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Abstract: A series of phosphorus-arsenic peri-substituted acenaphthene species have been isolated
and fully characterised, including single crystal X-ray diffraction. Reactions of EBr3 (E = P, As)
with iPr2PAcenapLi (Acenap = acenaphthene-5,6-diyl) afforded the thermally stable peri-substitution
supported donor–acceptor complexes, iPr2PAcenapEBr2 3 and 4. Both complexes show a strong P→E
dative interaction, as observed by X-ray crystallography and 31P NMR spectroscopy. DFT calculations
indicated the unusual As···As contact (3.50 Å) observed in the solid state structure of 4 results
from dispersion forces rather than metallic interactions. Incorporation of the excess AsBr3 in the
crystal structure of 3 promotes the formation of the ion separated species [iPr2PAcenapAsBr]+Br− 5.
A decomposition product 6 containing the rare [As6Br8]2– heterocubane dianion was isolated and
characterised crystallographically. The reaction between iPr2PAcenapLi and EtAsI2 afforded tertiary
arsine (BrAcenap)2AsEt 7, which was subsequently lithiated and reacted with PhPCl2 and Ph2PCl to
afford cyclic PhP(Acenap)2AsEt 8 and acyclic EtAs(AcenapPPh2)2 9.

Keywords: peri-substitution; arsenic; organophosphorus; pnictine; single crystal X-ray structures

1. Dedication

This paper is dedicated to Prof Alex Slawin on the occasion of her 60th birthday, a
world class crystallographer, a caring and compassionate colleague and mentor.

2. Introduction

Phosphines (R3P) are known as prototypical neutral donors (Lewis bases) with the
most common examples being their use as tunable ligands in coordination chemistry [1,2].
Bonding occurs through donation of the phosphorus lone pair into an acceptor orbital on
the metal (σ-component), often combined with the acceptance of electron density from the
metal orbitals to empty orbitals on the phosphine (π-component). Arsines are also used as
ligands, although their use is somewhat limited by their greater toxicity.

Although possessing a lone pair of electrons, both phosphines and arsines can also
act as electron pair acceptors (Lewis acids) when equipped with electron withdrawing
substituents, such as halogens [3].

For this paper, dative species in which a phosphine acts as donor, and another phos-
phine or arsine acts as acceptor, are of interest. Holmes experimented with various pnic-
togen compounds to form pnictogen–pnictogen donor–acceptor complexes, and in all
cases, decomposition occurred at ambient temperatures [4,5]. For example, the reaction
between Me3P and PCl3 (both colourless liquids) afforded a white solid of the composition
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(Me3P)2·PCl3 at temperatures below freezing, the solid however decomposed upon warm-
ing [5]. Sisler then investigated the decomposition pathways and discovered redox degra-
dation occurred readily at ambient conditions (e.g., Et3P + MePCl2→ Et3PCl2 + (MeP)5) [6].

It was not until 2001 that the first examples of phosphine–phosphine donor–acceptor
species, Me3P→PBr3 and Me3P→Bz’PBr2 (Bz’ = 3,5-dimethylbenzyl), were structurally
characterised by Müller and Winkler (Figure 1) [7]. Even so, these two adducts still
decomposed at ambient conditions.
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The first room temperature stable phosphine–phosphine donor–acceptor complex,
(iPr2PAcenapPCl2 (Acenap = acenaphthene-5,6-diyl), was isolated almost a decade later
by us [8]. With peri-substitution enforcing the interaction between the two phosphorus
atoms, the resulting strong dative interaction and reduced flexibility makes the redox
decomposition pathways less accessible, allowing isolation and manipulation of these
dative species at ambient temperatures.

Donor–acceptor species with heavier acceptor pnictogens were reported to be more
stable owing to their reduced propensity to the redox decomposition pathways. Thus,
while Me3P→PCl3 decomposes above −20 ◦C, [9] (Me3P)2→SbCl3 and Me3As→SbCl3 are
stable at ambient conditions and melt with decomposition at 110 ◦C [10] and 145 ◦C [4,11],
respectively. In his early study, Sisler reported on the prototypical R3Pn’→PnX3 pnictogen-
pnictogen donor–acceptor complexes. Their stability was increased for heavier halogens in
the acceptor species (I > Br > Cl > F) and followed the trend Sb > As > P for the Pn in the
acceptor species (PnX3), while the stability trend As > P > Sb was observed for Pn’ in the
donor species (R3Pn’) [9]. The stability of these and related dative species is likely to be
driven by the difference in the Lewis acidity and basicity of the donor and acceptor (i.e., the
strength of the dative bond), combined with the redox properties of the two components
(i.e., the reducing and oxidising power of these). Comprehensive accounts on neutral [12]
and related cationic species [13,14] have been published recently, encompassing the variety
of the structural modes adopted by main group pnictine complexes.

In the last two decades, we and others focused our attention on the peri-substituted
pnictogen–pnictogen donor–acceptor complexes as shown in Figure 2.

Among complexes with dihalopnictines as acceptors, four structural types have been
observed, including two molecular modes (A, B), µ-dichloro-bridged dimer C and fully
ionic species D. Monohalopnictogen adducts attain two structural types, D (ionic) and
B (molecular).
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structural diversity [8,15–23].

Motivated by the utility of dihalopnictines as precursor molecules in the development
of new radical C–H coupling reactions [21], our attention turned to related species with
dibromopnictine acceptor groups. Replacement of chlorine atoms with bromine was
expected to alter thermal stability (through altering redox properties) and solubility in
organic solvents (through altering the aggregation properties); both thermal stability and
solubility are important for the synthetic utility of these dihalides. We also report on the
chemistry of a geminal bis(acenaphthene)arsine, specifically its ability to tolerate treatment
with nBuLi without cleavage of the As–C bonds. This opens up new synthetic pathways to
further P and As peri-substituted species, some of which may serve as the C–H coupling
precursors as mentioned above.

3. Results & Discussion
3.1. Reactions Involving PBr3 and AsBr3

In the syntheses described herein, 5,6-dibromoacenaphthene, 1, was used as the
principal precursor. Two subsequent lithium–halogen exchanges, followed by reactions
with pnictogen halide electrophiles, were used to access the variety of peri-substitution
patterns shown in Scheme 1.

5-Bromo-6-(diisopropylphosphino)acenaphthene 2 was prepared using our literature proce-
dure [8]. Lithiation of 2 using nBuLi, followed by a slow addition of the formed iPr2PAcenapLi
to a fivefold excess PBr3, gave the phosphonium-phosphoranide 3 (iPr2PAcenapPBr2) in a
good yield (65%). The related phosphonium-arsoranide 4 (iPr2PAcenapAsBr2) was made
using the same procedure in ~75% yield; however, in this case, only one molar equivalent
of AsBr3 was used in the reaction. The selectivity of the reactions of aryllithiums towards
pnictogen halides PnX3 (Pn = pnictogen) is affected greatly by the order and rate of the re-
actant addition and the stoichiometric ratio of the reagents. A large excess of the pnictogen
halide is often necessary in order to promote monosubstitution giving R2PAcenapPnX2,
i.e., to avoid geminal di- or trisubstitution, leading to the formation of (R2PAcenap)2PnX or
(R2PAcenap)3Pn [8,15,17,22,24,25]. In the preparation of 3, the excess PBr3 was necessary
to achieve good yields; the excess PBr3 was removed by careful washing with THF and
diethyl ether.
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Compounds 3 and 4 represent an expansion of the small number of phosphine-
phosphine and phosphine–arsine donor–acceptor complexes, that are stable (isolable) at
ambient temperatures. The unsupported phosphine–phosphine complexes undergo redox
degradation at temperatures above –40 ◦C or at even lower temperatures [7]. Both 3 and 4
can be stored indefinitely under inert atmosphere at ambient temperature in the solid form,
but 3 undergoes decomposition slowly (over the course of a week) in common organic
solvents (thf, dcm, chloroform). The arsenic congener 4 immediately decomposes in
chlorinated solvents, giving a mixture of insoluble products. Both 3 and 4 are air sensitive.
It should be noted that the thermal stability and air sensitivity of 3 and 4 is rather similar
to that of the chlorine congeners iPr2PAcenapECl2 (E = P, As) [8,15].

The 31P{1H} NMR spectrum of 3 consists of two doublets at δP 65.3 (iPr2P) and
32.9 ppm (PBr2) with a large 1JPP magnitude of 353.7 Hz (AX spin system). This is in
good agreement with the relevant data of iPr2PAcenapPCl2 (δP 68.8 and 40.4 ppm, 1JPP
363 Hz) [8]. The 31P{1H} NMR spectrum of 4 (singlet at δP 56.6 ppm) is in agreement with
the previously published data for iPr2PAcenapAsCl2 (δP 65.3 ppm) [15]. This strongly sug-
gests the structures of 3 and 4 in the solution are similar to those of their chlorine congeners.
Significant deshielding of the donor (iPr2P) phosphine group in 3 and 4 compared to that
in 2 (δP –2.2 ppm) strongly suggests major sequestration of the lone pair electron density
takes place by the pnictogen halide (PnX2) acceptor group. Compounds 3 and 4 were fully
characterised including 1H, 13C{1H} and 31P{1H} NMR, IR and MS.

The crystal structures of 3 and 4 are shown in Figure 3 and Table 1. The diffraction
data indicate a strong dative interaction is formed between the two phosphorus atoms in 3,
with a P–P bond length of 2.2701(16) Å, which is just within a range of standard P–P single
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bond (2.22 ± 0.05 Å). Two molecules of 4 are present in the asymmetric unit. The P–As
distances in these (2.405(3) and 2.407(3) Å) are crystallographically identical, consistent
with a strong dative bond, and comparable to a standard P−As single bond length. Based
on the electronegativity considerations, the ECl2 group is expected to be better acceptor
than the respective EBr2 group (E = P, As). However, no dramatic lengthening of the
P→EBr2 vs. the P→ECl2 dative bond is observed; the P−As bond length in the chlorine
congener iPr2P-Acenap-AsCl2 (2.4029(7) Å) [15] is crystallographically identical to that
in 4, while the P−P bond length in iPr2PAcenapPCl2 (2.2570(14) Å) [8] is only marginally
shorter than that in 3.
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Figure 3. Crystal structures of 3–6. Hydrogen atoms and solvating molecules (THF in 3 and benzene in 4) are omitted. The
second molecule in the asymmetric unit of 4 is omitted. 5 forms centrosymmetric dimer, two asymmetric units are shown in
the figure. Monocation of 6 is shown at the top, the [As6Br8]2− dianion is at the bottom. Thermal ellipsoid ds are plotted at
the 40% level.

Although neither 3 nor 4 form a halogen bridged dimeric assemblies in the crystal, the
P–Br bond lengths are nonidentical within 3 (P1–Br1 2.6864(13) Å; P1–Br2 2.4376(13) Å). In
contrast, the As–Br bond lengths are almost identical in 4: As1–Br1 2.6337(19) [2.6339(19)] Å,
As1–Br2: 2.6400(18) [2.664(2)] Å (values in square brackets are for the second molecule in
the asymmetric unit). The P–Br and As–Br bond lengths in 3 and 4 indicate an intermediate
character between ionic and covalent bonds; their elongation is rather significant when
compared to the bond lengths in the covalent PBr5 (P–Br: 2.221 and 2.158 Å) [26] and AsBr3
(in adduct with hexaethylbenzene, P–As 2.322(1) Å) [27]. The acceptor pnictogen atoms in
3 (P1) and 4 (As1) adopt a pseudo-trigonal bipyramidal geometry, with the two bromine
atoms occupying the axial positions (Br−E−Br 172.22(5)◦ in 3 and 173.95(6)◦ [172.27(6)◦]
in 4). The P9 and C1 atoms occupy the equatorial positions, with the 3rd position taken
up by the lone pair. The inequality and elongation of the phosphorus–halogen bonds are
phenomena observed in all relevant structurally characterised phosphine–phosphine and
phosphine–arsine donor–acceptor complexes, and presumably stem mainly from packing
effects [7,8,17]. The equal length of As–Br bonds, observed within 4, is likely a result of the
symmetrical nature of the local polarity effects around the bromine atoms within the crystal
structure of 4. The acenaphthene framework in both 3 and 4 encounters only minimal
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in-plane and out-of-plane distortions from the ideal (planar) geometry, consistent with a
relaxed peri-region (P–Pn bonded) structures.

Table 1. Selected bond lengths [Ångströms (Å)] and angles (degrees, ◦) for 3 to 9-O.

Compound 3·THF (E = P) 4·C6H6
[b] (E = As) 5 (E = As) 6 [c] (E = As)

peri-region bond distances
P9–E1 2.2701(16) 2.405(3) [2.407(3)] 2.3978(15) 2.365(4) [3.145(4)]
E1–Br1 2.6864(13) 2.6337(19) [2.6639(19)] 2.4375(9) –
E1–Br2 2.4376(13) 2.6400(18) [2.634(2)] 3.000(9) –

peri-region angles
C9–P9–E1 97.92(14) 97.9(3) [98.4(3)] 97.78(18) 98.7(4)
C1–E1–P9 88.82(13) 84.9(3) [85.3(3)] 86.25(17) 85.7(3)

Br1–E1–Br2 172.22(5) 173.95(6) [172.27(6)] 175.3(2) –
P9–E1–Br1 91.13(5) 96.01(9) [91.02(9)] 95.57(4) –
P9–E1–Br2 96.38(5) 90.00(9) [95.95(9)] 88.77(4) –

splay angle [a] –7.8(5) –5(1) [–5(1)] –4(1) –5(1) [15(1)]
out-of-plane displacements

P9 0.23 0.07 [0.10] 0.09 0.21 [0.12]
E1 –0.03 –0.36 [–0.26] –0.01 –0.11 [–0.05]

dihedral angles
P9–C9···C1–E 7.7(2) 10.9(4) [9.2(4)] 2.4(2) 2.8(5) [1.2(5)]

Compound 7 1/2CH2Cl2
(E = Br) 8·CH2Cl2 (E = P) 9-O (E = P) [f]

peri-region bond distances
As1–E9 3.23(1) 3.004(6) 3.176(5)

As1–E29 3.28(1) – 3.273(5)
peri-region angles

splay angle [a,d] 17(1) 11.7(4) 16.1(8)
splay angle [a,e] 19(1) 11.4(4) 15.2(8)

out-of-plane displacements
As1 0.35, 0.02 0.19, 0.02 0.04, 0.71
E9 –0.08 −0.03 −0.40

E29 –0.01 −0.23 0.41
dihedral angles

As1–C1···C9–E9 12(1) 3.3(6) 8(1)
As1–C21···C29–E29 1(1) 5.0(6) 27(1)

[a] splay angle = sum of the bay region angles—360. [b] values in square parentheses are for the 2nd molecule in
the asymmetric unit. [c] values in square parentheses refer to the P29 acenaphthene unit. [d] C10 acenaphthene
unit. [e] C30 acenaphthene unit. [f] E29 in this structure represents P39.

An interesting feature was observed in the crystal packing of 4. Rather than forming a
Br···As intermolecular close contacts, commonly seen in halogen-bridged dimers [7,16],
pairs of molecules of 4 are oriented so that a short (intermolecular) As···As contact (3.50 Å)
is formed. To gain some insight into significance of this, we performed density functional
theory (DFT) computations on a ‘dimer’ motif, carved out of the crystal. Because the
interaction between the two molecules was expected to be weak, a level was chosen
that contains corrections for attractive van der Waals forces (dispersion) and basis-set
superposition error (BSSE; an intrinsic error for intermolecular interaction energies with
finite basis sets), denoted B3LYP-D3/6-31(+)G* (see SI for details; B3LYP functional and
basis sets are the same as in our previous studies on peri-acenaphthene derivatives) [16,21].
Interestingly, full geometry optimisation of the dimer at that level affords an even shorter
As···As contact (3.28 Å) than that observed in the solid, and a substantial binding energy
(∆E = –15.7 kcal mol−1, estimated ∆H298 –14.4 kcal mol−1 and ∆G298 –3.43 kcal mol−1).
Despite this sizeable interaction energy, only small covalent contributions to the binding are
apparent from the computed intermolecular Wiberg bond indices (WBIs) [28], which do not
exceed 0.05 for both As···As and As···Br contacts. Closer inspection of the contributions to
the binding energy ∆E reveals that it is entirely dominated by dispersion interactions: the
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-D3 contribution in the optimised structure amounts to –16.5 kcal mol−1, i.e., the interaction
would be expected to be repulsive at the B3LYP level without explicit dispersion correction.
Indeed, if the structure is relaxed at the B3LYP/6-31(+)G* level (still BSSE-corrected), the
dimer essentially falls apart. In this scenario, a much longer As···As distance ensues
(3.87 Å) with a very weak binding energy ∆E = –2.1 kcal mol−1, presumably due to weak
electrostatic interactions. It is remarkable that the pairs of molecules are held together by
such strong dispersion forces, as it brings the arsenic atoms (with their lone pairs pointing
toward each other) to an essentially repulsive distance, as shown in Figure 4.
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Conducting the reaction of iPr2PAcenapLi with 2 molar equivalents of AsBr3 gave
5 as a pale-yellow solid, which was contaminated with residual LiBr. Crystals suitable
for diffraction work were grown from acetonitrile. The crystal structure of 5 is shown
in Figure 3 and Table 1. Compound 5 is formed by an ion pair [iPr2PAcenapAsBr]+Br−,
co-crystallised with an AsBr3 molecule (see Scheme 1), with two acenaphthene units and
PBr3 molecules forming a centrosymmetric assembly. All Br···As distances around the
µ3-bridging Br2 atom (3.00–3.04 Å) are significantly elongated compared to all other As–
Br bonds (2.3370(9)–2.4375(9) Å), supporting the interpretation of the bonding as ionic.
Comparing the structures of 4 and 5 shows no significant change in the P–As bond length
(2.3978(15) Å in 5). The most substantial changes are the shortening of the As1–Br1 bond to
2.4375(9) Å and the elongation of the other distance, As1···Br2, to 3.000(9) Å (c.f. As–Br
bond lengths 2.634(2)–2.6639(19) Å in 4).

In one incidence, while attempting to grow crystals of 5 from boiling acetonitrile,
a small crop of colourless crystals was obtained. These were subjected to single-crystal
X-ray diffraction and were found to be compound 6, consisting of a complex phosphonium
cation and an unusual octabromohexaarsenate ([As6Br8]2–) dianion (Scheme 1, Figure 3
and Table 1). The cation of 6 consists of two acenaphthene groups geminally attached to
an arsenic atom. The two P–As distances are very disparate, indicating the presence of a
standard P9–As1 bond (2.365(4) Å), and an onset of 3-center 4-electron P···As–C interaction
(P29···As1 3.145(4) Å; P29···As1–C1 angle is 176.9(3)◦). A tentative mechanism of the cation
formation involves an attack of the second molecule of iPr2PAcenapLi on 4 or 5. Only one
previous incidence of crystallographic characterisation of octabromohexaarsenate dianion
was found in the literature; this was in the form of its tetraphenylphosphonium salt [29].
The dianion of 6 is essentially isostructural to the previously reported example, both can be
seen as an (AsBr)6 oligoarsine ring in a chair conformation, capped by two bromide anions
to form a heterocubane cluster. A tentative mechanism of formation of 6 involves thermally
induced reduction of AsBr3 (present in the structure of 5), leading to the formation of
cyclohexaarsine (AsBr)6. This is followed by coordination by bromide anions to give the
[As6Br8]2– dianion. The reduction step may be analogous to that seen throughout the chem-
istry of pnictine–pnictine complexes, first described by Sisler [6], in which the trihalide
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halogenates the tertiary phosphine moiety (to halophosphonium [R3PVCl]+Cl-), reducing
itself to (AsIX)n. This proposed mechanism is distinct (but related) to that proposed by
Macdonald for formation of octaiodocyclohexaarsenates, where the diphosphine ligand (L)
cleavage from pre-assembled arsenic(I) species [LAs][I] was suggested [30]. Further char-
acterisation of 6 was not possible due to the small amount of crystals available. Attempts
to repeat synthesis of 6 on a larger scale were not successful.

Our attempts to prepare the iodine congener iPr2PAcenapPl2 via reaction of iPr2PAcenapLi
with PI3 or P2I4 gave complex mixtures as judged by 31P NMR. On a similar note, reac-
tions of iPr2PAcenapLi with SbBr3 gave inseparable mixtures, presumably via undesirable
redistribution and redox processes [9]. This is in stark contrast to the analogous reac-
tion of iPr2PAcenapLi with SbCl3, which afforded the desired donor–acceptor complex
iPr2PAcenapSbCl2 in an excellent yield [16].

3.2. Reactions Involving EtAsI2

To expand the range of arsenic peri-substituted species, reactions with ethyldiiodoar-
sine have been studied. Monolithiation of 5,6-dibromoacenaphthene, followed by an
addition of the formed iPr2PAcenapLi to one molar equivalent of EtAsI2, was expected to
yield iodoarsine Et(I)AsAcenapBr. However, the 1H NMR spectrum of the white powder
obtained after workup indicated a product of a double (geminal) substitution, a tertiary
arsine 7, has been formed solely (Scheme 1). The reaction was repeated with highly diluted
EtAsI2 and very slow addition rate to limit the double substitution, however even then, 7
was the sole product of the reaction.

The crystal structure of 7 is shown in Figure 5 and Table 1. The arsenic atom adopts
trigonal pyramidal geometry. The As···Br distances (3.23(1) and 3.28(1) Å, 82–83% of the
sum of the respective Van der Waals radii [31]) as well as the large splay angles (17(1) and
19(1)◦) indicate repulsive interactions in the peri-region, with As···Br interactions forced
through peri-geometry.

Molecules 2021, 26, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 5. Crystal structures of 7, 8 and 9-O. Hydrogen atoms and solvating molecules (CH2Cl2 in 7 and 8) are omitted. 
Thermal ellipsoids are plotted at the 40% level. 

Following the clean synthesis of 7, we were interested in its use as a synthon, partic-
ularly its ability to undergo lithium–halogen exchange, which would open many options 
for its further functionalisation. Initially, we focussed on introducing phosphorus moie-
ties to the peri-positions. Synthesis of two examples, cyclic (8) and acyclic (9), resulted from 
these efforts (Scheme 1). Using standard low-temperature lithium–halogen exchange con-
ditions, double lithiation of 7 was incomplete after several hours at −78 °C, despite using 
a slight excess over two equivalents of n-butyllithium. To promote the double lithiation 
we have adopted conditions similar to those reported by Kasai for double lithiation of 5,6-
dibromoacenaphthene [32], which included the addition of chelating base tetrameth-
yleethylenediamine, TMEDA. In addition, we have switched to a more polar reaction sol-
vent (thf). These changes sufficiently stabilised the dilithiated species EtAs(AcenapLi)2, as 
the subsequent reaction with PhPCl2 gave cyclic species 8 in a good yield (ca. 70%). Un-
fortunately, the workup did not allow for complete removal of the salt impurities as indi-
cated by the results of the elemental analysis, meaning the yield mentioned above is only 
approximate. 8 showed a sharp singlet at δP –26.5 ppm and was only barely soluble in 
common organic solvents, which precluded acquisition of good quality 13C{1H} NMR 
spectra. 

Reacting the in situ formed dilithiated species EtAs(AcenapLi)2 with two molar 
equivalents of chlorodiphenylphosphine in thf afforded 9 as the sole phosphorus-contain-
ing product as confirmed by 31P{1H} NMR spectroscopy (singlet at δP −19.9 ppm). 9 was 
found to be insoluble in many common organic solvents and only sparingly soluble in 
dichloromethane. In an attempt to grow crystals of 9 suitable for X-ray work, colourless 
needle shaped crystals were obtained by diffusion of diethyl ether into a saturated solu-
tion of 9 in dichloromethane. The X-ray diffraction showed that partial oxidation (pre-
sumably by air) has taken place in this sample, giving the phosphine oxide species 9-O. 
Notably, the presence of the oxidised species 9-O was not evident in the bulk of the reac-
tion product 9 by any other characterisation results such as elemental analysis and mass 
spectroscopy. Compounds 7–9 were fully characterised, including 1H, 13C{1H} NMR 
(where solubility allowed this), IR, Raman and MS. 

The crystal structures of 8 and 9-O are shown in Figure 5 and Table 1. The central 
part of the molecule of 9 adopts the shape of a puckered (8-membered) ring, with the angle 

Figure 5. Crystal structures of 7, 8 and 9-O. Hydrogen atoms and solvating molecules (CH2Cl2 in 7 and 8) are omitted.
Thermal ellipsoids are plotted at the 40% level.



Molecules 2021, 26, 7222 9 of 15

Following the clean synthesis of 7, we were interested in its use as a synthon, particu-
larly its ability to undergo lithium–halogen exchange, which would open many options
for its further functionalisation. Initially, we focussed on introducing phosphorus moi-
eties to the peri-positions. Synthesis of two examples, cyclic (8) and acyclic (9), resulted
from these efforts (Scheme 1). Using standard low-temperature lithium–halogen exchange
conditions, double lithiation of 7 was incomplete after several hours at −78 ◦C, despite
using a slight excess over two equivalents of n-butyllithium. To promote the double lithia-
tion we have adopted conditions similar to those reported by Kasai for double lithiation
of 5,6-dibromoacenaphthene [32], which included the addition of chelating base tetram-
ethyleethylenediamine, TMEDA. In addition, we have switched to a more polar reaction
solvent (thf). These changes sufficiently stabilised the dilithiated species EtAs(AcenapLi)2,
as the subsequent reaction with PhPCl2 gave cyclic species 8 in a good yield (ca. 70%).
Unfortunately, the workup did not allow for complete removal of the salt impurities as
indicated by the results of the elemental analysis, meaning the yield mentioned above
is only approximate. 8 showed a sharp singlet at δP –26.5 ppm and was only barely sol-
uble in common organic solvents, which precluded acquisition of good quality 13C{1H}
NMR spectra.

Reacting the in situ formed dilithiated species EtAs(AcenapLi)2 with two molar equiva-
lents of chlorodiphenylphosphine in thf afforded 9 as the sole phosphorus-containing prod-
uct as confirmed by 31P{1H} NMR spectroscopy (singlet at δP −19.9 ppm). 9 was found to be
insoluble in many common organic solvents and only sparingly soluble in dichloromethane.
In an attempt to grow crystals of 9 suitable for X-ray work, colourless needle shaped crystals
were obtained by diffusion of diethyl ether into a saturated solution of 9 in dichloromethane.
The X-ray diffraction showed that partial oxidation (presumably by air) has taken place in
this sample, giving the phosphine oxide species 9-O. Notably, the presence of the oxidised
species 9-O was not evident in the bulk of the reaction product 9 by any other character-
isation results such as elemental analysis and mass spectroscopy. Compounds 7–9 were
fully characterised, including 1H, 13C{1H} NMR (where solubility allowed this), IR, Raman
and MS.

The crystal structures of 8 and 9-O are shown in Figure 5 and Table 1. The central part
of the molecule of 9 adopts the shape of a puckered (8-membered) ring, with the angle
between the two acenaphthene planes being 89◦. The molecule of 9-O is rather crowded
with large groups attached to the two peri-regions. As mentioned, one of the phosphorus
environments in 9-O is partially oxidised (50% occupancy) to the phosphine oxide (from
accidental exposure to air).

The P···As distance comparison in 8 and 9-O is rather interesting. The As1···P9
distance in 9-O is 3.176(5) Å, while the relevant distance of 3.004(6) was observed in 8. This
indicates the buttressing effect of the double peri-strain in 8 is rather significant, shortening
the P···As distance by 0.17 Å, i.e., by 4.2% of the sum of the respective Van der Waals
radii [31]. The large positive splay angles indicate repulsive interactions in the peri-regions
of 7, 8 and 9-O, with the in-plane distortions being the major mechanism of strain relaxation,
although in 9-O the arsine group (As1) shows also large out-of-plane displacement (0.71 Å)
from one of the acenaphthene mean planes.

4. Experimental
4.1. General Considerations

All reactions and manipulations were carried out under an atmosphere of nitrogen
using standard Schlenk techniques or under an argon atmosphere in a Saffron glove
box. Dry solvents were either collected from an MBraun Solvent Purification System,
or dried and stored according to common procedures [33]. Compounds 1 and 2 were
prepared according to literature procedures [8,34]. Arsenic tribromide was prepared using
a modified version of the published procedure (see Supplementary Materials) [35]. EtAsI2
was prepared as described in the literature [36]. Arsenic oxide (>99.9%) was purchased
from Alfa Aesar and used as received. Other chemicals were purchased from commercial
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sources and used as received. Further experimental details are provided in SI. NMR
numbering scheme is shown in Figure 6.

Molecules 2021, 26, x FOR PEER REVIEW 10 of 16 
 

 

between the two acenaphthene planes being 89°. The molecule of 9-O is rather crowded 
with large groups attached to the two peri-regions. As mentioned, one of the phosphorus 
environments in 9-O is partially oxidised (50% occupancy) to the phosphine oxide (from 
accidental exposure to air). 

The P∙∙∙As distance comparison in 8 and 9-O is rather interesting. The As1∙∙∙P9 dis-
tance in 9-O is 3.176(5) Å, while the relevant distance of 3.004(6) was observed in 8. This 
indicates the buttressing effect of the double peri-strain in 8 is rather significant, shorten-
ing the P∙∙∙As distance by 0.17 Å, i.e., by 4.2% of the sum of the respective Van der Waals 
radii [31]. The large positive splay angles indicate repulsive interactions in the peri-regions 
of 7, 8 and 9-O, with the in-plane distortions being the major mechanism of strain relaxa-
tion, although in 9-O the arsine group (As1) shows also large out-of-plane displacement 
(0.71 Å) from one of the acenaphthene mean planes. 

4. Experimental 
4.1. General Considerations 

All reactions and manipulations were carried out under an atmosphere of nitrogen 
using standard Schlenk techniques or under an argon atmosphere in a Saffron glove box. 
Dry solvents were either collected from an MBraun Solvent Purification System, or dried 
and stored according to common procedures [33]. Compounds 1 and 2 were prepared 
according to literature procedures [8,34]. Arsenic tribromide was prepared using a modi-
fied version of the published procedure (see Supplementary Materials) [35]. EtAsI2 was 
prepared as described in the literature [36]. Arsenic oxide (>99.9%) was purchased from 
Alfa Aesar and used as received. Other chemicals were purchased from commercial 
sources and used as received. Further experimental details are provided in SI. NMR num-
bering scheme is shown in Figure 6. 

Caution! Arsenic halides are highly toxic powerful vesicants, which cause severe ir-
ritation and blistering if allowed to come in contact with skin. Suitable precautions, in-
cluding the use of neoprene or rubber gloves, should be taken when handling these. 

 
Figure 6. General NMR numbering scheme. 

4.2. Synthetic Methods 
4.2.1. iPr2PAcenapPBr2 (3) 

To a cooled (–78 °C) rapidly stirring solution of 2 (2.60 g, 7.4 mmol) in diethyl ether 
(60 mL), n-butyllithium (3.0 mL, 2.5 M in hexane, 7.5 mmol) was added dropwise over 1 
h and the mixture was left to stir for 2 h at the same temperature. The resulting suspension 
of iPr2PAcenapLi was added via cannula (in small batches) over 1 h to a rapidly stirring 
solution of phosphorus tribromide (9.90 g, 3.5 mL, 36.7 mmol) in diethyl ether (30 mL), 

Figure 6. General NMR numbering scheme.

Caution! Arsenic halides are highly toxic powerful vesicants, which cause severe
irritation and blistering if allowed to come in contact with skin. Suitable precautions,
including the use of neoprene or rubber gloves, should be taken when handling these.

4.2. Synthetic Methods
4.2.1. iPr2PAcenapPBr2 (3)

To a cooled (–78 ◦C) rapidly stirring solution of 2 (2.60 g, 7.4 mmol) in diethyl ether
(60 mL), n-butyllithium (3.0 mL, 2.5 M in hexane, 7.5 mmol) was added dropwise over 1 h
and the mixture was left to stir for 2 h at the same temperature. The resulting suspension
of iPr2PAcenapLi was added via cannula (in small batches) over 1 h to a rapidly stirring
solution of phosphorus tribromide (9.90 g, 3.5 mL, 36.7 mmol) in diethyl ether (30 mL),
cooled to –78 ◦C. The reaction mixture was left to stir and warm to ambient temperature
overnight. The orange suspension was filtered and the solid collected was washed with
THF (30 mL) followed by diethyl ether (30 mL) to remove excess PBr3 and partially also
LiBr. After drying in vacuo, 3 (contaminated with LiBr) was obtained as a yellow powder
(2.20 g, ~65%). Note that it is important when filtering the compound not to let the
solid settle and compact as this will prevent removal of all PBr3. Crystals of 3 suitable
for X-ray diffraction were grown from thf. Small scale recrystallisation from chloroform
afforded analytically pure material. M. p. 168–172 ◦C. Elemental Analysis Calcd. (%) for
C18H22P2Br2: C 46.99, H 4.82; Found: C 47.07, H 4.87. 1H NMR: δH (400.1 MHz, CDCl3)
8.82 (1H, dd (~t), 3JHH = 6.8, 3JHP = 1.2 Hz, H-8), 8.17 (1H, dd, 3JHH = 7.2, 3JHP = 5.1 Hz,
H-2), 7.73 (1H, dd, 3JHH = 6.8, 4JHP = 2.4 Hz, H-7), 7.62 (1H, dd, 3JHH = 7.2, 4JHP = 2.8 Hz,
H-3), 4.29–4.14 (2H, m (~septet), 3JHH = 7.0 Hz, CH(CH3)2), 3.58 (4H, br s, H-11 and H-12),
1.57 (6H, 2JHP = 19.2, 3JHH = 7.0 Hz, 2 × CH3), 1.50 (6H, dd, 2JHP = 19.5, 3JHH = 7.0 Hz,
2 × CH3). 13C{1H} NMR: δC (100.6 MHz, CDCl3) 154.4 (s, qC-6), 151.8 (s, qC-4), 140.3 (dd,
2JCP = 20.5, 2JCP = 3.4 Hz, qC-10), 139.0 (dd, 3JCP = 11.0, 3JCP = 1.5 Hz, qC-5), 137.5 (br s,
C-8), 134.8 (dd, 2JCP = 31.5, 3JCP = 8.5 Hz, C-2), 129.8 (dd, 1JCP = 46.4, 2JCP = 4.7 Hz, qC-1),
122.6 (s, C-3), 122.5 (s, C-7), 112.8 (dd, 1JCP = 55.7, 2JCP = 8.0 Hz, qC-9), 31.6 (s, C-11 or C-12),
31.2 (s, C-11 or C-12), 27.5 (dd, 1JCP = 28.5, 2JCP = 4.5 Hz, CH(CH3)2), 18.8 (br s, 2 × CH3),
18.3 (br s, 2 × CH3). 31P{1H} NMR: δP (162.0 MHz, CDCl3) 65.3 (d, PPBr2), 32.9 (d, PPiPr2),
1JPP = 353.7 Hz. IR (KBr disc, cm–1) ν = 2963 vs, 2934 vs, 2862 s, 1457 s, 1443 s, 839 m, 640 s.
HRMS (APCI+): m/z (%); Calcd. for C18H22P2Br (M–Br): 379.0375, found 379.0376 (100).
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4.2.2. iPr2PAcenapAsBr2 (4)

Compound 4 was prepared using the same procedure as per compound 3 except using
the following: 2 (2.00 g, 5.7 mmol) in diethyl ether (40 mL), n–butyllithium (2.3 mL, 2.5 M
in hexanes, 5.7 mmol) and arsenic tribromide (1.80 g, 5.7 mmol) in diethyl ether (50 mL).
Addition time of iPr2PAcenapLi to AsBr3 was 3 h. 4 was isolated as a yellow powder (2.17 g,
~75%). M. p. 159–161 ◦C. Crystals suitable for X-ray diffraction work were grown from
benzene at room temperature. Contamination with residual LiBr prevented satisfactory
microanalysis and accurate determination of the yield. 1H NMR: δH (500.1 MHz, C6D6)
7.92 (1H, d, 3JHH = 7.1 Hz, H-8), 7.37 (1H, dd, 3JHP = 8.6, 3JHH = 7.2 Hz, H-2), 7.01 (1H, dt,
3JHH = 7.2, 4JHH = 1.5 Hz, H-7), 6.99 (1H, dt, 3JHH = 7.2, 4JHH = 1.4 Hz, H-3), 3.61 (2H, septet,
3JHH = 7.2 Hz, CH(CH3)2), 2.89–2.73 (4H, m, H-11 and H-12), 1.36 (6H, dd, 3JHP = 18.9,
3JHH = 7.2 Hz, 2 × CH3), 1.14 (6H, dd, 3JHH = 16.6, 3JHH = 7.3 Hz, 2 × CH3). 13C{1H} NMR:
δC (125.8 MHz, C6D6) 153.2 (s, qC-4), 146.5 (s, qC-9), 145.8 (s, qC-5), 140.7 (d, 1JCP = 22.3 Hz,
qC-1), 134.1 (s, C-2), 131.2 (d, 3JCP = 7.5 Hz, C-8), 122.2 (s, C-7), 119.5 (d, 3JCP = 9.5 Hz, C-3),
30.8 (s, C-11 or C-12), 30.2 (s, C-11 or C-12), 27.6 (d, 1JCP = 26.3 Hz, CH(CH3)2), 20.0 (s,
2 × CH3), 17.7 (d, 2JCP = 5.7 Hz, 2 × CH3). 31P{1H} NMR: δP (202.5 MHz, C6D6) 56.6 (s).
MS (EI): m/z (%) 422.97 (20) [M–Br], 344.04 (95) [M–2Br], 300.99 (90) [iPrPAcenapAs], 257.95
(95) [AcenapPAs], 234.74 (100) [AsBr2].

4.2.3. [iPr2PAcenapAsBr]+Br–·AsBr3 (5) and [(iPr2PAcenap)2As]2[As6Br8] (6)

To a cooled (–78 ◦C) rapidly stirring solution of 2 (2.00 g, 5.7 mmol) in diethyl ether
(40 mL), n-butyllithium (2.3 mL, 2.5 M in hexane, 5.7 mmol) was added dropwise over 1 h
and the mixture was left to stir for 2 h at the same temperature. The resulting suspension
of iPr2PAcenapLi was added via cannula (in small batches) over 1 h to a rapidly stirring
solution of arsenic tribromide (3.60 g, 11.5 mmol) in diethyl ether (80 mL), cooled to –78 ◦C.
The reaction mixture was left to stir and warm to ambient temperature overnight. The
suspension was filtered and the solid collected was washed with diethyl ether (30 mL).
After drying in vacuo, 5 (contaminated with LiBr) was obtained as a pale-yellow powder
(3.84 g, ca. 81%). Crystals of 5 suitable for X-ray diffraction work were grown from THF
at room temperature. Contamination with LiBr prevented satisfactory microanalysis and
accurate determination of the yield. Solution NMR spectra of 5 are identical to those of 4.

Few crystals of 6 suitable for diffraction work were obtained from recrystallisation of
the crude product 5 from hot acetonitrile. No further characterisation was possible due to
small amount available.

4.2.4. (BrAcenap)2AsEt (7)

A solution of n-butyllithium (12.8 mL of 2.5 M solution in hexanes, 32 mmol) was
added dropwise to a rapidly stirred suspension of 5,6-dibromoacenaphthene 1 (10.0 g,
32 mmol) in THF (120 mL) at −78 ◦C. The mixture was maintained for 2 h at this temper-
ature. To this, a solution of ethyldiiodoarsine (1.95 mL, 16 mmol) in THF (20 mL) was
added dropwise over one hour at −78 ◦C. The resulting suspension was left to warm to
room temperature overnight. The volatiles were removed in vacuo. Dichloromethane
(50 mL) was added, and the resulting suspension was filtered. The product was obtained
as a white powder after removal of the volatiles from the filtrate in vacuo. Recrystallisation
of the crude material from dichloromethane gave 7 as colourless needle crystals (5.37 g,
82%), some of these were suitable for X-ray diffraction work. M. p. 199–200 ◦C. Elemental
analysis: Calcd. (%) for C26H21AsBr2: C 54.96, H 3.72; found: C 54.86, H 3.65. 1H NMR:
δH (400.1 MHz, CD2Cl2) 7.60 (2H, d, 3JHH = 7.4 Hz, H-8), 7.48 (2H, d, 3JHH = 7.2 Hz, H-2),
7.08 (2H, d, 3JHH = 7.2 Hz, H-3), 7.00 (2H, d, 3JHH = 7.4 Hz, H-7), 3.29–3.19 (8H, m, H-11
and H-12), 2.04 (2H, q, 3JHH = 7.7 Hz, As-CH2), 1.19 (3H, t, 3JHH = 7.6 Hz, CH3). 13C{1H}
NMR: δC (100.6 MHz, CD2Cl2) 146.2 (s, qC), 145.7 (s, qC), 140.7 (s, qC), 135.6 (s, qC), 134.6
(s, C-2), 133.0 (s, C-8), 132.3 (s, qC), 119.4 (s, C-3), 119.2 (s, C-7), 115.5 (s, qC), 29.1 (s, C-11
or C-12), 28.8 (s, C-11 or C-12), 23.0 (s, As-CH2), 10.4 (s, CH3). IR Data (KBr disc, cm−1):
ν = 3025 w (νArH), 2920 s, 2863 w (νCH), 1603 s, 1411 s, 1320 vs, 1251 m, 1200 m, 1100 m,
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1044 m, 836 vs, 738 m, 602 m, 543 m. Raman (glass capillary, cm−1) ν = 3063 m (νArH),
2952 m, 2932 s, (νCH), 1608 m, 1561 vs, 1442 vs, 1412 s, 1345 m, 1320 vs, 815 m, 702 s, 577 vs,
557 s, 290 vs. MS (ES+) m/z (%) 591 (100) [M + Na]. HRMS: m/z Calcd. for C26H21Br2AsNa
(M + Na): 590.9103, found 590.9094.

4.2.5. Cyclo-PhP(Acenap)2AsEt (8)

N,N,N′,N′–tetramethylethylene-1,2-diamine (TMEDA, 0.51 mL, 3.4 mmol) was added
to a suspension of 7 (0.75 g, 1.32 mmol) in THF (35 mL) and the mixture was cooled to
–78 ◦C. A solution of n-butyllithium (1.26 mL, 2.5 M in hexanes, 3.2 mmol) was added
dropwise with stirring over 1 h. The solution was maintained at –78 ◦C for 30 min before
being warmed up and maintained at 0 to 10 ◦C for an hour. The solution was re-cooled
to –78 ◦C and a solution of PhPCl2 (0.18 mL, 1.32 mmol) in THF (5 mL) was added
dropwise. The mixture was left to warm up to room temperature overnight with stirring.
The volatiles were removed in vacuo and replaced with dichloromethane (30 mL) and the
resulting suspension was filtered. Removal of the volatiles in vacuo once again gave 8 as
a yellow solid (0.48 g, ca. 70%). Crystals suitable for X-ray diffraction were grown from
dichloromethane. Elemental analysis: The recrystallised material did not give satisfactory
elemental analysis, presumably because of the contamination of the material with inorganic
salts; the data fitted 8·1.45LiBr: calcd. (%) for C32H26AsP·(LiBr)1.45: C 59.83, H 4.08; found:
C 60.03, H 3.99. 1H NMR: δH (300.1 MHz, CD2Cl2) 7.96 (2H, dd, 3JHH = 7.2, 3JHP = 4.5 Hz,
H-8), 7.81–7.74 (2H, m, o-Ph), 7.59 (2H, d, 3JHH = 7.3 Hz, H-2), 7.46–7.38 (2H, m, m-Ph),
7.38–7.31 (1H, m, p-Ph), 7.20 (4H, 3JHH = 7.2 Hz, H-3 and H-7), 3.39–3.16 (8H, m, H-11
and H-12), 2.28 (2H, q, 3JHH = 7.7 Hz, As-CH2), 1.54 (3H, t, 3JHH = 7.7 Hz, CH3). 13C{1H}
NMR was not acquired due to low solubility of 8. 31P{1H} NMR: δP (121.5 MHz, CD2Cl2)
δP = –26.5 (s). IR (KBr disc, cm–1): ν = 3071 w (νAr–H), 2962 s (νC–H), 1325 s, 1260 vs, 1095 vs,
br, 1022 vs, 802 vs, 735 s, 701 m. Raman (glass capillary, cm–1) ν = 3068 m (νAr–H), 2919 m
(νC–H), 1603 m, 1583 vs, 1565 s, 1330 vs, 997 s, 537 s, 253 m. MS (CI+): m/z (%) 517.1 (58)
[M + H], 487.1 (100) [M–Et]. HRMS (CI+): m/z Calcd. for C32H27AsP (M + H): 517.1066,
found 517.1059.

4.2.6. (Ph2PAcenap)2AsEt (9)

TMEDA (0.51 mL, 3.4 mmol) was added to a suspension of 7 (750 mg, 1.32 mmol) in
THF (35 mL) and the mixture was cooled to –78 ◦C. A solution of n-butyllithium (1.26 mL,
2.5 M in hexanes, 3.2 mmol) was added dropwise with stirring over 1 h. The solution was
maintained at –78 ◦C for 30 min before being warmed up and maintained at 0 to 10 ◦C for
an hour. The solution was re-cooled to –78 ◦C and a solution of chlorodiphenylphosphine
(0.49 mL, 2.64 mmol) in THF (5 mL) was added dropwise over 45 min. The solution was
left to warm to room temperature overnight with stirring. The volatiles were removed
in vacuo and replaced with dichloromethane (30 mL), and the resulting mixture was
filtered. Removal of the volatiles in vacuo once again gave 9 as a pale yellow solid (0.52 g,
~52%). Crystals suitable for X-ray diffraction were obtained in the form of monoxide 9a
from dichloromethane. 1H NMR: δH (500.1 MHz, CD2Cl2) 7.51 (2H, d, 3JHH = 7.0 Hz,
H-2), 7.26–7.13 (12H, br m, H-7 and H-8 and m-Ph), 7.10–7.03 (2H, br m, H-3), 7.02–6.95
(4H, br m, p-Ph), 6.76 (8H, br s, o-Ph), 3.37–3.24 (8H, m, H-11 and H-12), 2.19 (2H, q,
3JHH = 7.6 Hz, As-CH2), 1.32 (3H, t, 3JHH = 7.6 Hz, CH3). 13C{1H} NMR: δC NMR was not
acquired due to low solubility of 9. 31P{1H} NMR: δP (121.5 MHz, CD2Cl2) δP = –19.9 (s).
IR (KBr disc, cm–1): ν = 3044 m (νAr–H), 2962 vs, (νC–H), 1601 s, 1477 s, 1261 vs, 1020 vs,
br, 800 vs, 693 vs. Raman (glass capillary, cm–1) ν = 3047 vs, (νAr–H), 2930 s (νC–H), 1604 s,
1583 s, 1325 vs, 998 vs, 536 vs. MS (CI+): m/z (%) 779.1 (8) [M + H], 749.1 (16) [M–Et],
412.1 (32) [Ph2PAcenapAs]. HRMS (CI+) m/z Calcd. for C50H42P2As (M + H): 779.1978,
found 779.1977.
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5. Conclusions

Utilising peri-substitution, novel dative complexes bearing pnictogen dibromide ac-
ceptor groups have been isolated and fully characterised. While their stability resembles
that of their chlorine analogues, compounds 3 and 4 are thermally stable up to well above
100 ◦C and can be stored as solids under an inert atmosphere indefinitely, which makes
them interesting for further synthetic use. Using excess AsBr3 gave species 5, in which a
bromine atom of molecule 4 is ionically separated through interactions with co-crystallised
molecules of AsBr3. The structures of 3–5 illustrate that in phosphine−pnictine complexes
the local polarity (packing) effects within the crystal lattice result in rather different Pn−X
bond distances due to the fine balance of the polar covalent and ionic bonding around
the (formally) negatively charged pnictoranido motifs. This is further corroborated by
computational evaluation of the close As···As interaction observed in 4, which is found to
consist mostly of dispersion forces.

Isolation of compound 6 indicates disproportionationative redox instability of 5 at
elevated temperatures, resulting in an unusual heterocubane dianion [As6Br8]2–, containing
As(I) motifs.

Reaction of BrAcenapLi with EtAsI2 afforded no singly substituted species, only gemi-
nally disubstituted species 7. This compound has been shown to be a useful synthon, with
the As–C bonds being tolerant to the strong base nBuLi. Thus, treatment of 7 with nBuLi
proceeds through lithium-halogen exchange; subsequent reactions with chlorophosphine
electrophiles afforded the new species, cyclic 8 and acyclic 9.
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ing general considerations, preparation of arsenic tribromide, X-ray diffraction and computational
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