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Abstract

Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical
research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of
interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly
useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as
compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive
characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from
pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed
significant overlaps in gene content between different pathways and then defined a clustering method based on the shared
gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed
pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the
constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human
diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine
data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of
gene sets and to facilitate candidate gene prioritisation.
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Introduction

There has been an exponential increase in the amount and

complexity of biological data. Extracting meaningful biological

insights from this vast array of data via functional analysis of the

large resultant gene sets and to prioritise genes and gene sets for

further experimental characterisation is a formidable challenge.

Gene-set-functional-enrichment (GSFE) relies on a statistical

analysis of the relative abundance of biological themes associated

with a given gene set and identifies themes (and associated genes)

that are overrepresented and therefore, likely to be more relevant

to the biological conditions under study.

It is increasingly evident that gene and proteins do not function

alone, but rather as a part of complex pathways where they

interact with various biomolecules (such as proteins, nucleic acids

and metabolites). Therefore, an accurate representation of

biological pathway information is essential to understand the

biological relevance of genes and proteins within specific biological

contexts. An ever growing number of pathway databases, thereby,

constitute an increasingly important component of any computa-

tional framework for the functional annotation of genes and

proteins. However, the available pathway resources often differ

widely in scope and content, which severely hampers a unified

analysis and interpretation of high-throughput biological data

using diverse pathway repositories [1–3]. In the absence of

reasonable compatibility, a unified representation of gene function

by leveraging the biological information stored in various pathway

repositories remains a non-trivial task.

Integration of pathway repositories offers significantly attractive

benefits in terms of more extensive and robust functional

annotations, which in turn will contribute to a better understand-

ing of gene function and regulation in complex biological systems.

Furthermore, it also lends itself to providing a more concise and

relatively discrete representation of enriched biological themes in

combined GSFE studies (Figure 1). In recognition of these benefits,

several efforts have been initiated to gather and integrate

biological data, including pathway information from various

biological databases. The DAVID gene functional classification

tool employs a heuristic approach to grouping genes into modules

based on similarities in the biological annotations [4]. IPAD

defines inter-associations between pathways, disease, drugs and
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organ specificity based on the overlapping gene associations [5].

IntPath examines overlaps between genes, gene pairs and pathway

names to integrate pathways within and across various databases

[6]. PathwayAPI attempts to standardise the representation of

genes and gene-gene relationships across pathways and merges

them to infer more fortified pathway representations [1]. Pathway

Distiller employs a holistic approach where pathways are

consolidated into clusters either based on shared genes, gene

ontology associations and protein-protein interactions (PPIs) or

based on their associations (enriched and/or non-enriched) with

specific gene sets under study [7]. Most of these tools, however,

provide a standalone web interface and have not been integrated

into a more general data-mining platform. Such a platform is often

essential for prioritising genes for further characterisation in drug

discovery and other applications.

Here we describe a new approach to integrating pathway data

primarily for target prioritisation. While our method for pathway

integration is simple and straightforward, the main novelty lies in

its tight integration into the TargetMine data warehouse system

[8]. We chose to combine data from three pathway repositories,

KEGG [9], Reactome [10] and NCI-Nature curated PID [11].

These three are among the largest and most widely used curated

pathway repositories and they employ different approaches to

curating and compiling pathway information. For instance, the

KEGG pathway repository consists of curated reference pathway

maps, which are then mapped to genes within different organisms

based on orthologous associations. Reactome compiles expert-curated

molecular reactions associated with different biological processes,

which are assembled into a biomolecular network to form

pathways. NCI PID compiles expert-reviewed molecular interac-

tion data from NCI-Nature curated data, BioCarta and Reactome

into biomolecular pathways.

We will first show how the various pathways can be clusters

based on shared gene content, on the premise that significant

overlaps in gene content between the pathways should reflect

overall functional congruity between them. This notion will be

confirmed by the biological relevance of the integrated pathway

clusters using semantic similarities between Gene Ontology (GO)

biological process terms [12] (hereafter referred to as GO terms)

annotated to the genes within each pathway. We will further

demonstrate the usefulness of pathway clustering based on

comparative GSFE analysis on diverse gene sets associated with

pathogenesis, inflammatory responses and human diseases, gath-

ered from the literature. A dedicated user interface connects the

pathway clusters and gene mappings to TargetMine, for target

prioritisation and early-stage drug discovery [8].

Results and Discussion

By integrating pathway data from KEGG, Reactome and NCI,

we created Integrated Pathway Clusters (IPCs) for three organ-

isms, Homo sapiens (human), Mus musculus (mouse) and Rattus

norvegicus (rat) (Figures 1 and 2; Tables S1A, B and C). The human

IPCs, consisting of a total of 1748 pathways associated with 8624

Figure 1. Benefits of using an integrated pathway repository for GSFE analysis.
doi:10.1371/journal.pone.0099030.g001
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genes, included 6224 genes mapped to 253 pathways within

KEGG, 6085 genes mapped to 1272 pathways within Reactome

and 2573 genes mapped to 223 pathways within NCI PID

(Table 1). Below we discuss our observations on the integration of

pathway data, their functional coherence and applications to the

analysis of sample gene sets. Unless specified, all observations

below correspond to the human pathway data.

Pathways within and Across Pathway Databases Share a
Large Number of Genes in Common

Gene products may participate in multiple biological processes

and pathways. Different pathway databases employ different

approaches to compiling pathway information, and therefore may

significantly differ in content; however, there remain some

redundancies in pathway definitions within and across different

databases. Therefore, we first examined gene overlaps between the

pathways within each pathway database and across the three

pathway databases. The gene overlap index (OIi,j ) for a pair of

pathways was determined by the ratio of the number of genes

common to both the pathways to the number of genes within the

smaller of the two pathways (see Methods).

A total of 242 pathways within KEGG, 202 pathways within

NCI PID and 68 pathways within Reactome were examined for

gene overlaps with each other in this manner (excluding pathways

that were true subsets of one or more pathways). These included

both intra-database (i.e., estimating gene overlaps between two

pathways within a single database such as KEGG) and inter-

database (i.e., estimating gene overlaps between two pathways

from different databases) pathway comparisons. Amongst the

intra-database pathway comparisons, we observed that 25 KEGG

pathway pairs comprising 35 unique pathways (35 of 242; 14.4%)

were remarkably similar (with OIi,j .0.8, i.e., the two pathways

having 80% of their genes in common). Likewise, seven pathway

pairs comprising eight unique pathways (8 of 202; 4%) and seven

pathway pairs comprising 11 unique pathways (11 of 68; 16.1%)

with OIi,j .0.8 were observed for NCI PID and Reactome

databases, respectively (Table 2; Table S2). Amongst the inter-

database pathway comparisons, for OIi,j .0.8, we observed 29

KEGG-Reactome pathway pairs comprising 21 unique KEGG

and 19 unique Reactome pathways: 12 KEGG-NCI-PID pathway

pairs comprising 12 unique KEGG and seven unique NCI-PID

pathways: and nine Reactome-NCI-PID pathway pairs comprising

Figure 2. Overcoming the challenges encountered in integrating diverse pathway data. A) Pathway data are compiled in varied
repositories, which differ appreciably in scope and content and B) there exists significant redundancy within pathway definitions among different
databases. C) An outline of our approach to integrating pathway data from KEGG, Reactome and NCI-PID databases.
doi:10.1371/journal.pone.0099030.g002
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nine unique NCI-PID and six unique Reactome pathways (Table 2;

Table S2).

The pathway comparisons highlighted significant overlaps

between apparently similar pathways within and across pathway

databases. For instance, KEGG pathway hsa00970 ‘‘Aminoacyl-

tRNA biosynthesis’’ shared a significant number of genes with

Reactome pathway REACT_15482 ‘‘tRNA Aminoacylation’’

(with OIi,j = 0.881); likewise, Reactome pathway REACT_75790

‘‘Cytokine Signaling in Immune system’’ shared a significant

number of genes with NCI PID pathway il5_pathway ‘‘IL5-

mediated signaling events’’ (with OIi,j = 0.8571), among other

examples. The above comparisons, however, also uncovered

remarkable similarities between seemingly unrelated pathways; for

instance, KEGG pathways hsa00190 ‘‘Oxidative phosphoryla-

tion’’ and hsa04966 ‘‘Collecting duct acid secretion’’ were found

to have a significant number of genes in common (with

OIi,j = 0.8519), suggesting that our approach towards pathway

comparisons may provide insights into the possible cross-talks

between varied biological processes (Table S2).

These observations suggest considerable overlaps among genes

that were mapped to certain biological processes and pathway

definitions within and across the three pathway repositories. These

overlaps in information offer a useful means of consolidating large

amounts of heterogeneous pathway data into a more manageable

number of complimentary, broad-based and yet coherent biolog-

ical themes, which is likely to contribute to a more streamlined

functional analysis of genes and gene sets.

Hierarchical Clustering of Pathways Based on Gene
Overlap Indices

The gene overlap indices for all pairs of pathways were collated

into a matrix, resulting in rows of overlap profiles. Based on these

profiles, the pathways were then clustered to produce a

dendrogram (Methods and Figure 3A).

Splicing the dendrogram at incrementally relaxed pairwise

distance cutoffs generated a series of clusters; using cutoffs of 0.6,

0.65 and 0.7 yielded 105 (multi-member) clusters and 20

singletons, 84 clusters and 14 singletons and 67 clusters and 10

singletons, respectively.

After a visual inspection of the size distribution and the total

number of multi-member clusters and singletons, we judged a

cutoff of 0.7 to be optimal (likely to produce functionally congruent

clusters while keeping the total number of clusters manageable)

(Figure 3A). The pathway clusters thus generated varied in size

from two pathways in clusters such as no18, no24 and no26 to 187

pathways in cluster no01 (Table S1A). The resulting clusters

(hereafter referred to as IPCs) were further evaluated using a series

of qualitative and quantitative measures to assess their functional

congruency and biological relevance.

Pathways within a Cluster Share a Higher Fraction of
Genes than Those from Different Clusters

To investigate whether the gene overlap-based distance metric

resulted in well separable clusters, we assessed the overall OIi,j of

pathways within and across the IPCs and compared the results

with those from randomly generated pathway clusters.

The average intra-cluster OIi,j (0.175) was much higher than

the average inter-cluster OIi,j (0.022). The former value was

significantly higher than the corresponding value from the ran-

domised dendrograms (0.04560.003) with a p-value of ,0.01, as

this value was greater than the maximum (0.053) from 100

simulation runs (see Methods).

The above observations suggest that our approach groups

together pathways, which have a high fraction of genes in common

and are therefore likely to be functionally related.

Manual Inspection Revealed Selected Pathway Clusters
Consisting of Functionally Related Pathways

A manual inspection of the pathway names within selected IPCs

suggested that functionally similar pathways were grouped into

clusters using our approach. For instance, cluster no27 ‘‘Metab-

olism of lipids and lipoproteins’’ included eight pathways (seven

KEGG pathways and one Reactome pathway), all of which were

associated with lipid metabolism (Figure 3B). Likewise, cluster

no15 ‘‘Glycolysis/Gluconeogenesis | Lysine degradation | Valine,

leucine and isoleucine degradation’’ included 10 pathways, most of

which were associated with amino acid metabolism (Figure 3C).

These observations suggest that pathway clusters generated by our

approach are likely to include functionally related pathways and

thereby likely to be biologically meaningful.

Validation of the Functional and Biological Relevance of
the Constructed Pathway Clusters

We further performed a series of quantitative assessments to

examine whether the IPCs consisted of functionally related

pathways and were biologically coherent and suitable for gene

set analysis and target prioritisation. Below, we individually

describe our observations on these evaluations.

Benchmarking pathway clusters against reference (KEGG

pathway) sub-types. We employed purity and edit distance

measures [13] to assess how well the KEGG pathways belonging

to a particular reference sub-type (defined as the functional

‘‘categories’’ and ‘‘sub-categories’’ defined in the KEGG pathway

Table 1. The number of human genes and pathways from
different databases, which were consolidated into clusters of
related pathways.

KEGG Reactome NCI PID

Pathways 253 1272 223

Genes 6224 6085 2573

doi:10.1371/journal.pone.0099030.t001

Table 2. Pathway pairs within (intra-database) and across (intra-database) pathway datasets, with OIi,j .0.8.

Intra-database Inter-database

KEGG Reactome NCI PID KEGG-Reactome KEGG-NCI PID Reactome-NCI

Pathway pairs 25 7 4 29 12 9

Unique pathways 35 11 8 21 KEGG, 19 Reactome 12 KEGG, 7 NCI PID 6 Reactome, 9 NCI PID

doi:10.1371/journal.pone.0099030.t002
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database) were clustered together in non-singleton IPCs (see

Methods for more details).

The purity scores for the IPCs when compared with the KEGG

pathway categories and sub-categories were 0.48 and 0.22,

respectively; these values were significantly higher than the

average of the purity scores computed for randomised dendrograms

(0.09 and 0.01, respectively) (Table 3) and were even higher than

the maximum values (0.31 and 0.09, respectively) from 100

simulation runs; yielding a p-value of ,0.01.

Likewise, the collective edit distance scores for all the IPCs were

93 and 137, respectively, which were much lower than the average

of the collective edit distance scores computed for randomised

dendrograms (158 and 249, respectively) (Table 3) and were even

lower than the minimum values (133 and 233, respectively) from

100 simulation runs; yielding a p-value of ,0.01.

The above observations suggest that IPCs described above

correspond more closely to the reference sub-types as defined in

the KEGG pathway database than randomised clusters and are

thus, likely to represent biologically meaningful themes for

functional annotation.

GO term semantic similarity-based evaluation of

pathway clusters. Gene ontology (GO) annotations are one

of the most useful and widely used means to estimate functional

similarity between gene products. Semantic similarity is an

approach to estimating the similarity or likeness between two

terms of a given ontology (such as GO) [14]. In this study, the

semantic similarity measure by Pesquita et al. [15] was extended to

assess the functional similarity between a pair of (non-identical)

pathways within an IPC or those found in different IPCs, thereby

estimating the functional coherence of IPCs.

We first performed all-against-all pairwise pathway comparisons

based on the GO term semantic similarities (GOSS) between their

constituent genes (see Methods) and then we examined the overall

functional similarity scores (FS) within and across IPCs (intra- and

inter-cluster FS, respectively).

The median FS within an IPC was significantly higher than the

median FS across IPCs (0.47 and 0.32, respectively; p = 2.2610216

by the two-sided Mann-Whitney-Wilcoxon test, W = 114426.5)

(Figure 4), thereby suggesting that the pathways within a cluster

were functionally more closely related than the pathways in

different clusters. We further compared FS observed within and

across IPCs with those observed within randomised dendrograms.

The median FS within an IPC was much higher than the average

of median FS within a pathway cluster in the randomised

dendrograms (0.47 and 0.33, respectively). Furthermore, the

average FS within and across the clusters, 0.32 and 0.34,

respectively, were statistically indistinguishable within randomised

dendrograms.

Taken together, our observations suggested that IPCs were

comprised of pathways, which shared an overall higher functional

similarity with each other than with pathways from different

clusters. Therefore, the pathway clusters were biologically

meaningful and likely to represent coherent biological themes.

Gene set functional enrichment analysis. To assess the

effectiveness of the IPCs in target prioritisation, we performed

GSFE analysis on different sets of genes, which were known to be

associated with hepatitis C virus (HCV) pathogenesis [16,17], lung

tumourigenesis in mice [18] and non-immune human diseases

[19]. Below, we discuss the three case studies involving GFSE

analysis using IPCs.

Case study I: Hepatitis C virus (HCV) pathogenesis. We

examined four gene sets associated with HCV pathogenesis for

enriched IPC associations. These included three gene sets

comprising PPI networks constructed from differentially abundant

proteins in transgenic mouse models of HCV pathogenesis

(CoreTGvsWT, PA28c2/2CoreTGvsWT and PA28c2/2Cor-

eTGvsCoreTG, respectively; see [16] for details) and a fourth

gene set (NS5A infection network), which comprises genes

associated with the cellular networks involved in interactions

between HCV NS5A protein and human host factors [17].

Functional analysis of the CoreTGvsWT, PA28c
2/2

CoreTGvsWT

and PA28c2/2CoreTGvsCoreTG gene sets highlighted enriched

associations with 28, 28 and 29, IPCs respectively. These figures

were much lower than the number of individually enriched

KEGG (91, 99 and 98) Reactome (416, 372 and 433) and NCI

PID (134, 120 and 113) pathways associated with the above gene

sets (Table S3A).

Among specific examples, the IPC no64 ‘‘SNARE interactions

in vesicular transport’’ was highly enriched in all of the first three

gene sets (p = 0.01, p = 6.2561025 and p = 2.8661024, respective-

ly) (Table S3A). In our previous analysis [16], after inspecting a

much larger number of enriched pathways (as shown above),

Figure 3. Hierarchical clusters of functionally related pathways based on gene overlap profiles. A) Dendrogram generated by using a
matrix of gene overlap indices for all pairwise pathway comparisons. Specific pathway clusters no27 (red) and no15 (blue) are highlighted. B) Cluster
no27 ‘‘Metabolism of lipids and lipoproteins’’ included eight pathways, all associated with lipid metabolism. C) Cluster no15 ‘‘Glycolysis/
Gluconeogenesis | Lysine degradation | Valine, leucine and isoleucine degradation’’ consisted of ten pathways, most of which were associated with
amino acid metabolism.
doi:10.1371/journal.pone.0099030.g003

Table 3. Purity and Edit distance scores for the IPCs (PD = 0.7) when benchmarked against the KEGG pathway sub-types either at
the top level (Main class) or the second level (Sub class) were much higher than those of the randomised dendrograms.

PD Purity Edit distance

Main class Sub class Main class Sub class

0.7 0.48 0.22 93 137

Randomised dendrograms 0.09 0.01 158 249

0.6 0.54 0.28 123 153

0.65 0.52 0.29 109 149

0.75 0.48 0.24 88 134

Purity and edit distance scores at different PD cutoffs (0.6, 0.65 and 0.75) are included for comparison.
doi:10.1371/journal.pone.0099030.t003
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including those with relatively weak p-values, we demonstrated

experimentally the involvement of vesicular transport proteins in

HCV lifecycle. This finding would have been achieved more easily

with the IPC analysis.

The NS5A infection network was associated with 25 enriched

IPCs; this figure was much lower than the number of individually

enriched KEGG (98), Reactome (488) and NCI PID (119)

pathways associated with the NS5A infection network. The

enriched IPCs included no23 ‘‘Endocytosis | Tight Junction’’

(p = 6.84610218) (Table S3A). Cluster no23 includes genes and

pathways associated with cell adhesion and communication and

cellular transport, some components of which had been strongly

implicated in facilitating HCV lifecycle and tumourigenesis in

HCV-induced hepatocellular carcinoma (HCC) [17]. In general,

the enriched IPCs included all the biological themes that we had

identified previously from a much larger list of relevant pathways

and subsequently validated experimentally.

In some enriched IPCs, genes in the original gene set were

mapped to two or more pathways, which were not enriched

individually. For instance, within the PA28c2/2CoreTGvsCor-

eTG network, two autophagy associated factors GABARAPL1

and GABARAPL2 were mapped to enriched IPCs no011

‘‘Cytokine Signaling in Immune system| Cytokine-cytokine

receptor interaction | Herpes simplex infection | Tuberculosis’’

and no012 ‘‘GPCR ligand binding | Neuronal System| Neuro-

active ligand-receptor interaction’’ (p = 2.61610
228

and

p = 2.1861028, respectively). These two genes would not have

been identified by the standard pathway analysis, because they

were mapped to two KEGG pathways hsa04140 ‘‘Regulation of

autophagy’’ and hsa04727 ‘‘GABAergic synapse’’, which were

components of no011 and no012, respectively and neither of

which showed significant association with the original gene set

(p = 0.7395 and p = 0.0867, respectively) (Table S3B). Recent

studies have implicated autophagy response to HCV-induced

endoplasmic reticulum stress in impairing Type I interferon

production in HCV infection [20]. Therefore the analysis using

IPCs was able to identify a novel biological theme not identifiable

by previous methods.

Case study II: Lung tumourigenesis. We also performed a

functional analysis of genes involved in the function of transcrip-

tion factor Stat3 in carcinogen-induced lung tumourigenesis in

mice [18]. Two gene sets examined (Stat3-upreg and Stat3-

downreg, respectively) corresponded to PPI networks constructed

from differentially expressed genes in Stat3 knockout mice. The

Stat3-upreg and Stat3-downreg gene sets were associated with

seven and six enriched IPCs, respectively. Among specific

examples, Stat3-upreg was mapped to enriched pathway cluster

mmu045 ‘‘TGF-beta signalling pathway’’ (p = 0.003) and Stat3-

downreg was associated with an enriched pathway cluster

mmu021 ‘‘Rheumatoid arthiritis’’ (p = 0.019) (Table S4A). Fur-

thermore, within the Stat3-upreg gene set, complement activation-

associated factor Cfh was mapped to enriched IPC no005

‘‘Hemostasis | Disease | Adaptive Immune System | Pathways

in cancer | HTLV-I infection | MAPK signaling pathway’’

(p = 4.7361027). The above association would not have been

identified by the standard pathway analysis, because Cfh was

mapped to three Reactome pathways REACT_86987 ‘‘Innate

Immune System’’, REACT_144679 ‘‘Regulation of Complement

cascade’’ and REACT_103920 ‘‘Complement cascade’’, which

were components of no005 but individually, none of the three

pathways showed significant association with the original gene set

(p = 0.3206, p = 0.3430 and p = 0.6079, respectively) (Table S4B).

Our observations appear to be consistent with previous studies,

which have shown that the human orthologue of mouse Cfh is

associated with the early stages of lung tumourigenesis [21,22].

These results demonstrate the relative ease of identifying enriched

biological processes previously shown to play critical roles in Stat3-

dependent carcinogen-induced lung tumourigenesis [18] and the

ability of our approach to identify a novel biological theme not

identifiable by previous methods.

Case study III: Non-immune human diseases. An IPC

representing a general biological theme of the immune system

(no1; Adaptive Immune System | Hemostasis | Developmental

Figure 4. Functional similarity (FS) scores within a pathway cluster (Intra-cluster) were much higher than scores across pathway
clusters (Inter-cluster).
doi:10.1371/journal.pone.0099030.g004
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Biology | Pathways in cancer | Innate Immune System) was

enriched in all of the gene sets above. To confirm that this result

was not an artefact of the clustering method, we performed a

functional analysis of gene sets associated with non-immune

human diseases, Atherosclerosis, Hypercholesterolemia and Pan-

creatitis. Our enrichment analysis revealed an enrichment of five

IPCs for each of the three gene sets, respectively. These figures

were much lower than the number of individual enriched KEGG

(31, 18 and 48) Reactome (51, 23 and 43) and NCI PID (9, 1 and

13) pathways associated with the above gene sets (Table S5).

Amongst the most significant associations, IPC no027 ‘‘Metab-

olism of lipids and lipoproteins’’ was associated with the

Hypercholesterolemia gene set (p = 1.13610221) (Table S5), which

is consistent with the perturbations in lipid metabolism in this

disease [23]; enriched IPC no010 ‘‘Dilated cardiomyopathy |

ECM-receptor interaction | Integrin cell surface interactions’’ and

no027 ‘‘Metabolism of lipids and lipoproteins’’ were associated

with the Atherosclerosis gene set (p = 6.9661027 and p = 0.008,

respectively) (Table S5), which is consistent with the pathology of

the cardiovascular disease [24]; IPC no014 ‘‘Biological oxidations

| Metabolism of xenobiotics by cytochrome P450’’ and no040

‘‘Glutathione metabolism’’ were associated with the Pancreatitis

gene set (p = 7.6661028 and p = 1.5861025, respectively), which is

consistent with the xenobiotic stress and glutathione depletion

associated with chronic pancreatitis [25].

The above examples suggest that our IPCs were able to provide

a relatively quick, manageable and meaningful approximation of

biological themes associated with diverse gene sets.

Data Visualisation and Accessibility
A web interface, tightly connected to TargetMine, was

developed for visualising the IPCs and performing GSFE

(http://targetmine.nibio.go.jp/pathclust/). It allows a user to

upload a list of candidate genes (such as a list of differentially

expressed genes, or a set of genes whose protein products interact

with a given protein) to TargetMine and create a gene list. The

user can then retrieve enriched IPCs and examine their pathway

and gene content. Further analysis of these genes and pathways

may be performed using TargetMine with its query builder or pre-

defined templates.

Each IPC is visualised as a network graph, with the nodes

representing the pathways and the edges representing gene

overlaps between them. The size of each pathway node reflects

the number of genes within that pathway and the thickness of the

edges connecting individual pathways reflect the extent of gene

overlaps between the connected pathway nodes. A mouse over

function allows the user to highlight individual pathways within a

cluster; the gene content of each pathway may also be displayed

with mouse clicks (Figure 5).

Figure 5. The online user interface allows the users to query and visualise integrated pathway clusters and perform GSFE analysis
with the supplied list of genes.
doi:10.1371/journal.pone.0099030.g005

Integrated Pathway Clusters in Gene Prioritisation

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e99030

http://targetmine.nibio.go.jp/pathclust/


Comparison with Related Resources
The availability of the IPCs within a data warehouse

environment makes our approach different from most other

integrated pathway repositories such as IntPath [6], IPAD [5],

PathwayAPI [1] and Pathway Distiller [7], as well as more general

gene function annotation tools such as DAVID [4]. None of these

tools provide seamless links with biological data types, other than

the integrated biological themes available within these repositories.

In contrast, our data model for the IPCs enables the users to link

up these functional associations with diverse biological data types

stored in TargetMine, such as disease phenotypes, protein

structural domains and drug–target associations.

Some of these integrated pathway repositories employ more

complex approaches than ours and/or include additional pathway

and biological datatypes to infer integrated pathway clusters. Our

method is simple and fast and IPCs can be updated automatically.

It can also be extended to a larger number of pathway databases

or even to other biological data types such as GO annotations.

Among the existing integrated repositories, the Human Pathway

Database (HPD) is the closest to our approach in that it integrates

pathway data from KEGG, Reactome, NCI PID and BioCarta

based on gene/protein overlaps and provides a standalone web

interface to query large gene sets for human pathways within a

data warehouse [26]. Its data warehouse framework is a less

comprehensive system than TargetMine and HPD only considers

the extent of gene/protein overlap between pathways to estimate

pathway similarity, whereas our approach considers not only gene

overlaps but also the similarity of the gene overlap profiles.

hiPathDB adopts a full integration approach where individual

pathways are consolidated into a unified derivative superpathway

based on shared components. This method provides a holistic and

a concise view of biological processes including cross talks between

different signalling pathways, but it also results in a loss of

information at the molecular level [27]. Our IPCs are designed to

complement the existing functional annotations and our data

model allows the users to revisit the underlying gene-pathway

associations in their original form.

Other differences between our IPCs and the clusters (groups of

functionally related genes) defined in the popular DAVID gene

functional classification tool include 1) automatically assigned

informative names for the IPCs (in contrast to the DAVID clusters

with no representative names), and 2) visualisation of IPCs as

network graphs to allow the users to examine connections and

relationships between constituent pathways.

Conclusions

We describe our approach to integrating pathway information

from public repositories based on shared gene content into

functionally coherent pathway clusters. The resultant IPCs

provided a convenient way to identify broad functional categories

relevant to the biological phenomenon under study and thereby

enabled swift candidate gene prioritisation. Since our approach

relies only on gene overlap between pathways, its inherent

flexibility ensures that data from additional pathway repositories

(and even non-pathway gene sets) can be readily accommodated to

expand the content and coverage of the IPCs.

We assessed the quality of the IPCs using multiple independent

measures, including the agreement with the reference sub-types

defined in the KEGG database and intra- and inter-cluster

semantic similarity scores. With the help of these measures, we

established that the IPCs were functionally coherent and

biologically meaningful. We further demonstrated the ease of

employing the IPCs to analyse large gene sets extracted from the

literature.

Our fully automated approach has been integrated into the

TargetMine data warehouse and enhanced its ability to investigate

complex biological systems for better target discovery. It has also

enabled seamless updates of the IPCs synchronised with

TargetMine updates, which are scheduled every month in general.

Materials and Methods

Pathway Data
An overview of our approach to overcoming the challenges

encountered in integrating diverse pathway data is shown in

Figure 2. In the present analysis, pathway associations for the

genes within the human, mouse and rat genomes were extracted

from KEGG (retrieved on 16/06/2012), Reactome (release date

26/06/2012) and NCI-Nature curated Pathway interaction

database (retrieved on 05/04/2012) repositories. The non-IEA

(Inferred from Electronic Annotation) GO annotations for the

corresponding genes above were retrieved using the TargetMine

data warehouse [8]. Some pathways are broadly defined and

include many genes (for example, KEGG pathway ‘‘Metabolic

pathways’’). Since these pathways are uninformative for gene

prioritisation purposes, we set an arbitrary cut-off of 700 and

excluded eight such pathways with more than this number of

genes from the subsequent analysis.

Estimating Agreements Across Pathways Based on Gene
Composition

Next, we examined the agreement between different pathways

within and across pathway repositories based on the overlaps of

their gene composition. For each pathway Pi in the dataset (where

i = 1,…,N and N is the total number of pathways), let Gi be the set

of genes in the pathway. For a pair of pathways, Pi and Pj , OIi,j

was defined as

OIi,j~
DGi\Gj D

min (DGi D,DGj D)

where Gi

T
Gj is the set of genes shared by Gi and Gj and D:::D is

the number of genes in the set [28]. An OIi,j of 1 indicates that

either the two pathways are identical in size and gene composition

or that one pathway is a true subset of the other. To simplify the

computation, pathways that were true subsets of larger pathways

(‘‘fully contained pathways’’) were excluded from the subsequent

pairwise comparisons (but they were reintroduced into the final

clustering results, as will be described later). Likewise, an OIi,j of 0

indicates that the two pathways have no genes in common.

Pathway Clustering Based on Gene Overlap Indices
The collective gene overlap indices for each pathway were then

collated to generate corresponding gene overlap profiles. We

defined each row oi of the matrix OIi,j as the gene overlap profile

of pathway Pi. The Pearson correlation coefficient R was

calculated for each pair of gene overlap profiles (oi and oj ) and

transformed into pairwise distances PD as PD~1{R. With this

distance metric, average-linkage clustering was performed using

the hclust function of the R statistical package (www.r-project.org).

The dendrogram was partitioned at incremental PD cutoffs and

the resulting clusters of related pathways were manually examined

to select the most suitable cutoff (see Results).

Once the pathway clusters were established, the fully contained

pathways were reintroduced into the clusters that included their
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‘‘parent’’ pathways. (If a fully contained pathway had more than

one parent and these parent pathways belonged to different

clusters, the fully contained pathway was assigned to all these

clusters.).

Pathway Cluster Naming
To provide the pathway clusters with informative labels, we

examined the gene composition of each pathway cluster and

identified the pathways that collectively contributed $50% of the

genes within a cluster. Their entry names in the original database

were then assigned to the corresponding cluster. (In case of two or

more pathways contributing $50% genes within a cluster, their

entry names were concatenated to assign cluster names.).

Assessing the Functional Homogeneity within the
Pathway Clusters Based on KEGG Pathway Sub-types

We adapted the purity and edit distance measures as defined by

Brown et al. [13] to assess the efficacy of the pathway clustering

approach. These scores were used to assess the consistency

between our pathway clusters and reference sub-types of pathways

as defined in KEGG; KEGG classifies its pathways into

‘‘categories’’ (at the top level such as Metabolism, Cellular

Processes and Human Diseases) and ‘‘sub-categories’’ (at the

second level such as Energy metabolism, Cell growth and death

and Immune system). Only KEGG pathways within a cluster were

evaluated in this manner. Clusters containing only one pathway

(singletons) were excluded from the following analysis.

In this study, purity was defined as the fraction of the constructed

pathway clusters that consisted entirely of KEGG pathways

belonging to a single reference sub-type (‘‘category’’ or ‘‘sub-

category’’) and were therefore, ‘‘functionally homogenous’’. Here,

purity reflects the efficacy of our approach in resolving the pathway

clusters into functional categories corresponding to KEGG

pathway sub-types; a purity score of 1 indicates that all KEGG

pathways within each pathway cluster were mapped to a single

KEGG sub-type, whereas a purity score of 0 indicates that none of

the pathway clusters were functionally homogenous.

Likewise, in this study, edit distance was computed as the minimal

number of split and/or merge operations, which were required to

transform individual pathway clusters into a KEGG pathway sub-

type. For instance, if the pathways corresponding to the KEGG

sub-type ‘‘Immune system’’ are distributed across two clusters,

each containing other KEGG pathways, two split and one merge

operations would be sufficient to transform the two clusters into a

single cluster containing all pathways within the KEGG ‘‘Immune

system’’ sub-type. The edit distance for this process would be 3.

To assess the statistical significance of these measures, 100

randomised dendrograms were generated by shuffling the

pathways across the clusters in a manner such that the number

of pathway clusters and the number of pathways within a given

cluster were preserved. The randomised dendrograms were used

to create 100 random sets of pathway clusters.

We defined the p-value of the significance of these two

observations (purity and edit distance) using the fraction of the purity

and edit distance scores amongst the randomised conditions that was

greater than the actual purity and edit distance score of the

constructed pathway clusters.

Functional Similarities of Pathways and Pathway Clusters
We extended the GOSS [14] defined between a pair of genes to

those between a pair of pathways and used this measure to assess

the functional similarities within a pathway cluster (intra-cluster

coherence) or between pathway clusters (inter-cluster separation).

First, the algorithm of Wang et al. [29] was employed via an in-

house Scala/Java implementation to estimate the GOSS between

a pair of genes. This method takes into account both the properties

of the annotated GO terms including their parent and child terms

and the types of relationships between them (such as ‘‘is_a’’ and

‘‘part_of’’, which are assigned semantic contribution weights of 0.8

and 0.6, respectively).

Next, we defined functional similarity (FS) between a pair of

pathways, Pi and Pj , as fellows. FS may be naturally defined by

calculating all possible pairwise GOSS values between genes in Gi

and Gj . However, such a measure would simply reflect the amount

of overlap between Gi and Gj , which was already taken into

account in our clustering algorithm. Since we wished to assess the

quality of our pathway clusters based on non-trivial functional

similarities between the constituent pathways, we needed to

remove contributions from the overlapping genes.

To achieve this goal, in considering a pair Gi and Gj , let

G’i~Gi{Gj , i.e., a set of genes in Gi but not in Gj . Similarly, let

G’j~Gj{Gi. By adopting a best-match average approach

analogous to that of Pesquita et al. [15], the best match functional

similarity score S(g1) for each g1 in G’i was defined as

S(g1)~ max g2
(GOSS(g

1
,g

2
)),g

2
[G0j

where the maximum was taken over all g2 in G’j . The GOSS for a

pair of genes, GOSS(g1,g2), was defined by [15] as:

GOSS(g
1
,g

2
)~

Avet1
(maxt2

SS(t1,t2))zAvet2
(maxt1

SS(t1,t2))

2

where SS(t1,t2) is the GO semantic similarity between two terms

t1 and t2, Avet1
means taking the average over all the terms t1 that

were assigned to gene g1 and the maximum was taken over all the

terms t2 that were assigned to gene g2. In other words, this

measure represents the average similarity between each term

assigned to g1 and its most similar term among those assigned to

g2, averaged with its reciprocal to obtain a symmetric score.

Finally, by using S(g) above, the functional similarity for a

pathway pair, FS(Pi,Pj), was defined as:

FS(Pi,Pj)~
Aveg1

(S(g
1
))zAveg2

(S(g
2
))

2
,g

1
[G’i,g2

[G’j

where Aveg1
means taking the average over all g

1
in G’i.

FS(Pi,Pj) was computed for all pathway pairs within a cluster

(intra-cluster) and for all pathway pairs across different clusters

(inter-cluster).

To assess the statistical significance of the intra- and inter-cluster

FS scores, 100 randomised dendrograms were generated (as

described in the previous section) and used as controls. The intra-

and inter-cluster FS(Pi,Pj) was computed for each randomised

dendrogram and these collective scores were then compared with

the intra- and inter-cluster FS(Pi,Pj) of the constructed pathway

clusters.

Functional Enrichment Analysis of Gene Sets using
Pathway Clusters

Functional enrichment analysis was performed on human and

mouse gene sets extracted from the literature. These included gene

sets associated with HCV pathogenesis [16], lung tumourigenesis

in mice [18] and non-immune disease-related gene sets [19]. The
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above gene sets were mapped to the IPCs and the enrichment of

specific functional categories was estimated by performing

Fischer’s exact test. The inferred p-values were further adjusted

for multiple test correction to control the false discovery rate using

the Benjamini and Hochberg procedure [30,31] and the

annotations/pathways were considered significant if the adjusted

p#0.05.

Visualisation and Web Interface
The visual representation of the pathway clusters was imple-

mented with JavaScript libraries including jQuery and Cytoscape

Web.

Supporting Information

Table S1 Integrated pathway clusters A) Human. B) Mouse. C)

Rat.

(XLSX)

Table S2 Pathway pairs which share OIi,j $0.8.

(XLSX)

Table S3 A) Enriched IPC associations for the HCV pathogen-

esis-associated datasets. B) Enriched IPCs associated with genes

within the HCV pathogenesis-associated datasets, which were

mapped to one or more non-enriched pathways.

(XLSX)

Table S4 A) Enriched IPC associations for the Lung tumour-

igenesis-associated datasets. B) Enriched IPCs associated with

genes within the Lung tumourigenesis-associated datasets, which

were mapped to one or more non-enriched pathways.

(XLSX)

Table S5 Enriched IPCs associated with genes within the Non-

immune human diseases-associated datasets, which were mapped

to one or more non-enriched pathways.

(XLSX)
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