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Purpose: Radiomic models have been demonstrated to have acceptable discrimination capability for detecting 

lymph node metastasis (LNM). We aimed to develop a computed tomography–based radiomic model and validate 

its usefulness in the prediction of normal-sized LNM at node level in cervical cancer. 

Methods: A total of 273 LNs of 219 patients from 10 centers were evaluated in this study. We randomly divided 

the LNs from the 2 centers with the largest number of LNs into the training and internal validation cohorts, 

and the rest as the external validation cohort. Radiomic features were extracted from the arterial and venous 

phase images. We trained an artificial neural network (ANN) to develop two single-phase models. A radiomic 

model reflecting the features of two-phase images was also built for directly predicting LNM in cervical cancer. 

Moreover, four state-of-the-art methods were used for comparison. The performance of all models was assessed 

using the area under the receiver operating characteristic curve (AUC). 

Results: Among the models we built, the models combining the features of two phases surpassed the single-phase 

models, and the models generated by ANN had better performance than the others. We found that the radiomic 

model achieved the highest AUCs of 0.912 and 0.859 in the training and internal validation cohorts, respectively. 

In the external validation cohort, the AUC of the radiomic model was 0.800. 

Conclusion: We constructed a radiomic model that exhibited great ability in the prediction of LNM. The application 

of the model could optimize clinical staging and decision-making. 
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Cervical cancer is the fourth most common cancer in the world and

lso the fourth most common cause of cancer mortality in women, with

pproximately 570,000 incident cases and 311,000 deaths in 2018 [1] .

ymph node metastasis (LNM) is one of the most influential prognostic

actors in cervical cancer patients. Previous studies have demonstrated

hat among cervical cancer patients who initially undergo surgery, those

ithout LNM have better 5-year survival rates than those with LNM (80–

00% vs 47–78%) [2] . Accordingly, the 2018 revised International Fed-

ration of Gynecology and Obstetrics (FIGO) staging system of cervical

ancer first included the lymph node (LN) status as a staging criterion.

ervical cancer with lymph node involvement detected at imaging or

athology is categorized as stage IIIC [3] . Therefore, accurate detection

f the lymph node status is important in the staging and decision-making

or the treatment. 

Conventional imaging methods that include computed tomography

CT) and magnetic resonance imaging (MRI), have limited capability

or LNM, with low sensitivity and accuracy, mainly because of normal-

ized LNM that measure < 1 cm [ 4 , 5 ]. Although positron emission to-

ography/computed tomography (PET/CT) has higher sensitivity for

etecting LNM, it has limited capability for detecting normal-sized LNM

6] and early-stage cervical cancer LNM, with a sensitivity of only 32%–

8% [7] . In the literature, approximately 50–80% of LNM are normal in

ize [8–11] . Therefore, improving the capability for noninvasive diagno-

is of normal-sized LNM will be helpful in staging and clinical decision-

aking. 

Radiomics refers to the extraction and analysis of large amounts of

dvanced quantitative imaging features with high throughput from med-

cal images [ 12 , 13 ]. Previous studies have demonstrated that the ra-

iomics method might aid in diagnosing diseases and predicting treat-

ent response and prognosis [14–17] . Recent research also demon-

trated that radiomic features based on MRI, CT, and ultrasonogra-

hy images can be used for predicting LNM in cervical cancer patients

18–23] . However, none of these studies focused on normal-sized LNM.

n addition, although previous studies had demonstrated that the ra-

iomic models at the patient level could improve the ability of predic-

ion of LNM [18–23] , all those studies could not localize the metastatic

Ns, which meant that the previous radiomic models could just predict

he LNM indirectly. Accurate prediction of the involvement in specific

ymph nodes may contribute to precise resection or radiotherapy. There-

ore, the purpose of this study was to develop a CT-based radiomic model

nd validate its usefulness for the direct prediction of normal-sized LNM

n cervical cancer. 

ethods 

atients 

This retrospective study was approved by the institutional review

oard and was conducted according to the tenets of the Declaration of

elsinki and its later amendments. The requirement for informed con-

ent was waived owing to the retrospective nature of the study. The

tudy was conducted on 1543 patients in 10 centers from June 2008

o December 2019. The patients’ inclusion criteria were as follows: (1)

istologically confirmed cervical cancer; (2) history of radical hysterec-

omy + systematic pelvic lymph node dissection ± para-aortic lymph

ode dissection; (3) contrast-enhanced pelvic ± abdominal CT scans less

han 2 weeks before surgery; and (4) pathologically confirmed LN sta-

us with anatomic labeling into the obturator, common iliac, internal il-

ac, external iliac, deep inguinal, parametrial, presacral, and para-aortic

roups. The exclusion criteria were as follows: (1) combined malignan-

ies and (2) missing necessary CT sequences on either arterial or venous

hase CT images. 
2 
To ensure that the lymph node cases included in the study corre-

pond to the pathological results in the imaging images, we have set

trict inclusion criteria. All positive LNs that met the following crite-

ia were included: (1) pathologically confirmed positive LNs in the spe-

ific anatomic regions mentioned above; (2) the number of LNs of the

etastatic nodal anatomic region in the CT image is less than or equal

o the number of positive LNs confirmed by pathology; and (3) the max-

mal short-axis diameter of the positive LNs is ≤ 1 cm in cross-sectional

T images. All negative LNs that met the following criteria were in-

luded: (1) pathologically confirmed negative LNs and (2) the maximal

hort-axis diameter of the negative LNs is ≤ 1 cm in cross-sectional CT

mages. We selected pathologically confirmed normal-sized LNs. Thus,

ome of the included patients may have multiple LNs. 

In total, 273 LNs of 219 patients from 10 centers were included in the

nal study. We selected 2 centers (Nanfang Hospital, Southern Medical

niversity; Affiliated Hospital of Qingdao University) with the largest

umber of LNs and randomly divided them into the training and inter-

al validation cohorts in a 2:1 ratio. The LNs in the remaining 8 centers

ere classified into the external validation cohort. It was worth noting

hat the training cohort was used for training the predicting model and

he internal validation cohort was performed to adjust the parameters.

oreover, we used the external validation cohort to evaluate the per-

ormance and generalization ability of the model. The details are listed

n Supplementary Table S1. 

mage acquisition, segmentation, and radiomic feature extraction 

We retrieved CT images from the picture archiving and communica-

ion system. All images were derived in the Digital Imaging and Commu-

ications in Medicine format. Manual segmentation of the arterial and

enous phase CT images was performed on ITK-SNAP software (version

.6.8; www.itksnap.org ) and included LNs were defined as regions of

nterest (ROIs). The target images were delineated by one gynecologist

ith 5 years of experience (reader1) in pelvic CT diagnosis. Each slice of

he CT image was normalized by using the z-score to obtain a standard

ormal distribution of image intensities [ 24 , 25 ]. Features, including

rst-order (intensity) features, texture features, and shape features, were

xtracted from ROIs of the arterial and venous phase CT images using a

yradiomic package in Python 3.6 software ( http://www.python.org/ )

26] . Then, the radiomic features in the three cohorts were standard-

zed. 

To evaluate the intra- and inter-observer agreement, thirty LNs from

rterial and venous phase CT images were randomly selected from

he dataset. We invited reader1 and another experienced gynecologist

reader2) to independently segment the ROIs again. The intraclass cor-

elation coefficient (ICC) was calculated. The radiomic features with

CCs > 0.75 were considered to be robust and consistent. 

odel building 

All the analyses were based on the training cohort and optimized

o the best performance in the internal validation cohort and tested in

he external validation cohort. In the univariate analysis, we saved the

adiomic features separately which were significantly related to the LNM

n each phase as input for further analysis [27] . 

Fig 1 is the workflow of the model construction. Feature selection

nd classifiers were common and effective methods for establishing

iagnostic models [ 21 , 24–26 , 31 ]. Unlike those methods, single-phase

odels were developed by the artificial neural network (ANN) with 5

ully connected layers by using the features of corresponding single-

hases. Then, a radiomic model was generated by the linear combina-

ion of the arterial and venous single-phase models. Moreover, as exhib-

ted in Supplementary A1, we also used four different state-of-the-art

http://www.itksnap.org
http://www.python.org/
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Table 1 

The characteristics in the three cohorts. 

Index 

Training cohort Internal validation cohort External validation cohort 

Positive Negative Positive Negative Positive Negative 

OLN 20 60 14 33 0 30 

IILN 5 6 1 4 0 3 

PLN 5 0 2 0 1 0 

CILN 5 8 3 1 2 1 

EILN 12 22 1 9 2 9 

DILN 1 4 2 4 0 3 

Total 48 100 23 51 5 46 

OLN, obturator LN; IILN, internal iliac LN; EILN, external iliac LN; CILN, common 

iliac LN; DILN, deep inguinal LN; PLN, parametrial LN. 
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ethods to build and compare single-phase models and combined mod-

ls. 

tatistical analysis 

The performance of the models we built was validated according to

he area under the receiver operating characteristic (ROC) curves (AUC).

he specificity, sensitivity, and accuracy were also calculated. Addition-

lly, a decision curve analysis was performed for the model with the

est performance. The best performing model was also subjected to a

tratified analysis to evaluate its predictive capability under different

natomic regions of LNs. 

In a univariate analysis, the Mann-Whitney U test was adopted for

esting the potential correlation of the radiomic features and LNM in the

raining cohort. Two-sided P values of < 0.05 were considered statisti-

ally significant. All statistical analyses were performed by using R soft-

are (version 3.5.3). The ANN models were constructed through Python

version 3.6.5, https://www.python.org/ ) using the Pytorch package

 https://www.pytorch.org/ ). 

esults 

atient characteristics 

Supplementary Fig 1 illustrates the procedure of data selection.

here were 76 positive LNs and 197 negative LNs ( Table 1 ). In the

raining cohort, 32.4% (48/148) of the LNs were positive and 67.6%

100/148) were negative. In the internal validation cohort, 31.1%

23/74) of the LNs were positive and 68.9% (51/74) were negative.

n the external validation cohort, 9.8% (5/51) of the LNs were positive

nd 90.2% (46/51) were negative. The clinicopathologic characteristics

f the patients are given in Supplementary Table S2. 

odel construction 

A total of 1409 features were extracted from each phase of the CT

mage. 

Those features demonstrated good consistency. The ICCs of 1339 fea-

ures (95.03%) from arterial images and 1330 features (94.39%) from

enous images were greater than 0.75, and therefore, those robust fea-

ures were applied for further analysis. There were 190 and 374 ra-

iomic features from the arterial phase and venous phase, respectively,

hich were significantly correlated with LNM in univariate analysis ( P

 0.05). 

As demonstrated in Supplementary Fig 2 and Table S4–6, we found

hat the models we built had good performance for predicting LNs in

ervical cancer. Moreover, the combined models integrating two-phase

mages surpassed the single- p hase models and the venous phase models

ere better than arterial models. The models built by ANN were higher

han those models developed by other methods. Detailed information
3 
bout those four methods is given in Supplementary A2. Table 2 illus-

rates the performance of the three models generated by ANN. 

The radiomic model exhibited the optimal distinguishing capabil-

ty with the AUCs of 0.912 (95% CI: 0.862–0.963) and 0.859 (95% CI:

.776–0.941) in the training and internal validation cohorts ( Fig 2 ). The

ecision curve analyses of the radiomic model are illustrated in Fig 3 a.

here was a significant difference in the distribution of predicted values

f the radiomic model between positive and negative LNs ( Figs 3 b and

 ). 

linical analysis 

In our study, the LNs we included could be further subdivided into

he obturator LN (OLN), internal iliac LN (IILN), external iliac LN (EILN),

ommon iliac LN (CILN), deep inguinal LN (DILN), and parametrial LN

PLN). Thus, we stratified the LNs into two groups: group 1 including

LN, IILN, and PLN; and group 2 including CILN, EILN, and DILN. The

redictive capability of the radiomic model under the different anatomic

egions of LNs is illustrated in Fig 3 c. We found no significant difference

n the discrimination performance of the radiomic model between group

 and group 2 ( P = 0.011). 

iscussion 

Using a multicenter data set, we successfully developed and vali-

ated a radiomic model based on CT imaging features in the arterial

nd venous phases to discriminate between positive and negative LNs

f normal size in cervical cancer patients. 

LNM is a negative prognostic factor for patients with cervical cancer.

oninvasive prediction of the LN status in patients with cervical cancer

s important to develop a personalized treatment strategy. The conven-

ional methods for evaluating the LN status include CT and MRI, which

etermined the LN status mostly depending on the morphologic appear-

nce of the LN [28] . Primarily, LNM is diagnosed when the short-axis

iameter of the LN is > 1 cm [29] . However, Benedetti et al. reported

hat among cervical cancer patients with positive LNs, the diameter of

etastatic nodes was < 1 cm in 86.5% (333/385) [8] . Another study de-

icted that in patients with gynecologic tumors, 54.5% of positive LNs

ere less than 1 cm in diameter [9] . Normal-sized LNM is common, but

here are few noninvasive methods to identify them. An accurate diagno-

is of normal-sized LNM might be helpful for preoperative staging. Fur-

hermore, it might help with precision resection of the metastatic nodes

r implement individualized radiotherapy in patients with positive LNs.

herefore, it is important to improve the performance of noninvasive

ethods for detecting normal-sized LNM. 

Radiomics has rapidly evolved in recent years, and it may provide

uantitative and objective data that can be helpful for decision-making

bout cancer detection and treatment [ 30 , 31 ]. Several studies have re-

orted that the radiomic signature from CT, MRI, or ultrasound images

as favorable capability in predicting LNM in cervical cancer [18–23] .

adiomic models based on MR images have reported AUCs ranging from

https://www.python.org/
https://www.pytorch.org/
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Fig 1. Workflow of the model construction. (a) CT images from arterial and venous phases. (b) Features including shape, intensity, and texture, extracted from the 

two phases. (c) Arterial and venous phase models and combined models were built. (d) We constructed the radiomic model by ANN with 5 fully connected layers. 

The feature selection method and different classifiers were used for modeling and comparison. mRMR, minimum redundancy maximum relevance; SVM, support 

vector machine; DT, decision tree; RF, random forest; ANN, artificial neural network. 

Table 2 

Performance of the radiomic model. 

Index Specificity Sensitivity Accuracy AUC (95% CI) TN TP FN FP 

Venous phase model 

Training 0.900 0.812 0.872 0.894 (0.832-0.956) 90 39 9 10 

Internal validation 0.784 0.739 0.770 0.853 (0.768-0.939) 40 17 6 11 

External validation 0.652 1.000 0.686 0.835 (0.675-0.995) 30 5 0 16 

Arterial phase model 

Training 0.830 0.729 0.797 0.781 (0.692-0.870) 83 35 13 17 

Internal validation 0.784 0.696 0.757 0.734 (0.598-0.870) 40 16 7 11 

External validation 0.891 0.400 0.843 0.678 (0.466-0.934) 41 2 3 5 

Radiomic model 

Training 0.890 0.854 0.878 0.912 (0.862-0.963) 89 41 7 11 

Internal validation 0.765 0.870 0.797 0.859 (0.776-0.941) 39 20 3 12 

External validation 0.739 0.8 0.745 0.800 (0.667-0.933) 34 4 1 12 

TN, true negative; TP, true positive; FN, false negative; FP, false positive. 

Fig 2. AUCs of all the models we constructed in the internal 

validation cohort. 

4 
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Fig 3. (a) Decision curve of the radiomic model. (b) The distribution of the predicted values of the radiomic model in three cohorts. (c) ROC curves of different 

anatomic regions of LNs in the radiomic model. 

Fig 4. Two examples of the combined model for predicting lymph node metastasis. 
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.754 to 0.922 [ 18–20 , 23 ]. Chen et al. also reported a CT-based ra-

iomic model with acceptable predictive values for LNM in cervical

ancer patients, with the AUC of 0.80 in the training cohort and 0.75

n the validation cohort [21] . In addition, Jin et al. reported the fea-

ibility of the use of radiomic features from ultrasound images [22] .

lthough these studies demonstrated that the radiomic features might

elp to discriminate patients with positive LNs from those with negative

Ns, none of these focused on normal-sized metastatic LNs. Moreover,

he prediction models mentioned above could only indirectly define the

resence of LNM in patients, but could not pinpoint the specific posi-

ive LNs, which was insufficient in the precision resection or radiation

f the metastatic nodes. Sha et al. demonstrated that radiomic features

f mediastinal LNs on CT images exhibited acceptable ability in predict-

ng the involvement of LNs in non-small-cell lung cancer patients [32] .

heir study indicated that radiomic features might be different between

ositive and negative LNs, and these distinguishing features might be

seful for directly predicting the involvement in specific LNs. 

In this study, a radiomic model for diagnosing a normal-sized LNM in

ervical cancer was built by comparison. The models based on venous

hase CT images demonstrated better performance than those models

ased on arterial phase images. This could be because the arterial phase

ainly reflects blood perfusion of tumor tissues, whereas the venous

hase reflects blood clearance, which is an important imaging feature

f tumor metastasis [33] . Perfusion CT imaging can provide an oppor-
5 
unity to quantify tumor heterogeneity (e.g. blood flow, blood volume,

ermeability, and mean transit time) [34] . Our results indicated a more

ignificant heterogeneity between positive and negative LN in the ve-

ous phase. In addition, the models combining the features of the two

hases demonstrated better discrimination capability than the single-

hase models regardless of the method of model construction. This result

ndicated that arterial and venous phase radiomic features play a syner-

istic role in predicting normal-sized LNM. The models constructed by

sing ANN outperformed those carried out by the other four methods,

emonstrating that the ANN model could make full use of all the ex-

racted features and discovered the potential relationship between them.

The radiomic model in our study achieved the highest AUCs of

.912 and 0.859 in the training and internal validation cohorts, respec-

ively, and these were higher than or equal to those in previous studies

 18 , 21 , 22 ]. Another advantage of our study was that we only included

ormal-sized LNs, so that our model can focus on each LN, particularly

he suspicious LNs, and realize an accurate diagnosis. In addition, the

adiomic model had better sensitivity (0.854 and 0.870 in the training

nd internal cohort, respectively) than that of models in previous studies

 18 , 21 , 22 ]. The high sensitivity, which was equal to a low false-negative

ate, might be beneficial for staging and clinical decision-making in pa-

ients with normal-sized LNM. In the external validation cohort, the ra-

iomic model remained to exhibit good performance, with an AUC of

.800. This indicated that the model had acceptable generalization ca-
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ability. In addition, we applied the decision curve analysis to assess

hether the radiomic model-assisted decisions would improve patient

utcomes. Our results demonstrated that the radiomic model was more

eneficial than either the treat-all or the treat-none strategy indicating

ood clinical usefulness. 

The morphologies of pelvic lymph nodes were different from region

o region. To test the feasibility of the radiomic model under different

natomical regions, we divided the LNs into 2 groups in accordance with

he anatomical region for the stratified analysis. The AUC value of the

adiomic model was 0.90 in group 1 and 0.82 in group 2, suggesting that

he prediction model was applicable for evaluating LNs in all anatomical

egions. 

This study also had some limitations. First, the clinical data was in-

ufficient. The discrimination capacity of the combined clinical infor-

ation and imaging features could not be evaluated. Previous studies

ave demonstrated that combined models which included clinical infor-

ation and radiomic features outperformed the radiomic models [23] .

ence, more effective clinical characteristics will be enrolled in future

tudies at the patient level. Second, plain-phase CT images were not en-

olled in our study. Thus, we need to collect more plain-phase CT images

nd evaluate the feasibility of the plain CT radiomic model for predicting

ormal-sized LNM in cervical cancer in the future. Third, this study used

mages from different CT scanners, and the impact of the types of CT

canner and CT scanning parameters should be further studied. Finally,

lthough this was a multicenter data analysis, the number of samples

as relatively small. Future studies should include a higher number of

ases and a balance between the number of negative and positive cases

o further validate the reliability of our model for clinical application. 

onclusion 

In conclusion, we developed and validated a radiomic model incor-

orating the arterial and venous phase CT features for a noninvasive,

irectly diagnosed, normal-sized LNM in cervical cancer patients. The

adiomic model achieved an excellent validation result in this study, and

o some extent, it could assist clinicians in clinical staging and decision-

aking. 
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