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Transcriptome profiling of human hippocampus dentate gyrus
granule cells in mental illness
R Kohen1, A Dobra2,3,4, JH Tracy1 and E Haugen5

This study is, to the best of our knowledge, the first application of whole transcriptome sequencing (RNA-seq) to cells isolated from
postmortem human brain by laser capture microdissection. We investigated the transcriptome of dentate gyrus (DG) granule cells
in postmortem human hippocampus in 79 subjects with mental illness (schizophrenia, bipolar disorder, major depression) and
nonpsychiatric controls. We show that the choice of normalization approach for analysis of RNA-seq data had a strong effect on
results; under our experimental conditions a nonstandard normalization method gave superior results. We found evidence of
disrupted signaling by miR-182 in mental illness. This was confirmed using a novel method of leveraging microRNA genetic variant
information to indicate active targeting. In healthy subjects and those with bipolar disorder, carriers of a high- vs those with a low-
expressing genotype of miR-182 had different levels of miR-182 target gene expression, indicating an active role of miR-182 in
shaping the DG transcriptome for those subject groups. By contrast, comparing the transcriptome between carriers of different
genotypes among subjects with major depression and schizophrenia suggested a loss of DG miR-182 signaling in these conditions.
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INTRODUCTION
Schizophrenia, bipolar disorder and major depression are com-
mon and severely disabling psychiatric conditions with a partially
genetic background.1–4 Family studies have shown co-
aggregation of the major psychiatric disorders, and population-
based studies have indicated shared genetic susceptibility loci.5–9

Further evidence for common etiological factors comes from
similarities in gene expression changes observed in different
diseases, which have implicated deficits in neurotransmission and
mitochondrial function, elevated immune response and inflam-
mation, and downregulation of genes expressed in oligo-
dendrocytes.10–18 The goal of our study was to find common
etiological mechanisms for these diseases through the identifica-
tion of shared transcriptome changes.
One of the brain regions most consistently implicated in mental

illness is the hippocampus, a brain region involved in memory,
cognition, mood regulation and stress response.19 In subjects with
schizophrenia, bipolar disorder or major depression, abnormalities
in hippocampus structure or function as well as a broad range of
gene expression changes have been described.12,13,20–28 The great
majority of prior studies has been done in frontal cortex, but
hippocampus has been repeatedly investigated as well.29,30

However, interpreting changes in the hippocampal transcriptome
is fraught with difficulty because of the different tasks performed
by different hippocampal subregions. Consequently the areas
CA1, CA3, and the dentate gyrus (DG) show large differences in
gene expression; additional variability is introduced by functional
differentiation along the long axis of the hippocampus.31–34 The
DG is of particular interest as it is one of only two brain regions
where adult neurogenesis has been described.35 A large body of

literature has linked hippocampal neurogenesis with psychiatric
illness, including affective disorders and schizophrenia.36,37 We
therefore chose to investigate the transcriptome of DG granule
cells, isolating them from the surrounding tissue and harvesting
them by laser capture microdissection (LCM).38 We believe our
study is the first to combine LCM with RNA-seq.

MATERIALS AND METHODS
Human subjects
Postmortem human brain tissue from 79 individuals was obtained from the
Stanley Medical Research Institute (SMRI) Neuropathology Consortium, the
UCLA Human Brain and Spinal Fluid Resource Center, and the University of
Washington (UW) Neuropathology Core Brain bank. We investigated mid-
hippocampus tissue from 79 subjects. Most (n=60) subjects were from the
SMRI Neuropathology Consortium, a well-described brain collection which
has been extensively used in neuropsychiatric research.39 The collection
consists of four groups of 15 subjects each with schizophrenia, bipolar
disorder, major depression and nonpsychiatric controls. Groups are
matched by gender with nine males and six females per group, and by
age, ranging from 25–68 years. Ten subjects, four males and five females
ranging in age from 44–91 years old, were from the UCLA Human Brain
and Spinal Fluid Resource Center. Of these, two carried a diagnosis of
schizophrenia, one of bipolar disorder, two had suffered from major
depression and five were nonpsychiatric controls. An additional nine
nonpsychiatric controls were from the UW Neuropathology Core Brain
bank. These subjects, five males and four females, ranged in age from
78–91 years.
The gender distribution (41–47% female) did not vary significantly by

disease group (schizophrenia, bipolar disorder, major depression and
nonpsychiatric controls). The mean age of our subjects did vary
significantly by group (Po10− 4), however, because our nonpsychiatric
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control subjects were on average older at death (64± 20 years) than
members of the three disease groups, schizophrenia (47 ± 17 years),
bipolar disorder (42 ± 16 years) and major depression (47 ± 17 years). We
therefore evaluated the possible confounding influence of age by
comparing DG transcriptomes between the seven youngest (age 19–44,
mean 39 ± 5.7 years) and the six oldest (age 90–95, mean 92± 1.9 years)
members of the healthy subject group. We identified four genes whose
levels of expression appeared to be influenced by age (MAGI2, RASGRF1,
USP24 and NUP107). However, none of these genes were identified in any
of our disease group comparisons, indicating that our results were not
influenced by the age difference between psychiatric subjects and
controls.
This study was approved by the Institutional Review Board of the

University of Washington and conducted in accordance with ethics
guidelines for the use of human subjects in research.

Laboratory methods
Fresh frozen 14 μm slide-mounted coronal cryostat sections from mid-
hippocampus were stained and dehydrated using the Arcturus HistoGene
LCM frozen section staining kit (Life Technologies, Grand Island, NY, USA),
and following the manufacturer’s instructions. From each subject, triplicate
samples of about 2000 DG granule cells each were harvested by LCM,
using an Arcturus AutoPix LCM system and CapSure Macro LCM caps
(Molecular Devices, Sunnyvale, CA, USA). Triplicates were processed
separately during cell harvest, RNA extraction and aRNA amplification to
reduce experimental noise introduced during these stages of the
experiment. Harvested cells were removed from the caps and RNA
extracted using PicoPure RNA isolation kits (Life Technologies). RNA was
then linearly amplified over two rounds of aRNA amplification, using
MessageAmp II aRNA amplification kits (Life Technologies), and following
the manufacturer’s protocol. The quality and concentration of aRNA was
checked by spectrophotometry, and only samples with an A260/280 ratio
>1.9 were used. Equimolar amounts of triplicate aRNA samples for each of

the 79 subjects were then pooled for the preparation of sequencing
libraries. To evaluate different normalization/scaling methods, a separate
test data set was prepared. In this data set, duplicate aRNA samples
(denoted A and B) from four randomly chosen subjects (T1–T4) were used
to construct a set of eight libraries.
Sequencing libraries were prepared using Total RNA Sequencing Kit (Life

Technologies), following the directions for Whole Transcriptome Libraries,
and analyzed with an Applied Biosystems SOLiD 4 high-throughput
sequencer with an average singe-end read length of 50 base pairs (bp)
(Life Technologies).
The genetic polymorphism rs76481776 of miR-182 was genotyped using

a StepOnePlus Real-Time PCR System and a TaqMan Custom SNP
Genotyping Assay (Life Technologies). A amount of 50 ng genomic DNA
was amplified in the presence of gene-specific primers and allele-specific
fluorescent probes following the manufacturer’s instructions. Genotypes
were called using TaqMan Genotyper software. For quality control 10% of
the samples were genotyped in duplicate, and the genotype distribution
was tested for deviation from Hardy–Weinberg equilibrium, using a χ2 test.

Data analysis
Reads were mapped and counted using the Applied Biosystems software
BioScope 1.2.1. Transcripts were mapped to genome build GRCh37/hg19
(February 2009 assembly), using the UCSC RefGene annotations and the
BioScope default seed-and-extend approach for mapping. Reads were
mapped to the whole genome file, supplemented by a transcript
annotation file allowing reads to align across known splice junctions with
no gap penalty. Repeat and ambiguously mapped sequences were then
removed from the counts files using a UCSC RepeatMasker file. We then
used the BEDTools bamToBed program to generate files of read
locations.40 We only counted reads mapping to the opposite strand. As
in RNA-seq, even a gene with a single count among multiple subjects will
be listed as ‘expressed’ in the sequencer output, very low-expressing genes
need to be excluded by a threshold criterion to limit experimental

Table 1. Clustering of samples according to different normalization/scaling strategies

Normalization
method

Use of gene length data Scaling Fraction Sample

T1 T2 T3 T4

A B A B A B A B Number of falsely
grouped samples

None Raw data 2 2 4 3 3 3 2 1 2
1 Exon or transcript length not considered 4 4 2 1 2 1 4 3 3
2 Reads multiplied by exon length R N 3 3 2 4 2 4 1 1 2
3 Reads divided by exon length R N 4 4 4 3 1 3 2 2 2
4 Reads multiplied by transcript length R N 2 2 2 3 3 3 1 4 2
5 Reads divided by transcript length R N 3 2 1 4 1 4 1 1 3
6 Reads multiplied by exon length S N 3 3 4 2 4 2 1 1 2
7 Reads divided by exon length S N 3 3 3 2 4 1 4 4 2
8 Reads multiplied by transcript length S N 1 1 1 4 4 4 2 3 2
9 Reads divided by transcript length S N 4 4 1 1 2 1 3 3 1
10 Reads multiplied by exon length R Y 1 1 2 3 2 3 4 4 2
11 Reads divided by exon length R Y 3 3 3 2 4 2 1 1 2
12 Reads multiplied by transcript length R Y 4 4 4 2 1 2 3 3 2
13 Reads divided by transcript length R Y 4 4 2 1 3 1 2 2 2
14 Reads multiplied by exon length S Y 3 3 1 2 1 4 3 3 4
15 Reads divided by exon length S Y 2 2 2 4 3 1 3 3 2
16 Reads multiplied by transcript length S Y 3 3 4 4 1 1 2 2 0
17 Reads divided by transcript length S Y 4 4 3 3 2 3 1 1 1

Shown are cluster memberships for technical replicates (A and B) of four randomly chosen samples (T1–4). The principles guiding the different normalization
strategies with respect to transcript or exon length are shown in column 2. Column 3 delineates the choice of two different scaling methods: R—counts are
divided by the total number of reads per sample; S—counts are scaled to the total sum of gene × length products or quotients per sample. Column 4 indicates
whether individual transcript reads are divided by the total number of mappable reads before entering the equation (N—no; Y—yes), that is, whether reads
per transcript are considered as a fraction or all reads or not. A full description is given in the Methods section. The labels 1, 2, 3 and 4 define the four clusters;
samples that belong to the same cluster receive the same label. Method 3 is analogous to the RPKM method. Only method 16 (bold) leads to the correct
clustering. Methods 9 and 17 (italics) give the same clustering results—only the numbering of the clusters is changed—and perform slightly worse than
method 16, with one falsely grouped sample (T3B).
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noise.41,42 We thus only considered genes to be expressing at analyzable
levels if their raw counts were greater than zero in at least 95% of subjects,
that is, zero in no more than three of our 79 samples. For our test data sets
which were used for the evaluation of different normalization strategies,
this meant that all genes without mappable reads in any one of the eight
samples were excluded (since one out of eight would have amounted to
12.5% zero reads).
The average number of total mapped reads per subject was 16 357 257.

The average fraction of uniquely mapped reads was 45%. For multiple
transcripts at a given genomic location, for example, owing to the
presence of splice variants, only one transcript with the highest number of
counts was included in the analyses. A total of 15 761 of the resulting 22
075 transcripts failed our threshold criterion of expression above
background; the remaining 6314 transcripts/genes were analyzed with
regard to disease-specific expression profiles. Our test data set, used for
the evaluation of different normalization strategies, contained 9858
transcripts. The reason that our test data set contained a third more
transcripts than the analysis data set lies with our exclusion of genes
expressing at background, which led to a higher number of genes being
dropped from the analysis data set.
For the evaluation of different normalization approaches, we compared

a panel of 17 different methods plus raw (non-normalized) data.
Normalization methods differed by their use of exon vs transcript length
data and different scaling approaches (Table 1; also see Supplementary
Methods for a comprehensive mathematical description). Each of these 18
approaches was applied to our test data set consisting of technical
replicates from four subjects (T1–T4). We employed k-means clustering in
an attempt to recover the four natural clusters in which technical replicates
are paired, and evaluated methods by how well they recovered the natural
clusters.
To account for the fact that genes act cooperatively in biological

systems, we developed a new analysis approach for comparison of
transcriptome profiles which is based on the identification of genes which
are, given the presence of all other genes, significantly involved in shaping
a specific gene expression profile. This regression-based analysis approach,
identified by the acronym SIcall (for 'significantly involved calls') is
described in detail in the Supplementary Methods. To infer microRNA
(miRNA) involvement from groups of significantly involved genes, we used
TargetScan (Release 6.3, June 2012). Genotype by target gene expression
interactions were modeled using two-way analysis of variance (ANOVA)
models (see Supplementary Methods for details).

RESULTS
Superior performance of nonstandard normalization methods in
postmortem human brain
LCM combined with aRNA amplification from postmortem human
brain is a powerful technique to obtain cell population specific
transcriptome data, but poses technical challenges. RNA from
postmortem human brain is subject to degradation owing to
agonal factors and a postmortem interval between death and the
preservation of tissue. This problem is compounded by LCM,
during which some amount of RNA degradation inevitably occurs
even with stringent RNAse-free technique.43 In addition, aRNA
production leads to shortening of transcriptomes over successive
cycles of amplification.44–46

In the most widely used normalization strategy for RNA-seq
experiments, the RPKM method (reads per kilobase of exon model
per million mapped reads), dividing raw counts by exon length
reduces the bias that is introduced by the fact that longer genes
accumulate more counts.47 In our sample of 96 subjects, average
mapped reads (raw counts) were more strongly proportional to
total transcript length (r= 0.427, Po10− 4) than to cumulative
exon length, however (r= 0.080, Po10−4) (see also the
Supplementary Figure).
In principle, the shortening of measurable transcripts occurring

as a result of partial mRNA degradation and aRNA amplification
under our experimental condition disproportionally affects shorter
genes. For example, a loss of 500 bp will remove 50% of the signal
from a 1-kb transcript, but only 25% of the signal of a 2-kb mRNA.
As a result, in our experiment shorter genes had ‘noisier’ levels of

expression, as indicated by higher coefficients of variation of the
raw mapped counts. This inversely proportional relationship was
stronger for total transcript length (r=− 0.104, Po10−4) than for
exon length (r=− 0.063, Po10−4).
To answer the question which normalization method would

perform best under our experimental conditions, we designed and
tested 17 different methods, plus no normalization. K-means
clustering was used to compare the quality of different
approaches, based on the assumption that the best performing
method(s) would appropriately cluster technical replicates
together and samples from the four different subjects as distinct.
Only one method (#16) led to the correct clustering; two other
methods produced results that were identical to each other with
one subject placed in the wrong cluster (#9 and #17, Table 1). The
top-performing method filters out a portion of the experimental
noise by introducing a stronger bias against noisier, shorter
transcripts, whereas the two runners-up reduce the inherent
sequencing bias against short transcripts in a way that is similar to
the RPKM method. As the top-performing method, noise
reduction scaling (#16) became the basis for our subsequent
analyses. Length scaling (# 9) was used to compare the effects of
different normalization strategies, and to confirm results.

Identification of transcriptome differences between subject
groups
We made the following seven comparisons (1) all mental illness
(n= 50) vs nonpsychiatric controls (n= 29), (2) schizophrenia
(n= 17) vs nonpsychiatric controls (n= 29), (3) bipolar disorder
(n= 16) vs nonpsychiatric controls (n= 29), (4) major depression
(n= 17) vs nonpsychiatric controls (n= 29), (5) schizophrenia
(n= 17) vs bipolar disorder (n= 16), (6) schizophrenia (n= 17) vs
major depression (n= 17), (7) bipolar disorder (n= 16) vs major
depression (n= 17). Cumulatively these comparisons identified
141 genes as likely to be involved in shaping DG expression
profiles in mental illness (Supplementary Table 1). In contrast the
‘fold change’ output of traditional regression methods, the
weights given by SIcall analysis are a rough measure of the
likelihood of a gene contributing to overall DG gene expression
changes in mental illness, given the presence of all other genes
represented in the transcriptome.

Influence of the normalization and analysis method on gene
identification
Using an alternative normalization method, length scaling instead
of noise reduction scaling led to the identification of 162 genes.
Only 64 of these genes, in particular the most heavily weighted
ones, were identified using both scaling methods. Hence,
identification of the majority of genes was strongly dependent
on the choice of normalization method. For the 64 genes
identified in both versions of the scaled data, there was fairly
good overlap in the pattern of weights generated by our different
comparisons (Supplementary Table 2).
The dependence of gene identification on normalization

method was independent of the type of analysis method used.
Using univariate logistic regression models led to the identifica-
tion of 65 genes as differentially expressed (any of seven group
comparisons, Po0.01) using length scaled data, and 80 genes as
differentially expressed (any of seven group comparisons,
Po0.01) using noise reduction scaling, with an overlap of 26
genes between the two normalization methods (data not shown).
Hence, for either analysis method (SIcall vs a more traditional
approach) only about a third of genes were reproducibly
identified across different normalization methods.
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Deducing miRNA involvement from transcriptome data
We next investigated the possibility that our observed DG
transcriptome changes in mental illness could be the result of
dysregulated miRNA signaling. The deduction of miRNA involve-
ment from mRNA gene expression profiles relies on computa-
tional approaches that match miRNAs to target genes by
searching the 3′UTR of potential miRNA target genes for 6–8 bp
miRNA binding sites. Yet only a subset of miRNA binding sites and
target genes identified by purely computational approaches is
biologically relevant.
To address this problem we applied a two-step approach in

which we used our most heavily weighted genes (Set 1, weights of
4 or greater, n= 21) to discover possible miRNA involvement,
using TargetScan. Genes with a total comparison weight 1–3 were
assigned to Set 2 (n= 117) (Supplementary Table 1). We
hypothesized that if DG transcriptome changes in psychiatric
conditions result at least to some extent from dysregulation of
signaling by a miRNA, both heavily weighted (Set 1) and more
lightly weighted genes (Set 2) should have overrepresentation of
target genes for this particular miRNA compared with the
remainder of transcripts expressing above background but not
identified by SIcall (‘non-called genes’, NC, n= 6055). We further
hypothesized that targeting by this miRNA would be strongest in
Set 1 genes, followed by Set 2 genes, followed by NC genes.
Twenty miRNAs or miRNA families targeted at least 25% (⩾5) of

Set 1 genes (Supplementary Table 3). Among these, two followed
the hypothesized pattern of a drop in targeting rates from Set 1
over Set 2 to NC genes, with statistically significant differences in
the number of targeted genes between Set 2 and NC genes:
miR-182 and the miR-30abcdef/30abe-5p/384-5p family. After
Bonferroni correction for the number of χ2 tests performed, only
miR-182 remained statistically significant (Table 2).
A higher proportion of miR-182 target genes among genes

identified by SIcall compared with NC genes was also observed if
length scaling was used for normalization. A total of 27 of 158
genes identified by SIcall (any weight) in our method 9 normalized
data set were miR-182 targets, compared with 636 targets among
the corresponding 6035 NC genes (χ2 = 6.9, P= 0.009).

Validation of miR-182 involvement in shaping DG granule cell
transcriptomes
Saus et al.48 have shown that a C to T substitution in the single-
nucleotide polymorphism rs76481776 leads to overexpression of
miR-182 in T- vs C-allele carriers and causes a significant reduction
in target gene expression. The minor allele frequency of
rs76481776 in our subjects was 8.9%, that is, 13 of our 79 subjects
were T-allele carriers, one of them a T/T homozygote; the
remaining 66 individuals had the C/C genotype. Our minor allele
(T) frequency of 8.9% was in good agreement with the previously
reported 7.5% in Spanish subjects.48 Genotypes were in Hardy–-
Weinberg equilibrium (not shown).
We hypothesized that whenever miR-182 was active in shaping

DG gene expression profiles, we would be able to observe a
statistically significant difference in target gene expression
between T-allele carriers (C/T or T/T genotype) and those with
the C/C genotype. On the other hand, no difference in miR-182
target gene expression between rs76481776 T-allele carriers vs
noncarriers would indicate that miR-182 is not actively involved in
regulating the transcriptome. To use the functional variant
rs76481776 as a detector of miRNA-182 action on the transcrip-
tome, we compared the expression levels of miR-182 target genes
between carriers and noncarriers of the uncommon T-variant in
each of our three disease groups (schizophrenia, bipolar disorder,
major depression) and in nonpsychiatric controls.
The differences in the mean miR-182 target expression levels

between carriers and noncarriers of the rs76481776 T-allele varied
as a function of the psychiatric diagnosis (F= 13.10, Po10− 4). We

observed significant differences in mean miR-182 target expres-
sion levels between carriers and noncarriers of the T-allele in
nonpsychiatric controls (t= 4.77, Po10− 4) and in subjects with
bipolar disorder (t=− 3.48, Po10− 4). By contrast, target gene
expression levels did not differ significantly by genotype group in
individuals with schizophrenia (t=− 1.61, P= 0.108) or major
depression (t= 0.88, P= 0.380). Hence, although miR-182 targeting
is active in DG granule cells of control subjects and individuals
with bipolar disorder, it appears to be lost in subjects with
schizophrenia and major depression. Using our alternative
normalization method (length scaled data) we could confirm loss
of miR-182 signaling in subjects with depression, but not in
schizophrenia (data not shown).

DISCUSSION
This study is, to the best of our knowledge, the first application of
RNA-seq to cells isolated from postmortem human brain by LCM.
Our whole transcriptome analysis approach, SIcall, will be a useful
addition to the tool chest of other currently available analysis
methods. To our knowledge, our study is also the first to use
genetic methods for validation of miRNA gene targeting in global
transcriptomes.
Gene expression studies in humans are made difficult by the

marked heterogeneity of subjects, which strongly reduces
statistical power.49 We therefore tried to maximize our power to
detect differences between groups by collecting a larger subject
group, using samples from three different brain banks. None-
theless, variability of subject and sample characteristics creates
important confounders in transcriptome comparisons. Previous
studies have indicated that RNA quality, brain pH, postmortem

Table 2. Targeting of SIcall and control gene sets by microRNA
(miRNA)

miRNA/miRNA family % Of genes targeted Set 2 vs NC

Set 1 Set 2 NC Χ2 P

miR-29abcd 40 11 9 0.71 0.399
miR-518a-5p/520d-5p/
524-5p

35 14 18 1.21 0.272

miR-182 30 22 10 16.81 0.00004
miR-3148 30 12 10 0.29 0.593
miR-548ah/3609 30 9 8 0.15 0.701
miR-548c-3p 25 14 18 1.65 0.199
miR-677/4276 30 5 4 0.30 0.585
miR-1326/4766-5p 25 5 6 0.14 0.705
miR-15abc/16/16abc/
195/322/424/497/1907

25 9 11 0.39 0.534

miR-181abcd/4262 25 10 12 0.26 0.609
miR-30abcdef/30abe-5p/
384-5p

25 21 13 5.90 0.015

miR-3613-3p 25 9 12 0.72 0.395
miR-3714 25 16 11 2.71 0.100
miR-4282 25 13 13 0.03 0.856
miR-4698 30 9 11 0.34 0.559
miR-4796-3p 25 6 6 0.02 0.903
miR-513a-5p 25 8 8 0.02 0.890
miR-607 25 18 13 3.09 0.079
miR-9/9ab 25 13 11 0.33 0.566
miR-96/507/1271 25 10 10 0.03 0.872

Listed are all miRNAs/miRNA families targeting at least five (25%) of Set 1
genes. The % of target genes among Set 1 genes (n= 20), Set 2 genes
(n= 117) and non-called genes (NC, transcripts expressing above back-
ground, but not identified by significantly involved calls (SIcall, n= 6055))
are given. For each miRNA, the numbers of target genes vs nontarget
genes in Set 2 vs NC genes were compared using χ2 tests, with P-values
shown in the rightmost column.
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interval, subject gender, ethnicity, age, disease duration, drug
treatment history, suicide status, alcohol and substance abuse
comorbidity can affect results.13 Among these, RNA integrity and
the factors directly affecting it such as postmortem interval and
brain pH have by far the strongest impact.50,51 Analysis of
postmortem human brain has shown that a longer postmortem
interval and lower tissue pH lead to decreased RNA integrity,
which introduces noise into gene expression data.52–54 This is
further exacerbated by a previously demonstrated 30% drop in
RNA integrity during LCM.43 Other covariates may create false
positive reports of differential gene expression or mitigate true
gene expression differences. For example, a previous study of
SMRI samples has shown that higher cumulative lifetime
antipsychotic dose probably normalizes some of the inherent
molecular changes of schizophrenia.55 Additional difficulty is
created by the fact that not all relevant subject information might
be known. For example we did not have access to family
psychiatric history or lifetime exposure to psychotropic drugs for
subjects from the UCLA and UW brain banks. We investigated the
influence of subject age, our potentially most relevant confounder,
on transcriptome differences, and found that it did not affect our
results. Given the large number of potentially confounding subject
variables, however, we cannot exclude the possibility that other
confounders might have influenced our observed gene expression
patterns.
The statistical analysis of transcriptome data traditionally relies

on separate comparison of expression levels for each gene
between case and control conditions, resulting in a report of fold
changes for each gene. To explore the cooperative action of
groups of genes, we used an alternative regression-based analysis
approach (SIcall) looking at the simultaneous actions of up to five
genes. Although models with higher numbers of participating
genes are possible, their computational cost is prohibitive. For
each model, our algorithm generates a large number of logistical
regressions representing the many ways in which small groups of
genes can cooperatively characterize transcriptome differences
between two groups. Similar approaches have previously been
used in the analysis of gene expression data.56 For each
comparison we set the threshold of the probability at which a
gene would be considered involved in shaping gene expression
profiles to 0.05. In other words, if a gene had at least 5%
probability of being featured in one of five sets of logistic
regression models allowing for the simultaneous action of either 1,
2, 3, 4 or 5 genes at a time, it was listed as significantly involved
and entered our subsequent analysis steps. It should be noted that
this 5% represents an empirically chosen probability threshold
which does not correspond to statistical significance. Genes were
weighted by the number of times they were called per
comparison (up to five), and the total weights across all seven
comparisons (up to a theoretical maximum of 35). It should be
noted that total gene weights are not quantitative in the way
gene expression changes are, but they rather represent rough
measures of the likelihood of the involvement of a given gene.
Only the results of the simplest SIcall models, such as those which
investigate one gene at a time, roughly correspond to the
traditional idea of gene-by-gene differential expression.
Including individual disease vs disease comparisons (e.g.

schizophrenia vs major depression) in our analysis was based on
the hypothesis that any gene significantly involved in shaping a
disease-specific transcriptome might also reveal itself in compar-
ison of this disease with any other psychiatric condition. For
example, the gene C9orf102 is heavily weighted in both the
bipolar disorder vs control, and the bipolar disorder vs depression
comparisons. We can hypothesize from this that C9orf102
expression might potentially be useful as a biomarker differentiat-
ing bipolar disorder from major depression, warranting further
experimental exploration and confirmation. The genes OPTN,
FAM124A, OXSR1, RLF and TLL1 are heavily weighted in the

comparison of schizophrenia against major depression, but are
not called in any other comparison. Our analysis does not reveal
which of these genes might be involved in schizophrenia, which in
depression, or which in both, the latter as a result of opposing
gene expression changes in the two conditions. Nonetheless, the
fact that they are called by our analysis indicates that investigating
them further might yield insights into broad processes which may
be dysregulated in major depression or schizophrenia. Our
inclusion of an ‘all disease’ vs nonpsychiatric control comparison
was motivated by the hypothesis that major psychiatric conditions
might share subtle transcriptome changes that are detectable only
if larger groups are compared. However, contrary to this
expectation, there were relatively few genes that had weights
>1 and were called only in the all disease vs control, but not in any
other comparison.
Prior gene expression studies in postmortem human brain have

successfully implicated broad systems dysfunction in mental
illness.10–15 Most of these studies have used microarray technol-
ogy, but RNA-seq has been employed in more recent work.16–18

The vast majority of prior studies investigated tissue blocks as
opposed to near-homogeneous cell populations isolated by LCM.
One previous study exists in which DG gene expression profiles
were compared in subjects with schizophrenia, bipolar disorder,
major depression and nonpsychiatric controls, using LCM and
microarrays.57 The authors found decreased expression of genes
related to protein turnover, energy metabolism and neuronal
functions in subjects with schizophrenia compared with controls.
No significant transcriptome changes were observed in subjects
with major depression or bipolar disorder.
Although prior gene expression studies have been consistent in

reporting systems-level dysfunction in the brains of subjects with
mental illness, for example, inflammation, observations of
differential expression for individual genes have been far less
reproducible. In a meta-analysis of 12 genome-wide expression
studies in postmortem brain of subjects with bipolar disorder
compared with controls, Elashoff et al.14 have shown that the
likelihood of a gene reported as differentially expressed in one
study having a repeat finding in one of 11 other studies was only
9%. This lack of robustness in gene expression findings has
previously been attributed to interacting factors such as tissue pH
and subject age or gender.13 Our findings indicate that the choice
of suboptimal normalization methods may be an additional
contributing factor. Under our experimental conditions the
generally accepted standard of transcriptome normalization, the
RPKM method, showed inferior performance compared with the
other approaches.
We hypothesized that our observed gene expression changes

might have occurred as the result of an overarching dysregulation
of gene expression in mental illness. We chose to look at
posttranscriptional regulation by miRNAs because of strong
evidence of their involvement in DG neurogenesis and major
psychiatric disorders. The miRNAs are a class of small noncoding
RNAs which inhibit expression of groups of target genes through
degradation or inhibition of their mRNAs. Over half of miRNAs are
highly or exclusively expressed in brain, where they participate in
neurogenesis and neuronal plasticity.58–65 Changes in miRNA
expression in postmortem human brain have previously been
shown in schizophrenia,66–74 bipolar disorder72,73 and depression.75

Contrasting with our approach, prior studies have relied on the
direct profiling of miRNA expression using a preselected panel of
miRNAs. Accurate direct profiling of miRNAs in postmortem
human brain could be compromised, however, by potentially
limited miRNA stability in neuronal cells. Although studies in
embryonic cell lines and peripheral organs such as liver and heart
have shown that miRNAs can be highly stable molecules with half-
lives of up to several days,76–78 comparing miRNA decay in
neurons with that in non-neuronal cells, Krol et al.79 found miRNA
decay in neurons to be activity-dependent, and occurring much
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faster than in non-neuronal cells. Their observation of miRNA half-
lives of less than 1 h agrees with other findings in human primary
neuronal cells and short postmortem interval human neocortex,
where Sethi and Lukiw80 reported miRNA half-lives ranging from
1 h to about 3.5 h. The latter would mean that during a
postmortem interval of 24 h, which is the case for many human
subjects in publicly available brain collections, more than 99% of
miRNA molecules have degraded.50 Our ability to directly detect
changes in miRNA expression in our subjects was further
compromised by our use of aRNA amplification. Although miRNAs
are translated from polyadenylated transcripts, the poly-A tail is
lost in mature miRNAs. Hence the bulk of mature miRNAs was lost
during aRNA amplification before the preparation of sequencing
libraries. Possibly as a result of that, we were not able to detect
expression of mir-182 or any member of the miR-30 family in our
subjects.
We believe our study is the first to show evidence of disrupted

miR-182 signaling in schizophrenia and major depression.
Members of the miR-30 family, however, have been repeatedly
shown to have decreased expression in schizophrenia.81 It should
be noted that only a minority of genes identified in our RNA-seq
analysis were actually miR-182 targets. Hence, it is clear that we
were able to discover only one of possibly a multitude of
regulatory mechanisms accountable for shaping DG transcriptome
changes in mental illness.
miR-182 is part of a cluster of three miRNAs,miR-96,miR-182 and

miR-183, which are colocated within a 4 kb genomic segment
located at 7q32.2.82,83 miR-182 is involved in a broad range of
biological processes including regulation of the immune response,
DNA repair, cell proliferation and differentiation, and regeneration
of peripheral nerves after injury.84–89 miR-182 is the highest
expressing miRNA in the pineal gland, where it accounts for 28%
of the miRNA population. There, miR-182 has a rhythmic pattern of
gene expression involving approximately two-fold changes
between the highest levels of expression between 6 am and 12
pm, and the lowest levels during the night.90 In keeping with this,
Saus et al.48 found an association between the rs76481776
polymorphism of the miR-182 gene and patterns of insomnia in
patients with major depression. Disruption of sleep and circadian
rhythmicity are cardinal features of both schizophrenia and major
depression, which aligns with our findings of a possible loss of
miR-182 signaling in these conditions.91–93

CONCLUSIONS
Whole transcriptome analysis by RNA-seq in LCM-isolated DG
granule cells of postmortem hippocampus in subjects with mental
illness and controls showed evidence of disrupted miR-182
signaling in subjects with major depression and schizophrenia.
We validated this finding by showing how the impact of a
functional miR-182 single-nucleotide polymorphism on target
gene expression was lost in subjects with schizophrenia and major
depression. Our paper is the first study in which LCM is combined
with RNA-seq in postmortem human brain. Under these challen-
ging experimental conditions, a noise reduction scaling normal-
ization method outperformed normalization by exon or transcript
length. We also demonstrate the feasibility of a novel, regression-
based method for RNA-seq analysis (SIcall) which allows for the
investigation of cooperative action among small sets of genes and
is a useful complement to existing approaches.
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