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ARTICLE INFO ABSTRACT

Keywords: Purpose: Radiomic models have been demonstrated to have acceptable discrimination capability for detecting
Cervical cancer lymph node metastasis (LNM). We aimed to develop a computed tomography-based radiomic model and validate
Lyglph node metastasis its usefulness in the prediction of normal-sized LNM at node level in cervical cancer.

Radiomics

Preoperative prediction Methods: A total of 273 LNs of 219 patients from 10 centers were evaluated in this study. We randomly divided
Classifiers the LNs from the 2 centers with the largest number of LNs into the training and internal validation cohorts,

and the rest as the external validation cohort. Radiomic features were extracted from the arterial and venous
phase images. We trained an artificial neural network (ANN) to develop two single-phase models. A radiomic
model reflecting the features of two-phase images was also built for directly predicting LNM in cervical cancer.
Moreover, four state-of-the-art methods were used for comparison. The performance of all models was assessed
using the area under the receiver operating characteristic curve (AUC).

Results: Among the models we built, the models combining the features of two phases surpassed the single-phase
models, and the models generated by ANN had better performance than the others. We found that the radiomic
model achieved the highest AUCs of 0.912 and 0.859 in the training and internal validation cohorts, respectively.
In the external validation cohort, the AUC of the radiomic model was 0.800.

Conclusion: We constructed a radiomic model that exhibited great ability in the prediction of LNM. The application
of the model could optimize clinical staging and decision-making.

Abbreviations: LNM, Lymph node metastasis; LN, Lymph node; CT, Computed tomography; ANN, Artificial neural network; MRI, Magnetic resonance imaging;
PET/CT, Positron emission tomography/computed tomography; ROI, Regions of interest; mRMR, Minimum redundancy maximum relevance; SVM, Support vector
machine; DT, Decision tree; RF, Random forest; OLN, Obturator LN; IILN, Internal iliac LN; EILN, External iliac LN; CILN, Common iliac LN; DILN, Deep inguinal LN;
PLN, Parametrial LN; ROC, The area under the receiver operating characteristic; AUC, The area under the receiver operating characteristic curve.
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Introduction

Cervical cancer is the fourth most common cancer in the world and
also the fourth most common cause of cancer mortality in women, with
approximately 570,000 incident cases and 311,000 deaths in 2018 [1].
Lymph node metastasis (LNM) is one of the most influential prognostic
factors in cervical cancer patients. Previous studies have demonstrated
that among cervical cancer patients who initially undergo surgery, those
without LNM have better 5-year survival rates than those with LNM (80—
100% vs 47-78%) [2]. Accordingly, the 2018 revised International Fed-
eration of Gynecology and Obstetrics (FIGO) staging system of cervical
cancer first included the lymph node (LN) status as a staging criterion.
Cervical cancer with lymph node involvement detected at imaging or
pathology is categorized as stage IIIC [3]. Therefore, accurate detection
of the lymph node status is important in the staging and decision-making
for the treatment.

Conventional imaging methods that include computed tomography
(CT) and magnetic resonance imaging (MRI), have limited capability
for LNM, with low sensitivity and accuracy, mainly because of normal-
sized LNM that measure < 1 cm [4,5]. Although positron emission to-
mography/computed tomography (PET/CT) has higher sensitivity for
detecting LNM, it has limited capability for detecting normal-sized LNM
[6] and early-stage cervical cancer LNM, with a sensitivity of only 32%—
58% [7]. In the literature, approximately 50-80% of LNM are normal in
size [8-11]. Therefore, improving the capability for noninvasive diagno-
sis of normal-sized LNM will be helpful in staging and clinical decision-
making.

Radiomics refers to the extraction and analysis of large amounts of
advanced quantitative imaging features with high throughput from med-
ical images [12,13]. Previous studies have demonstrated that the ra-
diomics method might aid in diagnosing diseases and predicting treat-
ment response and prognosis [14-17]. Recent research also demon-
strated that radiomic features based on MRI, CT, and ultrasonogra-
phy images can be used for predicting LNM in cervical cancer patients
[18-23]. However, none of these studies focused on normal-sized LNM.
In addition, although previous studies had demonstrated that the ra-
diomic models at the patient level could improve the ability of predic-
tion of LNM [18-23], all those studies could not localize the metastatic
LNs, which meant that the previous radiomic models could just predict
the LNM indirectly. Accurate prediction of the involvement in specific
lymph nodes may contribute to precise resection or radiotherapy. There-
fore, the purpose of this study was to develop a CT-based radiomic model
and validate its usefulness for the direct prediction of normal-sized LNM
in cervical cancer.

Methods
Patients

This retrospective study was approved by the institutional review
board and was conducted according to the tenets of the Declaration of
Helsinki and its later amendments. The requirement for informed con-
sent was waived owing to the retrospective nature of the study. The
study was conducted on 1543 patients in 10 centers from June 2008
to December 2019. The patients’ inclusion criteria were as follows: (1)
histologically confirmed cervical cancer; (2) history of radical hysterec-
tomy + systematic pelvic lymph node dissection + para-aortic lymph
node dissection; (3) contrast-enhanced pelvic + abdominal CT scans less
than 2 weeks before surgery; and (4) pathologically confirmed LN sta-
tus with anatomic labeling into the obturator, common iliac, internal il-
iac, external iliac, deep inguinal, parametrial, presacral, and para-aortic
groups. The exclusion criteria were as follows: (1) combined malignan-
cies and (2) missing necessary CT sequences on either arterial or venous
phase CT images.
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To ensure that the lymph node cases included in the study corre-
spond to the pathological results in the imaging images, we have set
strict inclusion criteria. All positive LNs that met the following crite-
ria were included: (1) pathologically confirmed positive LNs in the spe-
cific anatomic regions mentioned above; (2) the number of LNs of the
metastatic nodal anatomic region in the CT image is less than or equal
to the number of positive LNs confirmed by pathology; and (3) the max-
imal short-axis diameter of the positive LNs is < 1 cm in cross-sectional
CT images. All negative LNs that met the following criteria were in-
cluded: (1) pathologically confirmed negative LNs and (2) the maximal
short-axis diameter of the negative LNs is < 1 cm in cross-sectional CT
images. We selected pathologically confirmed normal-sized LNs. Thus,
some of the included patients may have multiple LNs.

In total, 273 LNs of 219 patients from 10 centers were included in the
final study. We selected 2 centers (Nanfang Hospital, Southern Medical
University; Affiliated Hospital of Qingdao University) with the largest
number of LNs and randomly divided them into the training and inter-
nal validation cohorts in a 2:1 ratio. The LNs in the remaining 8 centers
were classified into the external validation cohort. It was worth noting
that the training cohort was used for training the predicting model and
the internal validation cohort was performed to adjust the parameters.
Moreover, we used the external validation cohort to evaluate the per-
formance and generalization ability of the model. The details are listed
in Supplementary Table S1.

Image acquisition, segmentation, and radiomic feature extraction

We retrieved CT images from the picture archiving and communica-
tion system. All images were derived in the Digital Imaging and Commu-
nications in Medicine format. Manual segmentation of the arterial and
venous phase CT images was performed on ITK-SNAP software (version
3.6.8; www.itksnap.org) and included LNs were defined as regions of
interest (ROIs). The target images were delineated by one gynecologist
with 5 years of experience (readerl) in pelvic CT diagnosis. Each slice of
the CT image was normalized by using the z-score to obtain a standard
normal distribution of image intensities [24,25]. Features, including
first-order (intensity) features, texture features, and shape features, were
extracted from ROIs of the arterial and venous phase CT images using a
Pyradiomic package in Python 3.6 software (http://www.python.org/)
[26]. Then, the radiomic features in the three cohorts were standard-
ized.

To evaluate the intra- and inter-observer agreement, thirty LNs from
arterial and venous phase CT images were randomly selected from
the dataset. We invited readerl and another experienced gynecologist
(reader2) to independently segment the ROIs again. The intraclass cor-
relation coefficient (ICC) was calculated. The radiomic features with
ICCs>0.75 were considered to be robust and consistent.

Model building

All the analyses were based on the training cohort and optimized
to the best performance in the internal validation cohort and tested in
the external validation cohort. In the univariate analysis, we saved the
radiomic features separately which were significantly related to the LNM
in each phase as input for further analysis [27].

Fig 1 is the workflow of the model construction. Feature selection
and classifiers were common and effective methods for establishing
diagnostic models [21,24-26,31]. Unlike those methods, single-phase
models were developed by the artificial neural network (ANN) with 5
fully connected layers by using the features of corresponding single-
phases. Then, a radiomic model was generated by the linear combina-
tion of the arterial and venous single-phase models. Moreover, as exhib-
ited in Supplementary Al, we also used four different state-of-the-art
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Table 1
The characteristics in the three cohorts.
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Training cohort

Internal validation cohort

External validation cohort

Index — - — - — -
Positive Negative Positive Negative Positive Negative

OLN 20 60 14 33 0 30

IILN 5 6 1 4 0 3

PLN 5 0 2 0 1 0

CILN 5 8 3 1 2 1

EILN 12 22 1 9 2 9

DILN 1 4 2 4 0 3

Total 48 100 23 51 5 46

OLN, obturator LN; IILN, internal iliac LN; EILN, external iliac LN; CILN, common
iliac LN; DILN, deep inguinal LN; PLN, parametrial LN.

methods to build and compare single-phase models and combined mod-
els.

Statistical analysis

The performance of the models we built was validated according to
the area under the receiver operating characteristic (ROC) curves (AUC).
The specificity, sensitivity, and accuracy were also calculated. Addition-
ally, a decision curve analysis was performed for the model with the
best performance. The best performing model was also subjected to a
stratified analysis to evaluate its predictive capability under different
anatomic regions of LNs.

In a univariate analysis, the Mann-Whitney U test was adopted for
testing the potential correlation of the radiomic features and LNM in the
training cohort. Two-sided P values of < 0.05 were considered statisti-
cally significant. All statistical analyses were performed by using R soft-
ware (version 3.5.3). The ANN models were constructed through Python
(version 3.6.5, https://www.python.org/) using the Pytorch package
(https://www.pytorch.org/).

Results
Patient characteristics

Supplementary Fig 1 illustrates the procedure of data selection.
There were 76 positive LNs and 197 negative LNs (Table 1). In the
training cohort, 32.4% (48/148) of the LNs were positive and 67.6%
(100/148) were negative. In the internal validation cohort, 31.1%
(23/74) of the LNs were positive and 68.9% (51/74) were negative.
In the external validation cohort, 9.8% (5/51) of the LNs were positive
and 90.2% (46/51) were negative. The clinicopathologic characteristics
of the patients are given in Supplementary Table S2.

Model construction

A total of 1409 features were extracted from each phase of the CT
image.

Those features demonstrated good consistency. The ICCs of 1339 fea-
tures (95.03%) from arterial images and 1330 features (94.39%) from
venous images were greater than 0.75, and therefore, those robust fea-
tures were applied for further analysis. There were 190 and 374 ra-
diomic features from the arterial phase and venous phase, respectively,
which were significantly correlated with LNM in univariate analysis (P
< 0.05).

As demonstrated in Supplementary Fig 2 and Table S4-6, we found
that the models we built had good performance for predicting LNs in
cervical cancer. Moreover, the combined models integrating two-phase
images surpassed the single-phase models and the venous phase models
were better than arterial models. The models built by ANN were higher
than those models developed by other methods. Detailed information

about those four methods is given in Supplementary A2. Table 2 illus-
trates the performance of the three models generated by ANN.

The radiomic model exhibited the optimal distinguishing capabil-
ity with the AUCs of 0.912 (95% CI: 0.862-0.963) and 0.859 (95% CIL:
0.776-0.941) in the training and internal validation cohorts (Fig 2). The
decision curve analyses of the radiomic model are illustrated in Fig 3a.
There was a significant difference in the distribution of predicted values
of the radiomic model between positive and negative LNs (Figs 3b and
4.

Clinical analysis

In our study, the LNs we included could be further subdivided into
the obturator LN (OLN), internal iliac LN (IILN), external iliac LN (EILN),
common iliac LN (CILN), deep inguinal LN (DILN), and parametrial LN
(PLN). Thus, we stratified the LNs into two groups: group 1 including
OLN, IILN, and PLN; and group 2 including CILN, EILN, and DILN. The
predictive capability of the radiomic model under the different anatomic
regions of LNs is illustrated in Fig 3c. We found no significant difference
in the discrimination performance of the radiomic model between group
1 and group 2 (P = 0.011).

Discussion

Using a multicenter data set, we successfully developed and vali-
dated a radiomic model based on CT imaging features in the arterial
and venous phases to discriminate between positive and negative LNs
of normal size in cervical cancer patients.

LNM is a negative prognostic factor for patients with cervical cancer.
Noninvasive prediction of the LN status in patients with cervical cancer
is important to develop a personalized treatment strategy. The conven-
tional methods for evaluating the LN status include CT and MRI, which
determined the LN status mostly depending on the morphologic appear-
ance of the LN [28]. Primarily, LNM is diagnosed when the short-axis
diameter of the LN is > 1 cm [29]. However, Benedetti et al. reported
that among cervical cancer patients with positive LNs, the diameter of
metastatic nodes was < 1 cm in 86.5% (333/385) [8]. Another study de-
picted that in patients with gynecologic tumors, 54.5% of positive LNs
were less than 1 cm in diameter [9]. Normal-sized LNM is common, but
there are few noninvasive methods to identify them. An accurate diagno-
sis of normal-sized LNM might be helpful for preoperative staging. Fur-
thermore, it might help with precision resection of the metastatic nodes
or implement individualized radiotherapy in patients with positive LNs.
Therefore, it is important to improve the performance of noninvasive
methods for detecting normal-sized LNM.

Radiomics has rapidly evolved in recent years, and it may provide
quantitative and objective data that can be helpful for decision-making
about cancer detection and treatment [30,31]. Several studies have re-
ported that the radiomic signature from CT, MRI, or ultrasound images
has favorable capability in predicting LNM in cervical cancer [18-23].
Radiomic models based on MR images have reported AUCs ranging from
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Fig 1. Workflow of the model construction. (a) CT images from arterial and venous phases. (b) Features including shape, intensity, and texture, extracted from the
two phases. (c) Arterial and venous phase models and combined models were built. (d) We constructed the radiomic model by ANN with 5 fully connected layers.
The feature selection method and different classifiers were used for modeling and comparison. mRMR, minimum redundancy maximum relevance; SVM, support

vector machine; DT, decision tree; RF, random forest; ANN, artificial neural network.

Table 2

Performance of the radiomic model.
Index Specificity ~ Sensitivity =~ Accuracy ~ AUC (95% CI) TN TP FN FP
Venous phase model
Training 0.900 0.812 0.872 0.894 (0.832-0.956) 90 39 9 10
Internal validation 0.784 0.739 0.770 0.853 (0.768-0.939) 40 17 6 11
External validation 0.652 1.000 0.686 0.835 (0.675-0.995) 30 5 0 16
Arterial phase model
Training 0.830 0.729 0.797 0.781 (0.692-0.870) 83 35 13 17
Internal validation 0.784 0.696 0.757 0.734 (0.598-0.870) 40 16 7 11
External validation 0.891 0.400 0.843 0.678 (0.466-0.934) 41 2 3 5
Radiomic model
Training 0.890 0.854 0.878 0.912 (0.862-0.963) 89 41 7 11
Internal validation 0.765 0.870 0.797 0.859 (0.776-0.941) 39 20 3 12
External validation 0.739 0.8 0.745 0.800 (0.667-0.933) 34 4 1 12

TN, true negative; TP, true positive; FN, false negative; FP, false positive.
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Fig 3. (a) Decision curve of the radiomic model. (b) The distribution of the predicted values of the radiomic model in three cohorts. (c) ROC curves of different

anatomic regions of LNs in the radiomic model.

Case 1

Case 2

Axial Venous Phase CT

Age: 47y

Stage: TA2

Histologic findings: Adenocarcinoma

CT-LN: 0.80cm

Pathology: Right Obturator Lymph node Negative
Radiomic model predicted value: 0.0897
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T e—— Py i g

Age: 53y

Stage: [IB

Histologic findings: Squamous carcinoma
CT-LN: 0.73cm

Pathology: Right Obturator Lymph node Positive
Radiomic model predicted value: 0.759

Fig 4. Two examples of the combined model for predicting lymph node metastasis.

0.754 to 0.922 [18-20,23]. Chen et al. also reported a CT-based ra-
diomic model with acceptable predictive values for LNM in cervical
cancer patients, with the AUC of 0.80 in the training cohort and 0.75
in the validation cohort [21]. In addition, Jin et al. reported the fea-
sibility of the use of radiomic features from ultrasound images [22].
Although these studies demonstrated that the radiomic features might
help to discriminate patients with positive LNs from those with negative
LNs, none of these focused on normal-sized metastatic LNs. Moreover,
the prediction models mentioned above could only indirectly define the
presence of LNM in patients, but could not pinpoint the specific posi-
tive LNs, which was insufficient in the precision resection or radiation
of the metastatic nodes. Sha et al. demonstrated that radiomic features
of mediastinal LNs on CT images exhibited acceptable ability in predict-
ing the involvement of LNs in non-small-cell lung cancer patients [32].
Their study indicated that radiomic features might be different between
positive and negative LNs, and these distinguishing features might be
useful for directly predicting the involvement in specific LNs.

In this study, a radiomic model for diagnosing a normal-sized LNM in
cervical cancer was built by comparison. The models based on venous
phase CT images demonstrated better performance than those models
based on arterial phase images. This could be because the arterial phase
mainly reflects blood perfusion of tumor tissues, whereas the venous
phase reflects blood clearance, which is an important imaging feature
of tumor metastasis [33]. Perfusion CT imaging can provide an oppor-

tunity to quantify tumor heterogeneity (e.g. blood flow, blood volume,
permeability, and mean transit time) [34]. Our results indicated a more
significant heterogeneity between positive and negative LN in the ve-
nous phase. In addition, the models combining the features of the two
phases demonstrated better discrimination capability than the single-
phase models regardless of the method of model construction. This result
indicated that arterial and venous phase radiomic features play a syner-
gistic role in predicting normal-sized LNM. The models constructed by
using ANN outperformed those carried out by the other four methods,
demonstrating that the ANN model could make full use of all the ex-
tracted features and discovered the potential relationship between them.

The radiomic model in our study achieved the highest AUCs of
0.912 and 0.859 in the training and internal validation cohorts, respec-
tively, and these were higher than or equal to those in previous studies
[18,21,22]. Another advantage of our study was that we only included
normal-sized LNs, so that our model can focus on each LN, particularly
the suspicious LNs, and realize an accurate diagnosis. In addition, the
radiomic model had better sensitivity (0.854 and 0.870 in the training
and internal cohort, respectively) than that of models in previous studies
[18,21,22]. The high sensitivity, which was equal to a low false-negative
rate, might be beneficial for staging and clinical decision-making in pa-
tients with normal-sized LNM. In the external validation cohort, the ra-
diomic model remained to exhibit good performance, with an AUC of
0.800. This indicated that the model had acceptable generalization ca-
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pability. In addition, we applied the decision curve analysis to assess
whether the radiomic model-assisted decisions would improve patient
outcomes. Our results demonstrated that the radiomic model was more
beneficial than either the treat-all or the treat-none strategy indicating
good clinical usefulness.

The morphologies of pelvic lymph nodes were different from region
to region. To test the feasibility of the radiomic model under different
anatomical regions, we divided the LNs into 2 groups in accordance with
the anatomical region for the stratified analysis. The AUC value of the
radiomic model was 0.90 in group 1 and 0.82 in group 2, suggesting that
the prediction model was applicable for evaluating LNs in all anatomical
regions.

This study also had some limitations. First, the clinical data was in-
sufficient. The discrimination capacity of the combined clinical infor-
mation and imaging features could not be evaluated. Previous studies
have demonstrated that combined models which included clinical infor-
mation and radiomic features outperformed the radiomic models [23].
Hence, more effective clinical characteristics will be enrolled in future
studies at the patient level. Second, plain-phase CT images were not en-
rolled in our study. Thus, we need to collect more plain-phase CT images
and evaluate the feasibility of the plain CT radiomic model for predicting
normal-sized LNM in cervical cancer in the future. Third, this study used
images from different CT scanners, and the impact of the types of CT
scanner and CT scanning parameters should be further studied. Finally,
although this was a multicenter data analysis, the number of samples
was relatively small. Future studies should include a higher number of
cases and a balance between the number of negative and positive cases
to further validate the reliability of our model for clinical application.

Conclusion

In conclusion, we developed and validated a radiomic model incor-
porating the arterial and venous phase CT features for a noninvasive,
directly diagnosed, normal-sized LNM in cervical cancer patients. The
radiomic model achieved an excellent validation result in this study, and
to some extent, it could assist clinicians in clinical staging and decision-
making.
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