatment recommendations for intermediate cytology cases (Bethesda
III/IV) [153]. RNA-Seq also aids in the discovery of uncommon fusion transcripts and
gene expression profiles [154]. These technologies are progressively being integrated into
clinical processes, led by ATA and NCCN recommendations, especially when conventional
procedures produce unclear results [155].

Table 3. Diagnostic techniques for thyroid cancer. Overview of diagnostic techniques used in the
evaluation of thyroid cancer, summarizing their diagnostic value, limitations, and current recommen-
dations based on the latest guidelines from the American Thyroid Association (ATA) and the National
Comprehensive Cancer Network (NCCN). The table aims to provide a systematic comparison of
conventional and advanced methods, with particular emphasis on their role in assessing malignancy
risk and guiding clinical decision-making in indeterminate and advanced cases.

Diagnostic Technique Diagnostic Value Limitations Recommendations (ATA,
NCCN)

Ultrasound (US)

Primary method for
evaluating thyroid nodules,
detects features suspicious

for malignancy (e.g.,
microcalcifications) [131]

May not be sufficient for
definitive diagnosis,

especially in indeterminate
nodules [136]

Recommended as the first
step in diagnosis (ATA,

NCCN) [133]

Fine-needle aspiration
biopsy (FNAB)

Cytological evaluation
helps assess malignancy

risk, particularly in
indeterminate nodules

[133]

Results can be
indeterminate for Bethesda

III/IV nodules [137]

Essential for indeterminate
nodules (ATA, NCCN)

[135]

Molecular genetic testing

Increases diagnostic
accuracy, particularly for
Bethesda III/IV nodules,

aiding in treatment
planning [137]

High cost, availability may
be limited, not always

accessible in every center
[137]

Recommended for
indeterminate nodules

(ATA, NCCN) [137]

Single-photon emission
computed tomography

(SPECT)

Helps assess malignant
changes and potential

metastasis [135]

Requires specialized
equipment, less useful for
evaluating small nodules

[136]

Recommended in
advanced disease,

particularly for metastasis
assessment (ATA) [71]
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Table 3. Cont.

Diagnostic Technique Diagnostic Value Limitations Recommendations (ATA,
NCCN)

Computed tomography
(CT)

Useful for assessing
metastasis, especially in

advanced cases [71]

Limited value for
diagnosing early thyroid

tumors [135]

Recommended for
metastasis assessment

(NCCN) [71]

Magnetic resonance
imaging (MRI)

Helps differentiate
between benign and
malignant nodules,

especially in advanced
disease [134]

Expensive,
time-consuming, requires

specialized equipment
[134]

Recommended for
assessing local invasion
and metastasis (NCCN)

[134]

PET/CT, PET/MRI

Advanced techniques
useful for assessing poorly

differentiated or
dedifferentiated TC

[142,143]

Expensive, limited
availability in some centers

[142,143]

Recommended in
advanced TC, particularly
for staging and follow-up
(ATA, NCCN) [142,143]

High-throughput
sequencing (NGS, WES,

RNA-Seq)

Allows for the complete
profiling of genetic changes

(mutations, fusions,
expression), which

enhances diagnosis and
tailored therapy selection

in intermediate or
aggressive situations

[151,152,154]

Expensive, requires
bioinformatics support,
limited access in some

contexts [156]

Suggested in cases of
ambiguous cytology or

probable advanced illness
(ATA, NCCN) [153,155]

6. Diagnostic Markers of Thyroid Cancer
Diagnostic indicators are critical in the diagnosis of TC because they allow for early

detection of the disease, which is necessary for effective treatment and a better prognosis.
The identification of relevant indicators enables exact diagnosis, which influences treatment
selection and progress tracking.

6.1. Thyroglobulin

More than 90% of DTCs are PTCs, and thyroglobulin (TG), a key substrate for thyroid
hormone production, is an important tumor marker for DTC [157]. Normally, differentiated
thyroid cells produce TG [158], which is a 330 kD, 2750-amino-acid protein produced
by the follicular epithelial cells of the thyroid [159]. These cells are found primarily in
thyroid follicular cells and follicular lumens [159]. Autoantibodies to the TSH receptor
can elevate TG levels, which can result in higher circulating levels in thyroid cancers that
begin in follicular epithelial cells [160]. TG emphasizes the need for close monitoring and is
used to identify recurrent disease and track residual disease [158]. Preoperative serum TG
levels have the potential to differentiate between benign and malignant thyroid nodules
in patients with equivocal cytology [161]. Validated immunoassays calibrated against
approved reference materials should be used to measure serum TG levels. Laboratories
performing TG tests must adhere to recognized national or international quality assurance
programs [162]. Tg secretion is known to occur in both benign and well-differentiated
malignant thyroid tissue [163]. In fact, the presence of anti-TG antibodies (TgAb) may affect
TG test results, and the presence of normal thyroid remnants reduces the utility of TG [164].
According to a study, there is a nonlinear correlation between preoperative TG levels above
1.39 ng/mL and a significant increase in the risk of distant metastases in PCT [165]. In
patients with diabetes and TC, serum TG levels may be associated with HbA1c levels; this
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association is stronger in individuals with fluctuating TG levels, which requires further
study [166]. This association highlights the need for close monitoring and elucidating the
complex links between TC and other metabolic disorders.

6.2. Calcitonin

MTC is an aggressive neuroendocrine tumor that releases the neurotransmitter calci-
tonin gene-related peptide (CGRP) and develops from thyroid parafollicular cells, usually
with a poor prognosis [167]. CGRP expression in MTC is linked to aberrant dendritic cell
(DC) formation [167]. Calcitonin (Ctn) secretion is recognized as one of the primary features
of MTC [57]. Slight elevations in Ctn may be observed in individuals with C-cell hyperpla-
sia, autoimmune thyroiditis, chronic renal illness, hyperparathyroidism, and some lung and
neuroendocrine tumors, potentially leading to false-positive or false-negative results [168].
Ctn and CEA have been proposed as biochemical indicators for MTC according to the
National Comprehensive Cancer Network and American Thyroid Association (ATA) Guide-
lines for Management of MTC [169]. Human plasma includes one or more Ctn-degrading
enzymes, and serum proteases digest the hormone more quickly in plasma [170]. A drop
in Ctn levels of less than 50% 30 min following thyroidectomy and central neck lymph
node dissection (LND) suggests that tumor tissue persists in MTC patients [171]. With a
10-year survival rate of 97.7%, long-term postoperative Ctn normalization as a biochemical
cure is a favorable prognostic factor associated with a better outcome [172]. Serial Ctn tests
may be more sensitive than radiological follow-up in advanced MTC [173]. Serum Ctn
levels are a reliable and accurate biochemical predictor of tumor development for postoper-
ative monitoring [174]. In addition, higher Ctn levels may play an important role in the
early diagnosis of MTC, especially in patients with a family history of medullary thyroid
cancer [175,176]. Therefore, Ctn serves as both a diagnostic and prognostic biomarker,
improving the precision of treatment and follow-up strategies in patients with MTC.

6.3. Carcinoembryonic Antigen

CEA is a glycoprotein initially identified as being involved in intercellular adhesion.
It is expressed by neuroendocrine tissues of the gastrointestinal tract during fetal develop-
ment [177]. CEA is commonly recognized as a marker of various malignant diseases, but it
does not show specificity for MTC when used alone. However, its combined use with Ctn
significantly increases diagnostic sensitivity for MTC [178]. Of note, serum CEA levels are
commonly used to monitor disease progression in patients with MTC [179]. Normal CEA
levels in healthy individuals range from 2 to 4 ng/mL, with levels above 10 ng/mL usually
associated with malignant conditions [180]. More than 50% of patients with MTC have
benign increases in CEA [179,181]. Immunohistochemical studies show that patients with
stronger CEA staining have a more aggressive, diffuse subtype of MTC [168]. Interestingly,
CEA can be detected in C cells at all stages of MTC progression [181]. The rare nature of
MTC should be taken into account when examining CEA elevations [182]. Disease progres-
sion can vary considerably over time but can be relatively well estimated by examining
the doubling time of Ctn and CEA levels [181]. Furthermore, the risk of central lymph
node metastasis is significantly increased when CEA levels exceed 30 ng/mL [183]. Despite
its role in MTC, CEA is also involved in various endothelial cell functions, including cell
adhesion, proliferation, and migration, both in vivo and in vitro [184]. It is mainly me-
tabolized in the liver, and hepatic or biliary dysfunction can lead to elevated CEA levels,
resulting in false-positive results [185]. CEA levels above 271 ng/mL are significant for
advanced tumor size and stage, central compartment metastasis, and a decreased likelihood
of biochemical cure, whereas levels above 500 ng/mL are associated with significantly
higher patient mortality [186]. This highlights the importance of CEA levels as markers
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for assessing prognosis in MTC. Interestingly, a study found that patients with sporadic
MTC had higher postoperative CEA levels and lower trough Ctn levels compared with
patients with hereditary forms of MTC [187]. The revised ATA guidelines indicate that
CEA should not be considered a specific biomarker for MTC, although it is still useful in
disease management. Surgical treatment of patients with elevated CEA levels, particularly
those above 30 µg/L, typically includes total thyroidectomy, central cervical lymph node
dissection, and unilateral lateral cervical LND [188]. Furthermore, monitoring the doubling
time of Ctn and CEA levels after surgery provides sensitive markers for assessing the
progression and aggressiveness of metastatic MTC [189].

6.4. Procalcitonin

Procalcitonin (Pct) is a 116-amino-acid precursor produced by thyroid C cells and is
considered a more reliable and stable biomarker than Ctn for the diagnosis and monitoring
of MTC, which is released by parafollicular cells in the thyroid [190]. In addition to its
role in MTC, PCT is widely used to monitor inflammatory activity and is a key marker in
differential diagnosis, especially in the identification of bacterial infections [191]. It has been
recognized as a valuable biomarker for the early detection of systemic bacterial infections,
and treatment is usually initiated when Pct levels exceed a threshold of 2 ng/mL [192]. Pct
levels do not increase during viral infections, making it a more specific marker for bacterial
infections [192]. It is also the most reliable marker for sepsis [193]. In healthy individuals,
Pct levels are very low because prohormones are not secreted into the circulation [194].
Elevated Pct levels can be observed in various settings, such as trauma, surgery, heat
stroke, immunomodulatory therapy, and malignant diseases, particularly neuroendocrine
tumors and metastatic tumors [195]. Pct production is associated with the presence of
tumor necrosis factor (TNF) and several inflammatory cytokines, including interleukin-1,
interleukin-2, and interleukin-6 [196]. In addition to thyroid C cells, Pct is produced by other
tissues in response to severe systemic inflammation, local bacterial infections, autoimmune
diseases, trauma, surgery, and fungal or parasitic infections [197]. A major advantage
of procalcitonin over other biomarkers is its stability. Pct has a longer half-life, better
thermal stability, and standardized cutoff points, making it a valuable tumor marker in the
diagnosis and monitoring of MTC, and it also correlates with tumor size and progression
in patients with MTC [198]. During the COVID-19 pandemic, persistently high Pct levels
have helped uncover previously undiagnosed cases of MTC, highlighting its potential for
early detection and treatment [199]. Furthermore, when Pct levels remain elevated after
infection, especially in combination with significant CEA levels, it may aid in the early
detection of MTC [190]. Pct also plays a key role in calcium homeostasis [200]. However,
one limitation is that Pct production is not exclusive to C cells, as it is also produced by
neuroendocrine cells in the lung and gut, as well as in other tissues in response to various
inflammatory and infectious conditions [191–193,201].

6.5. Thyroid-Stimulating Hormone

TSH is mainly produced by basophils in the distal part of the adenohypophysis and
plays a vital role in thyroid function. It acts on thyroid tissue by binding to TSH receptors
(TSHRs), which stimulate the production and release of thyroid hormones, including
thyroxine (T4) and triiodothyronine (T3) [202]. Through its receptor, TSH promotes the
growth and activity of thyroid follicular cells, influencing the synthesis and secretion of
these hormones [202]. TSH also stimulates growth in thyroid follicular cells, resulting in
thyroid enlargement [203]. TSH receptors are found on the cell membrane of DTC cells,
and their activation encourages cell growth by increasing the expression of thyroid-related
proteins such as TG [204]. It is widely recognized that high TSH levels stimulate thyroid cell
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proliferation, which can lead to lymph node metastasis and invasion of nearby tissues [205].
This characteristic of TSH has led to the implementation of TSH suppression strategies
in postoperative patients to reduce tumor growth and minimize recurrence risks [206].
However, excessive TSH suppression, particularly in postmenopausal women, has been
linked to negative effects such as osteoporosis and a higher risk of fractures [207]. Research
also shows that maintaining serum TSH levels below 2 mU/L does not significantly affect
the odds ratio for recurrence [204]. However, when serum TSH reaches 2 mU/L or higher,
adverse outcomes, including the recurrence of DTC and cancer-related death, have been
observed [208]. A retrospective study from 1977 indicated that TSH suppression treatment
could significantly lower recurrence rates [209]. Interestingly, some studies suggest that
lower TSH levels might actually increase the risk of thyroid cancer and goiter, a surprising
finding since TSH is usually associated with promoting the growth of thyroid cancers [210].
Factors such as gender, BMI, T stage, and preoperative FT4 levels have been identified as
independent risk factors that affect the success of TSH suppression [211]. These findings
emphasize the complex role of TSH in thyroid cancer biology and the need for careful
management of TSH levels in patients.

6.6. microRNA

Exosomal microRNAs (miRNAs) have emerged as promising biomarkers, offering sig-
nificant potential to enhance prognostic assessments in various cancers, including PTC [212].
MiRNAs are small, non-coding RNA molecules, typically ranging from 19 to 25 nucleotides,
that function as negative regulators of gene expression by binding to the 3′ untranslated
regions of target messenger RNAs (mRNAs) in the cytoplasm [213]. This interaction
results in translation repression and mRNA degradation, which profoundly influence
gene expression within cells [214]. MiRNAs are known for their stability, making them
accessible from a wide range of biological samples, such as blood, tissue biopsies, and
even formalin-fixed paraffin-embedded tissues [215]. Furthermore, circulating miRNAs—
those released into the bloodstream—serve as reliable indicators of cellular changes, with
their levels potentially reflecting clinical features, treatment responses, and patient out-
comes [216]. In thyroid cancer, miRNAs have been implicated both as oncogenes and tumor
suppressors [217]. Specific miRNAs, like miR-31, have shown conflicting evidence in their
relationship with the BRAFV600E mutation in PTC [218]. Other miRNAs, such as miR-129-
5p, have demonstrated the ability to suppress the migration, proliferation, and lymph node
metastasis (LNM) of PTC cells, although further research is needed to better understand
their roles [219]. Additionally, the expression levels of miRNAs such as miR-221, miR-222,
and miR-146 have been shown to distinguish between malignant and benign thyroid nod-
ules, marking them as potential diagnostic biomarkers for early cancer detection [220,221].
Moreover, miRNAs like miR-136 are abnormally expressed in metastatic tumors, playing a
significant role in tumor development and progression [222,223]. The interplay between
miRNAs and genetic mutations in thyroid cancer is also linked to tumor aggressiveness
and poorer prognosis [224], highlighting their importance in personalized medicine. Over-
all, miRNAs are excellent candidates for diagnostic, prognostic, and predictive patient
stratification, offering hope for more accurate and less invasive cancer diagnostics [225].

6.7. BRAF

It has been demonstrated that the tumor cell proliferation index, measured by Ki67
expression, serves as an effective prognostic marker for MTC [226]. BRAFV600E is the most
frequent genetic mutation in DTC, occurring in 60% of patients, and contributes to the
development of malignant tumor cell phenotypes, including proliferation, metastasis, and
immune escape [218]. This V600E mutation, for instance, reduces the expression of genes
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responsible for iodine metabolism, thereby diminishing tumors’ responsiveness to iodine-
131 (131I) [227]. Papillary carcinoma is more commonly observed in patients with the BRAF
mutation than in those without it [228]. In cases where a RAS-like mutation is detected,
there is uncertainty regarding the malignancy risk of the nodule [218]. Anaplastic thyroid
cancer, the most aggressive form of thyroid cancer, is found to harbor BRAF mutations in
over 40% of cases [229]. In normal thyroid tissue, the wild-type BRAF gene is transcribed
into the BRAF protein, which is activated by the RAS family [229]. BRAF is a cytoplasmic
serine–threonine protein kinase that plays a crucial role in the MAPK signaling pathway.
Among the RAF family members, BRAF is the only one activated by mutations in human
cancers. However, BRAFV600E should not be used as the sole prognostic marker in low-
risk thyroid cancer due to its low positive predictive value [230,231]. In conclusion, BRAF
mutations, particularly BRAFV600E, are a significant risk factor for LNM in PTC. Research
indicates that in conventional PTC, the presence of the BRAF mutation increases the risk of
death related to LNM, a risk that is absent in BRAF wild-type cases [232]. Thyroid nodules
with BRAF mutations that are not V600E exhibit a higher malignancy rate (73%), though
still lower than that for nodules with BRAFV600E mutations. According to ATA guidelines,
most of these nodules are classified as low risk, with only 8% being considered intermediate
or high risk [233].

6.8. RAS

RAS mutations, particularly in the KRAS proto-oncogene, are crucial in the progres-
sion of ATC, a highly aggressive form of thyroid cancer. KRAS is part of a family of small
GTP-binding proteins, and mutations in this gene can lead to the constitutive activation
of the RAS/MAPK signaling pathway, promoting tumor growth and metastasis [234,235].
These mutations are observed in approximately 13% of PTC cases, where they often main-
tain some degree of follicular structural differentiation [236]. On the other hand, FTCs
are more commonly associated with RAS mutations, placing them in the RAS-like cate-
gory of thyroid tumors [237,238]. In both FTCs and PTCs, especially those with poorly
differentiated areas, RAS mutations have been identified as important diagnostic markers.
These mutations can be particularly useful when malignancy is not clearly evident through
standard morphological evaluation [239,240]. Moreover, the presence of RAS mutations
correlates with a significantly higher risk of distant metastasis and increased mortality, sug-
gesting their potential as a prognostic marker in thyroid cancer [241]. It is also noteworthy
that most tumors with RAS mutations are classified as the follicular variant of PTC, further
emphasizing the role of these mutations in thyroid tumorigenesis [242]. Collectively, RAS
mutations play a pivotal role in the development and progression of thyroid cancer, with
important implications for diagnosis and prognosis.

6.9. RET

RET mutations play a significant role in the development of thyroid cancer, particu-
larly in PTC [243]. One of the key genetic aberrations implicated in the development of PTC
is the RET chromosomal rearrangement, commonly referred to as RET/PTC [244]. This re-
arrangement is most frequently associated with follicular cell-derived thyroid cancers [245].
RET/PTC fusions are known to result in the formation of a fusion gene, and they are present
in more than 70% of radiation-induced thyroid cancers [246]. This highlights the crucial
role of RET rearrangements in thyroid carcinogenesis, especially in the context of radiation
exposure. The RET proto-oncogene encodes a cell membrane receptor tyrosine kinase,
and when altered, it can lead to the activation of oncogenic signaling pathways that drive
tumor formation [238,247]. There are various types of RET/PTC rearrangements, defined
by different fusion partner genes, with RET/PTC1 and RET/PTC3 being the most common
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forms [248]. These rearrangements are more frequently found in malignant thyroid tissues
than in benign nodules, and they are strongly associated with more aggressive tumor
behavior, including a higher likelihood of lymph node metastasis [249]. RET/PTC is partic-
ularly prevalent in pediatric thyroid cancers, where it is the most common mutation found
in children and adolescents with thyroid cancer [250]. In these patients, RET/PTC muta-
tions are often linked to more aggressive tumor behavior and an increased frequency of
metastatic dissemination [251]. Interestingly, benign thyroid lesions that harbor RET/PTC
translocations are also characterized by a rapid growth rate, which often necessitates early
surgical intervention [252]. This rapid progression underscores the potential malignancy of
thyroid lesions harboring RET/PTC rearrangements, even if initially benign [253]. More-
over, while somatic RET mutations are generally considered negative prognostic indicators,
some studies argue that these mutations do not necessarily correlate with compromised
disease-specific survival (DSS) or overall survival (OS) in patients with MTC [254]. How-
ever, it is important to note that children who possess RET codon mutations exhibit the
most severe manifestations of MTC, highlighting the potential for worse outcomes in this
population [255]. In summary, RET/PTC rearrangements are a crucial molecular event
in thyroid cancer, especially in PTC, and are strongly associated with aggressive disease,
frequent metastasis, and rapid tumor growth. While the prognostic implications of RET
mutations can vary, their role in the pathogenesis of thyroid cancer remains a significant
focus of ongoing research [256].

6.10. Summary

Among the discussed biomarkers, thyroglobulin (Tg) and calcitonin (Ctn) hold the
greatest clinical importance as the primary markers for differentiated thyroid cancer (DTC)
and medullary thyroid cancer (MTC), respectively. While both are well-established tools for
postoperative monitoring and assessing treatment response, their diagnostic accuracy may
be limited by interfering factors such as Tg autoantibodies or comorbid conditions. CEA
and procalcitonin (Pct) enhance the prognostic value of Ctn in MTC but lack sufficient speci-
ficity to serve as standalone markers. Emerging molecular markers—including microRNAs,
BRAF and RAS mutations, and RET/PTC rearrangements—support subtype-specific diag-
nosis and risk stratification and may guide targeted therapy in the future, though further
clinical validation is needed. Importantly, the diagnostic and prognostic relevance of each
marker varies significantly across thyroid cancer subtypes, making histological context and
individual patient characteristics essential for accurate interpretation (Table 4).

Table 4. Diagnostic and prognostic markers in thyroid cancer subtypes and their clinical application.
A summary of significant diagnostic and prognostic biomarkers in thyroid cancer, organized by
histological subtype and clinical applicability. The table summarizes the primary value of each
marker—such as diagnosis, monitoring, or risk assessment—as well as any pertinent limitations,
such as specificity, variability, or clinical application. The purpose of this overview is to clarify the
role of each biomarker in subtype-specific thyroid cancer therapy.

Marker Subtype(s) Clinical Application Limitations/Notes

Thyroglobulin (Tg) PTC, FTC (DTC) [157–160]

Recurrence detection,
residual disease monitoring,
preoperative risk assessment
[158,161,165]

Affected by TgAb; also
secreted by benign thyroid
remnants [163,164]

Calcitonin (Ctn) MTC [167,168]

Early diagnosis,
postoperative monitoring,
biochemical cure assessment
[169,171–173,175]

Elevated in non-malignant
conditions; rapidly degraded
in plasma [168,170]
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Table 4. Cont.

Marker Subtype(s) Clinical Application Limitations/Notes

Carcinoembryonic
antigen (CEA) MTC [177,179,181]

Disease progression
monitoring, aggressiveness
estimation
[179,183,186,187,189]

Non-specific; influenced by
liver function; high levels
correlate with poor
prognosis [180,181,185,186]

Procalcitonin (Pct) MTC [190,198]

Tumor size correlation,
progression monitoring;
adjunct to Ctn and CEA
[190,198,199]

Elevated in infections,
trauma, surgery; not
exclusive to C cells
[191–193,195]

TSH PTC, FTC (DTC) [202,204]
Postoperative management,
recurrence risk stratification
[205,206,208,209]

Oversuppression risks (e.g.,
osteoporosis); complex
relationship with recurrence
[207,210,211]

miRNAs PTC, FTC, ATC [212,217]
Diagnostic and prognostic
value, patient stratification
[216,220,221,224,225]

Experimental; conflicting
evidence; requires clinical
validation [218,219,222,223]

BRAF V600E PTC, ATC [218,229,232]

Risk of lymph node
metastasis, iodine-refractory
tumor indication
[227,228,232]

Not reliable as a sole
prognostic marker in
low-risk disease
[230,231,233]

RAS mutations FTC, PTC (follicular
variant), ATC [234,236,237]

Diagnostic aid, metastatic
risk, mortality prediction
[239–241]

Common in
follicular-pattern tumors;
also present in benign
lesions [238,242]

RET/PTC
rearrangements

PTC (esp.
radiation-induced),
pediatric MTC
[244,246,250]

Diagnostic relevance,
aggressive behavior
predictor, pediatric cases
[249–251]

Present in both benign and
malignant lesions; strongly
linked to radiation exposure
[252,253]

7. Current Treatment Strategies
7.1. Surgical Treatment of Thyroid Cancer
7.1.1. Papillary Thyroid Cancer

At present, surgery is the most common and effective method for treating PCT [26].
The choice of surgical procedure for PCT depends on the patient’s specific clinical condition
and the characteristics of the carcinoma itself. In some situations, the entire thyroid gland
must be removed, while in other cases, a thyroid lobectomy is performed to remove
only the affected lobe. For patients with unilateral goiter, low baseline Ctn levels, and
small tumors (≤2.5 cm), a lobectomy combined with central (±lateral) LND can be an
effective alternative to more extensive procedures such as total thyroidectomy [257]. For
unilateral tumors, lobectomy along with central (±lateral) LND may be sufficient, but for
bilateral or larger (metastatic) tumors, more extensive surgery is required. The decision
on the extent of surgery should be based on imaging results (such as ultrasound) and Ct
levels [258]. In children with DTC, total thyroidectomy, along with bilateral LND of the
central compartment and dissection of affected lateral compartments, is recommended [259].
While PCT generally has a favorable prognosis when diagnosed early, it is often associated
with a high rate of LNM. There is no agreement on whether prophylactic LND should
be a standard procedure for patients with cN0 PTC, though some research indicates it
may improve outcomes and help avoid unnecessary subsequent surgeries, especially
when risk factors are considered [260]. However, aggressive LND can lead to a range
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of postoperative complications, including hypoparathyroidism, chylous leakage, injury
to the cervical plexus, recurrent laryngeal nerve damage, and neck numbness, which
can all negatively affect the patient’s quality of life [261]. In terms of LNM in PTC, our
study supports previous findings that younger age, multifocality, larger tumor size, and
extrathyroidal invasion are independent risk factors for LNM in PTC patients [262]. Thyroid
nodules are common in the general population, with prevalence rates ranging from 50%
to 67% in autopsy studies [263]. Ultrasound imaging of thyroid nodules, followed by
fine-needle aspiration biopsy for cytological analysis, remains the gold standard for pre-
surgical diagnosis [264]. Additionally, a study showed that total thyroidectomy (TT) did
not offer better therapeutic outcomes than thyroid lobectomy in low-risk DTC patients.
Consequently, thyroid lobectomy was included as a treatment option in the 2015 ATA
guidelines, which has led to an increase in both the number of low-risk DTC patients and
the number of those undergoing thyroid lobectomy [204].

7.1.2. Follicular Thyroid Cancer

FTC often develops without noticeable symptoms in its early stages, making it chal-
lenging to detect early. The standard treatment for FTC is thyroid lobectomy, but this
approach is not suitable for larger tumors (>4 cm) or those with significant extrathyroidal
extension [265]. Additionally, surgical options are not recommended for patients with ag-
gressive mutations associated with FTC [266]. In some cases, surgery might be considered
for nodules that are initially classified as benign based on cytology and/or low risk on
ultrasound but later become symptomatic [267]. However, for nodules with indeterminate
cytology (Bethesda class III and IV), where active surveillance is not appropriate—such
as in cases of large size, high suspicion of malignancy on ultrasound, or the presence of
symptoms—surgical intervention may be necessary [268]. For minimally invasive FTC, the
typical treatment involves thyroid lobectomy and isthmectomy, while for invasive FTC,
the preferred treatment includes total thyroidectomy, radioiodine ablation, and the use
of TSH-suppressing medications [34]. Studies indicate that for tumors ranging between
1 and 4 cm, the survival rates following TT and lobectomy are similar when various risk
factors are taken into account [265]. In pediatric patients, lobectomy is often the preferred
approach due to the lower likelihood of aggressive disease and the desire to preserve
thyroid function [269]. The surgical strategy for FTC should be tailored to each individual,
considering tumor characteristics, the patient’s age, and overall health to achieve the best
outcomes and reduce the risk of complications [265]. Moreover, in the treatment of PTC
with a dominant follicular variant (FVPTC), factors such as tumor size, extension outside
the thyroid (extrathyroidal extension), and the patient’s gender are important. Research
shows that for tumors smaller than 2 cm, lobectomy is typically sufficient, and more ag-
gressive surgery is not necessary. However, for tumors larger than 2 cm, particularly those
with extrathyroidal extension, TT is recommended, as it enhances survival rates [270].

7.1.3. Medullary Thyroid Cancer

The treatment for MTC primarily involves surgery, with TT being the preferred option
in most cases, even for smaller unilateral tumors. When MTC is confined to the thyroid,
TT should be performed along with bilateral central LND at level VI. This approach is
recommended because research has demonstrated that CLND increases the likelihood of
a cure [271]. For patients with MTC that is confined to the neck but includes lateral neck
lymph node metastases, total thyroidectomy, bilateral CLND, and selective lateral LND
(covering at least levels II to V) are recommended. During this procedure, it is crucial
to protect key anatomical structures such as the sternocleidomastoid muscle, internal
jugular vein, and accessory nerve [272]. In individuals with RET mutations, particularly



Int. J. Mol. Sci. 2025, 26, 5173 22 of 44

children and younger adults, prophylactic TT may be considered, depending on the type
of mutation and the patient’s age. In adult patients with RET mutations, TT along with
removal of the appropriate lymph nodes based on Ctn levels is generally advised [56].
Recently, for sporadic MTC that is clinically confined to a single thyroid lobe, a less
invasive option such as hemithyroidectomy with or without diagnostic ipsilateral central
LND has been suggested as a risk-reducing approach [273]. For hereditary MTC, the
most effective strategy involves a DNA and biochemical-based approach, which limits
prophylactic surgery to TT to minimize surgical risks before the tumor has spread beyond
the thyroid capsule [273]. In some cases of sporadic MTC, thyroid lobectomy may be
suitable, particularly if preoperative neck ultrasound shows no evidence of metastasis to
the opposite thyroid lobe. Postoperative monitoring of Ctn levels is necessary, and if levels
drop to undetectable levels after lobectomy, further surgery may not be required [274].

7.1.4. Anaplastic Thyroid Cancer

The treatment of choice for ATC is thyroidectomy, yet the majority of cases are diag-
nosed at an advanced stage, rendering them unresectable at presentation [275]. Surgery
plays a crucial role in localized ATC, as surgical resection is the preferred treatment for this
stage [71]. However, for patients with more advanced disease, especially stage IVC, TT is
the preferred method because it has been shown to improve OS and DSS [276]. In some
cases, debulking surgery—removal of part of the tumor—is considered. However, in stage
IVC, this approach is generally contraindicated because it does not offer significant survival
benefits and may result in severe complications, such as delaying the initiation of systemic
treatments, including chemotherapy and radiotherapy [276]. The first step in treating ATC
is often surgery for local control, particularly in patients with stage IVB. In such cases,
surgery may prevent immediate death from asphyxiation; however, these patients often
succumb to the disease due to lung metastases or other complications as their condition
deteriorates [277]. Radiation therapy may also be implemented postoperatively, in addition
to levothyroxine treatment, which is necessary for patients following thyroidectomy. This
postoperative care is crucial to manage hormonal imbalance and other complications [275].
While radical surgery, involving the resection of organs responsible for speech and swallow-
ing, is sometimes performed in certain cases, its benefits are questionable, even when clear
margins are achieved. Most patients still experience poor outcomes despite undergoing
surgery [278]. ATC is commonly diagnosed at an advanced stage, often with invasion into
intrathoracic vessels or prevertebral tissues, which is frequently used as a criterion for
unresectability. However, opinions on the precise definition of resectability vary, making
treatment decisions more complex (Figure 3) [279].

Figure 3. Thyroid cancers, genetics, and surgical treatment.
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7.2. Radioiodine Therapy

After undergoing thyroidectomy, patients diagnosed with PCT generally receive both
radioactive iodine (RAI) therapy and lifelong thyroid hormone replacement. The primary
role of RAI therapy is to eliminate any remaining thyroid tissue or cancer cells that may
be left after surgery. It uses RAI isotopes to target and destroy these cells, enhancing the
treatment’s post-surgery effectiveness [280]. Subsequently, thyroid hormone replacement
is essential to compensate for the lost thyroid gland and maintain normal bodily functions.
On the other hand, MTC, which arises from the thyroid’s parafollicular C cells, does not
concentrate iodine, rendering RAI therapy ineffective. In these cases, alternative treatments
must be considered, as RAI therapy and ablation fail to achieve the desired results. While
RAI therapy provides significant benefits for many patients with DTC, it is not without
its limitations. Resistance to RAI therapy develops in 33–50% of thyroid cancer patients
over time, leading to poorer prognosis and reduced survival [281]. This resistance is
often linked to factors such as the primary tumor exceeding 40 mm in size, extrathyroidal
extension, age over 55 years, and early rises in TG levels, all of which strongly predict a
suboptimal response to treatment [281]. For high-risk DTC patients, particularly those
with lymph node involvement or distant metastases, RAI therapy has been associated with
improved long-term survival, with patients suffering from PTC and metastases showing a
clear benefit [282]. However, RAI therapy is ineffective in treating ATC due to the lack of
iodine uptake and radioresistance in these tumors [283]. Certain conditions contraindicate
the use of RAI therapy, including pregnancy, breastfeeding, the absence of iodine uptake
in TC, and thyroid issues like nystagmus or eye diseases in Graves’ disease, as well as
thyrotoxicosis [284]. For patients without metastases prior to the 123-I scan, an empirical
radioiodine dose is typically administered [285]. The decision to proceed with RAI therapy
is guided by the recurrence risk classification from the ATA, though it can be challenging to
apply in clinical practice due to the multitude of variables involved. Additional diagnostic
tests, such as measuring TG or TgAb and performing neck ultrasound, may help better
identify suitable candidates for therapy [286]. To ensure the success of RAI therapy, a
careful analysis of diagnostic data is essential in determining the appropriate dosage to
minimize complications while maximizing treatment effectiveness. In some instances,
patients with low or very low risk may avoid systemic RAI therapy and instead receive low-
dose protocols, as evidenced by clinical trials like ESTIMABLE2 [286]. RAI therapy is most
beneficial for high-risk patients, such as those with metastatic disease or aggressive tumors.
However, its benefits remain less clear and are a subject of ongoing debate for intermediate-
risk patients [287]. Efforts to restore sensitivity to RAI therapy by redifferentiating thyroid
cancer cells have shown limited success. Although some treatments may increase iodine
uptake, they do not always lead to a clinically meaningful response [288]. For those with
RAI-refractory disease, which includes patients with structural disease despite adequate
preparation for RAI therapy, redifferentiation strategies involving kinase inhibitors (e.g.,
BRAF, MEK, RET) can potentially improve iodine uptake and treatment outcomes [289].
Additionally, RAI therapy can lead to significant alterations in hematological parameters,
such as a reduction in white blood cells, neutrophils, lymphocytes, platelets, and red blood
cells. This change increases the risk of anemia, infection, and bleeding [290]. Furthermore,
I131 (radioactive iodine) primarily induces thyroid cell death through apoptosis, although
necrosis may also occur in some cases. This therapy also impacts the immune response,
shifting it from autoantibody production to a chemokine-driven immune response that
attracts immune cells to inflamed thyroid tissues [291]. In conclusion, RAI therapy remains
a cornerstone in treating DTC, especially for high-risk patients. However, its effectiveness
can be hindered by factors like resistance and the presence of complications. Thus, precise
patient selection and individualized treatment plans are crucial for optimizing outcomes.
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7.3. Chemotherapy

Chemotherapy is infrequently used in the treatment of TC, primarily in advanced
cases such as ATC, which is more aggressive and does not respond well to conventional
treatments [292]. In these situations, when surgery or RAI ablation does not yield satisfac-
tory results, chemotherapy may become the preferred treatment option [292]. Although
chemotherapy plays a limited role in TC treatment, it is mainly employed in ATC, where
chemotherapy alone has shown limited success [293]. Common chemotherapy drugs used
in ATC treatment include doxorubicin, cisplatin, and taxanes such as docetaxel and pacli-
taxel [293]. Despite their relatively widespread use, these medications do not substantially
improve patient survival [294]. Moreover, chemotherapy combinations like doxorubicin
and cisplatin often come with significant side effects, including hematological and gas-
trointestinal issues [295]. However, the combination of doxorubicin and cisplatin tends
to produce a higher response rate than doxorubicin alone. In one study, 20% of patients
showed a partial response, and 30% had stable disease. The median progression-free sur-
vival was 6 months, and the overall survival was 9 months, with tolerable side effects [296].
Doxorubicin chemotherapy remains one of the few palliative options for patients with ad-
vanced or metastatic thyroid cancer resistant to RAI treatment. Administering doxorubicin
at a dose of 60 mg/m2 every three weeks can result in disease stabilization, which, given
the aggressive nature of the tumor, can be considered a therapeutic success [297]. However,
chemotherapy for TC is generally of limited effectiveness, especially in radioiodine-resistant
cases [298].

7.4. Immunotherapy

Recent advancements in TC treatment focus on the use of immunotherapies and
targeted therapies. Immunotherapies, such as PD-1 inhibitors (e.g., pembrolizumab and
spartalizumab), enhance the patient’s immune system to target the tumor, especially in
cases where the cancer is resistant to other treatments. These therapies are particularly
effective for cancers with high microsatellite instability or elevated PDL1 expression, as well
as in ATC [299]. Immunotherapy’s effectiveness varies by tumor type, with ATC showing a
better response due to its higher mutational load, in contrast to PCT or FTC, which have
a lower mutational load and PD-L1 expression [300]. Targeted therapies are essential for
treating rare and aggressive TC forms. Tyrosine kinase inhibitors (TKIs) such as sorafenib,
lenvatinib, vandetanib, and cabozantinib have been approved for treating progressive TC.
Clinical trials have demonstrated their effectiveness in improving progression-free survival
and treatment response rates (ORR) [301]. However, while TKIs are effective, they can
cause specific side effects such as liver issues, gastrointestinal problems, hypertension,
proteinuria, and fatigue, though they avoid typical chemotherapy side effects like hair
loss and nausea [302]. In addition to TKIs, treatments for specific mutations, such as TRK
kinase inhibitors (larotrectinib and entrectinib), have shown success in treating cancers
with NTRK gene mutations [133]. BRAFV600E inhibitors, such as vemurafenib, and their
combination with MEK inhibitors (dabrafenib + trametinib), are particularly effective
for patients with the BRAFV600E mutation in DTC [303]. However, the combination of
dabrafenib and trametinib, while highly effective, can lead to more side effects, particularly
in older patients, causing some to stop treatment [303]. Genetic factors can limit the
effectiveness of these therapies. For example, mutations such as V804M-RET in MTC can
lead to resistance to certain drugs [304]. Although tyrosine kinase inhibitors can stabilize the
disease, they often do not result in complete remission [304]. In cases of unresectable MTC,
systemic therapies like RET-specific inhibitors (pralsetinib and selpercatinib) or TKIs such
as cabozantinib and vandetanib should be used. For tumors with microsatellite instability-
high status or mismatch repair deficiencies, pembrolizumab therapy is also an option [304].
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Targeted therapies continue to evolve, with new drugs like pralsetinib and selpercatinib
focusing on RET gene mutations and entrectinib, larotrectinib, and repotrectinib targeting
NTRK gene mutations. The use of BRAF inhibitors like vemurafenib and dabrafenib, MEK
inhibitors such as trametinib, and anti-angiogenic multi-targeted kinase inhibitors (e.g.,
lenvatinib and sorafenib) is also becoming more widespread [305]. Ongoing monitoring is
crucial in these treatments. Follow-up methods for DTC include serum TG measurements,
neck ultrasonography, and occasionally I-131 whole-body scintigraphy [306]. Additionally,
US-guided FNA-Tg has been shown to be a valuable tool for monitoring DTC patients,
regardless of TSH levels or the presence of TgAb [307]. In summary, a modern approach to
TC treatment involving immunotherapy and targeted therapies offers significant promise,
especially for advanced or resistant cancer cases. However, these treatments’ success
depends on genetic mutations, and close monitoring is essential to manage side effects and
assess their ongoing effectiveness (Figure 4).

Figure 4. Immunotherapy in thyroid cancers.

7.5. Comparison of First-Line and Second-Line Therapies

First-line therapies for TC typically include surgical resection, radioiodine ablation
(RAI) (mainly in differentiated thyroid cancer (DTC), and TSH suppression [107,121]. These
methods, especially when used in early and well-differentiated tumors such as PTC and
FTC, are often curative therapies [107,110,115,121]. Total thyroidectomy with bilateral
lymph node dissection remains the recommended approach in children with DTC, while
thyroid lobectomy is commonly used in minimally invasive FTC [110,121]. In the case of
MTC, surgical treatment—particularly TT with central neck dissection—is the mainstay
of therapy, especially when the disease is limited to the thyroid gland [127]. Similarly,
ATC, which is highly aggressive, is initially treated with thyroidectomy if possible, often
followed by postoperative radiotherapy and levothyroxine therapy [107]. However, there
are cases where the disease becomes refractory to first-line interventions—such as RAI-
refractory DTC, unresectable tumors, or advanced/metastatic disease—in which case
second-line therapies are required. RAI resistance develops in approximately 33–50% of
patients with DTC over time, and this reduces survival and treatment efficacy [139]. In such
cases, systemic therapies become necessary. These include tyrosine kinase inhibitors (TKIs)
such as sorafenib and lenvatinib for progressive, RAI-refractory DTC and vandetanib or
cabozantinib for advanced MTC [171]. In addition, newer RET-specific inhibitors such as
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pralsetinib and selpercatinib have shown efficacy in unresectable or metastatic MTC with
RET mutations [171]. In ATC, BRAF and MEK inhibitors (e.g., dabrafenib and trametinib)
are considered second-line options, particularly in BRAF-mutated tumors, with objective
response rates above 60% [171]. Second-line treatments are often associated with a higher
toxicity burden and a lower likelihood of achieving complete remission compared with
first-line treatment. For example, lenvatinib in RAI-refractory DTC results in a median
progression-free survival of approximately 18 months, which contrasts with the potential
for complete remission with initial RAI therapy in early stage disease [139]. Furthermore,
efforts to redifferentiate thyroid cancer cells to restore iodine sensitivity have had limited
clinical impact, despite theoretical promise [146,147]. Chemotherapy, especially with
doxorubicin, remains a palliative option in advanced, refractory cases [146]. As systemic
treatment options evolve, early integration of targeted or immune-based therapies is
increasingly being considered for aggressive variants such as tall cell thyroid cancer or
poorly differentiated thyroid cancer (Table 5) [171].

Table 5. Comparison of first-line and second-line therapies in thyroid cancer.

Type of Thyroid
Cancer First-Line Therapy Second-Line Therapy

PCT

- Surgery: lobectomy or total
thyroidectomy [107]

- Postoperative radioactive iodine (RAI)
therapy [138]

- Thyroid hormone replacement [138]

- Redifferentiation (BRAF, MEK, RET
inhibitors) [147]

- Tyrosine kinase inhibitors (TKIs),
immunotherapy in resistant cases
[163,165]

FTC

- Surgery: lobectomy, isthmectomy, total
thyroidectomy (TT) [117,121]

- RAI therapy [121]
- TSH suppression [121]

- Targeted therapies in resistant cases
(TKI) [165]

MTC

- Surgery: total thyroidectomy (TT) +
central lymph node dissection (CLND)
[125–127]

- RET inhibitors (pralsetinib,
selpercatinib) [164]

- Tyrosine kinase inhibitors (TKIs):
cabozantinib, vandetanib [165,170]

ATC

- Surgery (if operable) [131,132]
- Radiotherapy [131]
- Thyroid hormone replacement [131]

- Chemotherapy: doxorubicin, cisplatin,
paclitaxel [150,151,160]

- Immunotherapy: PD-1 inhibitors
(pembrolizumab, spartalizumab) [163]

RAI-refractory DTC
- Radioactive iodine (RAI) therapy (if still

effective) [138,140]

- Kinase inhibitors: sorafenib, lenvatinib
[165]

- Redifferentiation: BRAF/MEK/RET
inhibitors [146,147]

RET/NTRK
mutated cancers

- Surgery (if resectable)

- RET inhibitors: pralsetinib, selpercatinib
[170,171]

- NTRK inhibitors: larotrectinib,
entrectinib, repotrectinib [167,171]

7.6. Molecularly Targeted Therapies in Thyroid Cancer: Recent Advances

Recent advances in targeted therapies have resulted in the approval of new molecularly
targeted drugs such as selpercatinib and pralsetinib, which have shown high efficiency in
patients with MTC with RET mutations and DTC with RET fusions [308]. Both medications
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are selective RET kinase inhibitors that have been approved following the findings of trials
such as LIBERTTO-001 (NTC03157128) and ARROW (NTC03037385) [309]. Concurrently,
RET inhibitors such as pralsetinib have demonstrated success in patients with RET-altered
thyroid tumors, including those who have received prior treatment [310]. Furthermore,
PD-1 inhibitors like spartalizumab, when taken with lenvatinib, have demonstrated encour-
aging outcomes in the treatment of anaplastic thyroid carcinoma, a particularly aggressive
kind of thyroid cancer (Table 6) [311].

Table 6. Selected current clinical trials [312].

Study ID (NCT) Drug Combination Molecular
Target

Thyroid Cancer
Type Phase Status

NCT04760288 Pralsetinib vs.
standard care RET RET-mutant

MTC 3 Recruiting

NCT04006676 Pralsetinib RET MTC 1/2 Active, not
recruiting

NCT03954791 Entrectinib NTRK
NTRK

fusion-positive
thyroid cancers

2 Completed

NCT04222972 Spartalizumab +
lenvatinib PD-1 + VEGF ATC 1/2 Recruiting

NTC03157128 Selpercatinib RET inhibitor MTC, DTC 1/2 Completed

NTC03037385 Pralsetinib RET inhibitor MTC, DTC 1/2 Completed

7.7. Considerations in Resource-Limited Settings

In resource-limited settings, the management of thyroid cancer poses significant chal-
lenges due to various limitations in diagnostic tools, treatment modalities, and surgical
expertise [313]. A lack of access to advanced diagnostic technologies such as molecular
testing (e.g., BRAF or RET mutation panels), CT, and MRI is another intractable prob-
lem [314]. As a result, physicians often rely on more basic imaging modalities such as
ultrasound, which are more affordable and available in many centers. However, they
may not provide the same level of detail as more advanced methods. Additionally, essen-
tial therapies such as I-131 therapy, which is key in the treatment of DTC [315], may be
unavailable or prohibitively expensive. Both targeted therapies and genetic testing are
essential for personalized treatment plans but are often out of reach, leading to diagnostic
limitations [316]. Surgical care may also be compromised, as a shortage of skilled endocrine
surgeons increases the risk of suboptimal surgery, potentially affecting prognosis [317].
Furthermore, inadequate access to postoperative monitoring tools such as serum TG testing
or high-quality ultrasound impedes the detection of recurrences and long-term manage-
ment [161]. As a result, treatment protocols may be simplified, and lobectomy may be
preferred over total thyroidectomy to reduce the dependence on lifelong hormonal therapy,
which may not be consistently available [318]. In such circumstances, telemedicine con-
sultations, regional centers of excellence, and international outreach programs play a key
role in improving outcomes by facilitating access to both medical expertise and essential
medications.

8. Future Perspectives
Future perspectives in TC therapy focus on the integration of genomic profiling and

liquid biopsy to guide personalized treatment strategies and overcome resistance to some
existing therapies. Continued research into novel actionable mutations and immune tar-
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gets is essential to expand therapeutic options and improve outcomes for patients with
advanced disease [319]. In the near future, artificial intelligence (AI) technology may be
helpful in accessing the morphological and molecular features of TC. Recent advancements
in AI have significantly enhanced the diagnostic accuracy of thyroid nodules by leveraging
quantitative morphological and cytological features, aiding in the differentiation of chal-
lenging entities such as follicular adenoma, follicular carcinoma, and variants of papillary
thyroid carcinoma. Furthermore, the integration of AI with molecular testing, including
gene panels and protein-based classifiers, holds promise for improving risk stratification,
personalized treatment planning, and the early identification of aggressive disease, thus
setting the stage for more precise and individualized TC management [320]. Moreover,
further research on TC risk factors is vital to elucidate the impact of endocrine-disrupting
chemicals (EDCs) on the incidence and progression of TC and thyroid-related disorders.
Scientists should focus on the role of various classes of EDCs, including heavy metals,
cosmetic ingredients, industrial chemicals, pesticides, herbicides, pharmaceuticals, and
both synthetic and naturally occurring hormones. Comprehensive studies are needed to
better understand their mechanisms of action, exposure pathways, and potential effects
on thyroid function and carcinogenesis [321]. Future perspectives of TC management also
highlight the expanding role of PET/CT, particularly in identifying recurrent or metastatic
disease in patients with non-iodine-avid tumors or elevated thyroglobulin levels. Advance-
ments in novel radiotracers and theragnostic applications may further enhance its clinical
utility, supporting more personalized and effective treatment strategies, though efforts to
improve accessibility, cost-efficiency, and standardization remain essential [322].

9. Conclusions
Thyroid cancer has become a growing global health issue, with its incidence increasing

notably in recent years. This rise is largely attributed to increased exposure to environmen-
tal factors such as chemicals, radiation, and pollution, especially in areas with a higher
HDI. Despite the growing number of diagnoses, death rates have remained relatively
stable, suggesting that while thyroid cancer is generally treatable, challenges persist in its
early detection and management. The disease’s complex epidemiology shows a higher
prevalence among women and younger populations, underscoring the need for targeted
treatment approaches for different cancer subtypes, such as papillary, follicular, medullary,
and anaplastic thyroid cancers. Recognizing key risk factors such as physical inactivity,
obesity, radiation exposure, and genetic mutations is essential for understanding thyroid
cancer’s development. Specifically, mutations in genes like BRAF, RAS, RET, and NTRK
are crucial in assessing disease severity and prognosis. Genetic testing, especially for BRAF
V600E and RET mutations, plays a critical role in tailoring treatment plans, offering better
predictions of disease behavior and aiding therapeutic decisions. Various biomarkers,
including TG, Ctn, CEA, and Pct, are vital for diagnosing and monitoring thyroid cancer.
These markers are useful for early detection, tracking disease progression, and evaluating
treatment effectiveness, particularly in differentiated and medullary thyroid cancers. The
emerging role of microRNAs as exosomal biomarkers shows promising potential for en-
hancing diagnostic accuracy and patient classification. Although traditional treatments
such as surgery and RAI therapy remain foundational, their effectiveness depends on
cancer subtype, tumor size, and genetic characteristics. RAI therapy works well for many
differentiated thyroid cancers but faces resistance, particularly in medullary and anaplastic
types, making alternative treatments like chemotherapy and targeted therapies increasingly
important. Immunotherapies and TKIs have shown potential in cases resistant to standard
treatments, though their success relies heavily on genetic factors and precise patient se-
lection. In conclusion, continued progress in genetic profiling, biomarker discovery, and
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personalized treatment strategies is crucial to improving thyroid cancer outcomes. While
early detection and conventional therapies benefit many patients, those with advanced or
resistant forms require more innovative treatments targeting specific genetic mutations for
better management. The future of thyroid cancer care will likely combine genetic insights,
novel therapies, and individualized approaches to optimize patient outcomes and mitigate
the impact of this growing disease.
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CEA carcinoembryonic antigen
CGRP calcitonin gene-related peptide
CRP C-reactive protein
CT computed tomography
Ctn calcitonin
DC dendritic cell
DSS disease-specific survival
DSV diffuse sclerosing variant
DTC differentiated thyroid cancer
EDCs endocrine-disrupting chemicals
ERα estrogen receptor alpha
ERβ estrogen receptor beta
FMTC familial medullary thyroid cancer
FNA fine-needle aspiration
FNAB fine-needle aspiration biopsy
FNAC fine-needle aspiration cytology
FT3 free triiodothyronine
FT4 free thyroxine
FTC follicular thyroid carcinoma
FTC follicular thyroid cancer
FVPTC follicular variant of papillary thyroid carcinoma
FVPTC PTC with a dominant follicular variant
HDI Human Development Index
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HT Hashimoto thyroiditis
HV hobnail
IGF-1 insulin-like growth factor 1
LND lymph node dissection
LNM lymph node metastasis
MAPK MAP kinase
MEN2 multiple endocrine neoplasia type 2
MEN4 multiple endocrine neoplasia type 4
MRI magnetic resonance
MTC medullary thyroid cancer
NF-kB nuclear factor kappa-light-chain-enhancer of activated B
NIFTP non-invasive follicular thyroid neoplasm with papillary-like nuclear features
NIS sodium–iodide symporter
ORR treatment response rate
OS overall survival
PCR reverse-transcriptase polymerase reaction
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PTC papillary thyroid cancer
RAI radioactive iodine
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T3 triiodothyronine
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TAMs tumor-associated macrophages
TBG thyroxine-binding globulin
TBSRTC The Bethesda System for Reporting Thyroid Cytopathology
TC thyroid cancer
TCV tall cell variant
TG thyroglobulin
TKIs tyrosine kinase inhibitors
TME tumor microenvironment
TNF tumor necrosis factor
TSH thyroid-stimulating hormone
TSHRs TSH receptors
TT total thyroidectomy
TgAb anti-TG antibody
US ultrasonography
VIP vasoactive intestinal peptide
lncRNAs long non-coding RNAs
mRNA messenger RNA
miRNA microRNA
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