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Abstract: We present a new approach to distinguish between non-ergodic and ergodic behavior. Performing ensemble av-

eraging in a subpopulation of individual molecules leads to a mean value that can be similar to the mean value obtained in 

an ergodic system. The averaging is carried out by minimizing the variation between the sum of the temporal averaged 

mean square deviation of the simulated data with respect to the logarithmic scaling behavior of the subpopulation. For this 

reason, we first introduce a kind of Continuous Time Random Walks (CTRW), which we call Limited Continuous Time 

Random Walks (LCTRW) on fractal support. The random waiting time distributions are sampled at points which fulfill 

the condition N < 1, where N is the Poisson probability of finding a single molecule in the femtoliter-sized observation 

volume �V at the single-molecule level. Given a subpopulation of different single molecules of the same kind, the ratio T/ 
Tm between the measurement time T and the meaningful time Tm, which is the time for observing just one and the same 

single molecule, is the experimentally accessible quantity that allows to compare different molecule numbers in the sub-

population. In addition, the mean square displacement traveled by the molecule during the time t is determined by an up-

per limit of the geometric dimension of the living cell or its nucleus. 
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(CTRW) on fractal supports, Limited Continuous Time Random Walks (LCTRW) on fractal supports, molecular crowding, 

ergodicity, FCS, FCCS, fluorescence fluctuation microscopy, heterogeneity, living cells, complex body fluids like blood and its
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model of crowding, physical model of temporal heterogeneity, random walks on fractal supports, resolution limits of measured 

diffusion times for two components, temporal autocorrelation, temporal two-color crosscorrelation, fluorescence imaging, time 
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1. INTRODUCTION 

 Measurements of single-molecule fluctuations have a 

long history as an essential tool for studying diffusive and 

kinetic properties in confocal microscopy and spectroscopy 

[1]. For example, in dilute solutions fluctuations in the fluo-

rescence intensity are caused by fluctuations in the local 
concentration of fluorescent molecules. Fluorescence corre-

lation spectroscopy (FCS) measures the fluctuations of the 

collected fluorescence intensity from the time average value 

of the fluorescent species emitting photons at a certain value 

of wavelengths (emission peak maximum) in a laser-

illuminated observation volume �V. Moving on from time-
averaged ensemble measurements to studies on time-

averaged single enzyme molecules immobilized on cover 

slips allows for detection of dynamic disorder, i.e. time-

dependent fluctuations in the single-enzyme turnover [2-4]. 

 Enzymes and proteins in their natural environment of 
living cells or body fluids like blood and its components in-

teract with a network of numerous neighboring proteins, and 

their activity depends on the local environment and their role 

in the catalytic cycle [5]. As a consequence, the observed 

dynamic properties are related to the time since the system is 
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switched on (also called waiting time). This very slow phe-

nomenon is known as aging. One of the new developments 

concerns the breakdown of the fluctuation-dissipation theo-

rem [6] in subpopulations of single molecules. Theoretical 

arguments and some experimental data show that slow ap-

proaches to equilibrium influence fluctuations whose time 
scale is much shorter than the time for which the ensemble of 

single molecules shows non-stationary increments and gives 

rise to ergodicity breaking and aging [7, 8].  

 In recent years, evidence has accumulated for anomalous 

subdiffusive motion of molecules in various eukaryotic sys-
tems [7, 9, 10]. The eukaryotic cytoplasm contains different 

organelles, an elaborated cytoskeleton, and various mecha-

nisms for active transport of molecules in the cell and the 

cellular compartments like nucleus. Values of �~  involve 

subdiffusion with �~  < 1, normal diffusion with �~  = 1 as 

well as superdiffusive motion with �~  > 1 suggesting the 
occurrence of active transport. In biological cells, the motion 

of proteins can be hindered either by molecular crowding 

or/and by chemical binding [7]. The important distinction 

being made by us is between space (structure)-dependent and 

time (rate)-dependent sources for anomalous diffusion [11]. 

The molecules are not immobilized on a solid support (solid 
phase) and they are not hydrodynamically or electrokineti-

cally focused. 



Fluorescence Molecule Counting for Single-Molecule Studies Current Pharmaceutical Biotechnology, 2011, Vol. 12, No. 5    825

 In this original paper, we specifically address the ques-

tion of discriminating between spatial and temporal random-

ness that both lead to anomalous, subdiffusive motion of 

single molecules in living cells and their compartments like 

the nucleus or in body fluids like blood and its components.
We quantitatively describe the network of molecular interac-

tions of single molecules by the product ��� �=~ . �  ac-

counts for the molecular crowding and � for the temporal 

heterogeneity. The paramete �   controls the dynamics of the 

interaction network. In our computational model, �  depends 

on the waiting time distribution of the single biomacro-
molecule to be trapped in interactions with its neighboring 

ligands or reaction partner(s). Unbroken and broken ergodic-

ity enter the problem by taking averages in the population of 

single molecules. A physical process is ergodic if the ensem-

ble average over many single molecule trajectories coincides 

the time average, i.e. a moving average over a single mole-
cule trajectory of time length T. Broken ergodicity means 

that both averages are different. In our case, using anomalous 

diffusion without broken ergodicity and anomalous diffusion 

with broken ergodicity would have the advantage of simulat-

ing experimentally accessible parameters like on-off events, 

diffusion times and apparent diffusion coefficients, respec-
tively, and temporal resolution limits of different single mo-

lecular species according to their mass differences [11]. As 

proven here for the first time, performing ensemble averag-

ing in a sparse subpopulation of such individual molecules 

during measurement leads to a mean value that can be simi-

lar to the mean value obtained in an ergodic system. Thus, 
broken ergodicity and unbroken ergodicity are not anymore 

distinguishable. In living cells or body fluids like blood and 

its components, ensemble and temporal averaging are carried 

out without knowing whether the underlying molecular sys-

tem behaves in ergodic or non-ergodic ways. Yet the theory 

predicts that each measurement can be related to an ergodic 
or a non-ergodic behavior unless one is able to show the sin-

gle-molecule fingerprint of non-ergodicity. 

2. THEORY 

 The essential ingredient of modeling the molecular 

crowding is the random walk of a molecule on fractal sup-
port that is taken as power law with a certain crowding ex-

ponent �  [11]. Our choice was motivated by the presence 

of diffusive obstacles of many different sizes. These fractal 

supports have holes on every length scale due to their con-

struction procedure. Therefore, the diffusive motion of the 

molecule on such structures is slowed down at time t. The 
resulting diffusive law becomes subdiffusive [12] 

( ) ��

� tttr ���=2� .  (1)

The mean square displacement (MSD) of the molecules 

( )tr 2�  in n-dimensional space is anomalous and scales with 

the crowding exponent � (0 < � < 1) [11].  

 If there is anomalous diffusive motion of molecules in a 

living cell due to a trap mechanism, then there must be some 

biological event that turns on the interaction with the traps. 

There are many possibilities for such an event [13]. Changes 

in localization like entry of a DNA-binding regulatory pro-

tein into the nucleus or assembly of a functional enzymatic 
complex or conformational changes in the diffusing species 

or binding of a ligand to a receptor or (de)phosphorylation 

can occur. We have first proposed an analysis concept in 

which diffusive motion is inherently linked to cellular me-

tabolism [11]. Our analysis concept differs from refs. [2-5, 7-

10, 12, 13] by its advantage to directly count the number of 
molecules in the femtoliter-sized observation/detection vol-

ume �V in the dilute solution or living cell. Hence, we refer 

to it as fluorescence molecule counting for single-molecule 

studies in the crowded environment and living cells. The 

determination of the molecule number per �V is used to fol-

low cell biological processes in time. One way that the single 
molecule can be probed in fluorescence molecule counting is 

by gathering the time dependent response as a time series 

measurement, e.g. a time-lapse measurement. In order to 

take account of temporal randomness of molecular interac-

tion, i.e. temporal heterogeneity, during subdiffusive motion 

of a single molecule, we perform the random walk on the 
fractal support as a continuous time random walk (CTRW) 

[11]. The MSD traveled by the molecule during the time t is 

given by the law  

( ) ��� ~2 tttr =�
��

.   (2)

 The important feature of this law (Eqn. 2) is that the spa-

tial and temporal coordinates are decoupled. � stands for the 

molecular crowding and �  for the temporal randomness of a 

trapping mechanism. We quantitatively take both cellular 
restraints into account by the product ��� ~=� .

 The molecule has to wait for a time t on each site of the 

fractal support before performing the next step. The waiting 

time is a random variable independently chosen at each new 

step according to a continuous distribution ( )t� . In our case 

[11], the inverse gamma distribution was used to generate 

the waiting time steps ( ) ( ) ( ) ( ) ( ) ( )��� ��
���= +�+�� 111 ttet t ,

where �(�) here is the gamma function. It is a well-known 

result that since the first moment is infinite the central limit 

theorem does not apply. The inverse gamma distribution was 

used because of the occurrence of heavy-tailed CTRW. 

Hence, it is very clear that the ergodicity is broken on all 

time scales t and we exactly simulated and predicted the be-

havior of a selfsame molecule in a crowded environment 

with temporal randomness [11, 14]. 

 Since the experimental conditions to measure a selfsame 

molecule over an extended period of time, at which biology 

is taken place, in living cells and body fluids like blood and 

its components or even in dilute solutions are very restrictive 

[14-17], temporal disorder can be mimicked through waiting 

time distributions ( )t�  displaying long-time tails  

( ) ( )�� +�
�

1tt   with 1~,0 << �� .               (3)

We need to perform the time average over a subpopulation 
of different single molecules of the same kind 

( ) ( ) ( )
TenssubTenssubenssubT

tntrtr
���

== �~22 �� . (4)

n here represents the diffusive steps of the single molecule. 

The two averaging procedures in Eqn. (4) are interchange-

able. Our experimental single-molecule regime given by 

Eqn. (4) [11] and in our papers [14-17] differs from averag-
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ing over the whole molecule ensemble suggested by Meroz, 

Sokolov, Klafter (2010) [7]. We perform averages in sparse 

subpopulations of single molecules, i.e. in sub-ensembles of 

single-molecules that are abbreviated by the subscript sub-

ens and the shorter sub for sub-population, respectively. 

 In this article, we shall examine the time and spatial de-
pendence of the heterogeneous exponents 

��� ~=�  with 1~,0 << ��  .  (5)

We present an approach on how to decide from a subset of 

single-molecule measurements how heterogeneous the stud-

ied system is in time. The single molecules are not immobi-

lized on a solid support and they are not hydrodynamically 

or electrokinetically focused. We theoretically describe the 

network of molecular interactions in living cells or body 

fluids like blood and its components by the product �~ . Thus, 

the important distinction is first made between space (struc-

ture)-dependent and time (rate)-dependent sources for 

anomalous diffusive motion.  

3. METHODS AND SIMULATION 

 Various experimental methods have been applied to 

large-scale studies of proteins and protein networks, includ-

ing mass spectrometry, protein chips, and two-hybrid screen-

ing [18-24]. Proteome studies using autofluorescent fusion 
proteins have also been performed [25]. These methods yield 

only qualitative data. The suitability of fluorescence correla-

tion spectroscopy for high-throughput data acquisition was 

shown [26]. There is a need for new techniques in order to 

quantify cellular protein networks. The first steps towards 

this goal include computational approaches and can experi-
mentally be performed by focusing on selected pathways. 

However, quantitative studies of protein-protein interaction 

networks are still in their infancy. Quantitative data from 

these in vitro interaction studies do not fulfill the require-

ments for standardization of the measurement conditions and 

they are of non-physiological nature due to the cell-free ap-
proaches. Therefore, we theoretically predict the collective 

influence of a molecular interaction network on the behavior 

of single biomacromolecules in living cells or body fluids 

like blood and its components or in dilute solution. The in-

fluence of the molecular interaction network is quantitatively 

expressed by the heterogeneity parameter � in Eqn. (5). 

 In Baumann and Földes-Papp 2010 [11], we have first 

established the most generally applicable method for data 

analysis of diffusive measurements in living cells or body 

fluids like blood and its components under crowded and het-

erogeneous conditions for two (dim = 2) or three (dim = 3) 
dimensions  

( ) 1~~

dim2

�
�

�

�
= �� ttDapp

�    (6)

such that the MSD can then be written as 

( ) ( ) ttDtr app ���= dim2
2� .   (7)

 Here, 
��

~�  is a pre-factor with dimensions of length-

squared per fractional time t. For the first time, specific ex-

amples of Eqs. (6) and (7) were theoretically analyzed in ref. 

[11]. Again, Eqs. (6) and (7) governing crowded and tempo-

rally heterogeneous motion of molecules at the many-

molecule and single-molecule levels give a complete picture 

concerning this subject. The existence of different exponents 

in Eqs. (6) and (7) is an important property of the prod-

uct�~ of randomness in cellular systems and justifies the fol-

lowing concept: We first noted in ref. [11] that there is a 

normalized auto- (and two-color cross)correlation ( )�G  as-

sociated with Eqs. (6) and (7) 

( ) ( )
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where �  is the correlation time with 1
1

lim
0

+=
� N�

, N is the 

molecule number per femtoliter-sized observation volume 

�V at the many-molecule level or the Poisson probability of 

finding a single molecule in �V at the single-molecule level 

with N < 1 [14-17],  is the diffusion time that is a speci-

fied correlation time �, and s here is a so-called structural 

factor that is defined, for instance, as yxzs �= �0
with the 

half-length 0z  and the radial waist yx��  of �V, dim = 3 for 

3D measurements and dim = 2 for 2D measurements in 

membranes. Time traces that are recorded for the subpopula-

tion of single molecules without interacting partner, e.g. 

without ligand, in the crowded environment of living cells 

and their cellular compartments, respectively, or body fluids 

like blood and its components yield �� =~ . The molecular 

crowding parameter �  (0 < �  < 1) can be measured in the 

absence of ligand(s) by means of Eq. (8) in fluorescence 

correlation spectroscopy. Knowing the molecular crowding 

parameter � for the cell type and cellular compartment type 

in the absence of ligand(s), the parameter of temporal het-

erogeneity � can be extracted from the measurements in the 

presence of interacting partner(s), e.g. ligand or neighboring 

protein(s), for the same �  with 1~,0 << �� . �  (Eqn. (5)) 

is not a simple fitting parameter. More specifically, one can 

inquire if spatial and temporal randomness in the single-

molecule trajectories can supply additional information use-

ful in discriminating between crowding and heterogeneous 

dynamic behavior of interactions with neighboring proteins 

or ligands in living cells or in body fluids like blood and its 

components. 

 If the molecular crowding is separated from temporal 

interaction rather than taking the usually non-separated form 

as a single dynamic exponent, then this view provides a 

straightforward explanation for the apparently different be-

havior of different classes of biomacromolecules like DNA, 
RNA, proteins in live cells and dextran molecules in solution 

ranging from 10 KDa to 2 MDa. So far, measurements in the 

literature only consider a single “dynamic” exponent, e.g. 

refs. [27-29, 9]. To our knowledge, experiments in living 

cells have never measured a value 0 < �  < 1 solely due to 

molecular crowding; molecular interaction were always in-
volved to get 0 < �  < 1. 

According to ref. [12], we obtain 
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 Dapp is the measured or apparent diffusion coefficient, 

e.g. in fluorescence correlation spectroscopy. m specifies 

one- (m = 1) or two-photon (m = 2) excitation. With this 

clarification, it would become more feasible to unambigu-

ously report mobility data in terms of either a time-

dependent diffusion time D�  or as time-dependent diffusion 

coefficient [30-33]. We do not discuss this subject here and 

refer to ref. [11].  

 We have applied random walks on fractal supports with-

out continuous waiting time distributions (so-called random 

walks on fractal structures, RWF) and with continuous wait-

ing time distributions (so-called continuous time random 

walks, CTRW) [34, 35]. Here, we give a brief summary how 

the simulations were carried out. For a more detailed discus-

sion, we refer to our papers [11] and [17]. We generate a 

random Brownian walk by randomly selecting steps in the 

three coordinate directions. The three coordinate directions 

are generated by a permutation of the vector v=(0,0,1) so that 

a set of orthogonal vectors S is generated. Mathematically 

this means we use the basic set of orthogonal unit vectors in 

a Cartesian coordinate system as the basis of our calcula-

tions. This set of permutated vectors is extended in all direc-

tions positive and negative by the following unification of 

basis sets. Introducing the random function , which se-

lects the direction with equal probability randomly from our 

basis set S*, we create the Brownian track Bn ( )rr �� ,0
 by a sum 

of independent vectors. 0r
�

 is the origin of the track of n-

steps represented as continuous function Bn ( )rr �� ,0
 for the end 

point r� . The corresponding generating function is 

( ) �
�

=
=

00 ,,
n

nzrrzH ��
Bn ( )rr �� ,0

, which allows us to define the 

moments of the walk. This generation of a fractal is based on 

the renormalization of the whole structure and can be used 

efficiently to generate a fractal support on an infinite space. 

We perform random walks on these lattices. By the same 

method we generalized the Sierpinski gasket and the carpet 

to a different structure, if we not only delete one element in 

the generator but, instead, allow the deletion of more than 

one element. This, of course, results in a great variety of 

generalized Sierpinski patterns introducing a variation of the 

gasket and the carpet. In our examinations, we will restrict us 

to generalized Sierpinski carpets (GSC), which delete not 

more than half of the elements of the generator. We only 

supply the generator as input. The random walker is set on 

some site and it tests whether each site it arrives at is an al-

lowed site, as it goes along. This kind of walk generation is 

known as the blind ant approach. The actual procedure is as 

follows: The walk can start at any site of the underlying vir-

tual lattice. To check whether a site is accessible, the first 

step is to identify the iteration stage the point belongs to. For 

any 
3� grid, a point having either an x

(i)
-coordinate (i = 1, 2, 

3) between 
1�k�  and 

k� belongs to the kth iteration stage of 

the fractal. In the kth-stage coarse-grained pattern with units 

of size , it is checked whether the block containing the 

site matches an accessible site on the given generator. If 

found accessible, the corresponding point in the next lower 

stage, i.e. ), is ascertained. In this way, the point is 

successively scaled down until it reaches the first stage. In 

general, in the kth stage, the equivalent coordinates 
( ) ( ) ( )( )321

,, kkk xxx  are given by the integer parts of ( ) 1�ki
kx �  with 

i = 1,2,3. If ( ) ( ) ( )( )321
,, kkk xxx  matches an allowed site, the coor-

dinates carried over to the next stage are 
( ) ( )( )1

1 ,mod
�

� = ki
k

i
k xx � ; i = 1,2,3. If an equivalent coordinate of 

any stage does not match the list of accessible sites, the site 

under consideration is blocked, only those sites surviving up 

to stage 1 are accessible. If the point corresponds to a 

blocked site, at any stage of the process, it is inaccessible. 

This procedure of coarse graining the grid corresponds to a 

renormalization of the lattice. The steps discussed generate 

an ordinary Brownian walk on a fractal support using a con-

stant time step. In a continuous time random walk (CTRW), 

the molecule has to wait for a time t on each site of the frac-

tal before performing the next step. This waiting time is a 

random variable independently chosen at each new step ac-

cording to a continuous distribution ( )t� . In our case, it is a 

stable Levy distribution. If in addition to the walk on a frac-

tal support we vary the time step based on a waiting time 

distribution, in our simulations an inverse gamma distribu-

tion, we generate a CTRW on a fractal support. For more 

details on the simulation of CTRW we refer to [11]. 

4. RESULTS AND DISCUSSION 

 The amount of irregularity in molecule trajectories of 

dynamic systems of living cells or body fluids like blood and 

its components can be quantified in various ways. From a 
mathematical point of view, the anomalous exponents �~

measure the dependence of the future behavior on small 

changes in the systems' initial conditions. When the dynamic 

behavior is independent of the initial conditions, the associ-

ated single molecule trajectories are ergodic [6]. The single 

molecule trajectories are said to be non-ergodic when the 
dynamics depend on the initial conditions.  

 Let us assume that we have measurement data for the 

mean square displacement (MSD) based on time averages 

extracted from non-ergodic systems. Then, we can ask the 

following question. How many of these infinite tracks are 
needed to get the same scaling exponent resulting from the 

sample average of an ergodic system. The practical impor-

tance of this question is related to the experiments carried 

out with living cells to distinguish ergodic from non-ergodic 

behavior. Our results show that a selection of a few non-

ergodic tracks allows us to represent in the mean of non-
ergodic measurements the same scaling behavior as in er-

godic systems. This means that in real experiments it be-

comes evidently very difficult to distinguish ergodicity from 

broken ergodicity from a practical point of view. To formu-

late the problem precisely let us denote the set of data by 

( )( ) ( )( ) [ ]{ }battftStftS iiiii ,|,, ~~ �==
��� ��

 with …� ,3,2,1=  , (10)
~
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where a and b are the lower and upper bounds of the tempo-

ral measurement interval. If this data set represents meas-

urement points for anomalous, subdiffusive processes we 

know that the MSD based on a temporal average is given by 

( ) �

��

�

�

~

~ ttfMSDT ��==  with …� ,3,2,1=  ,  (11)

where �  counts the single-molecule tracks. Assuming that 

the number of single-molecule tracks �  out of an infinite set 

of possible outcomes in a non-ergodic system can be ordered 

as �
�

��+= ��� ~~~
min

 with ( ) maxminmax

~~~
���� �=� , we 

introduce the following averaging over non-ergodic single-

molecule tracks � . The averaging is carried out by minimiz-

ing the variation between the sum of the temporal averaged 

MSD data with respect to the logarithmic scaling behavior of 

the subpopulation. This yields the least possible variation 

over non-ergodic single-molecule tracks �

( ) ( ) ( )subsubsubisubi ccttf ,~~1
logmin

2

1max

max

�� �
�
�

�

	






�

�
+��

�
�

	




�

�
�

=

�

�

�

�

 . (12)

 Eqn. (12) represents nothing more than a minimization of 

the squares of the errors, e.g. measurement errors. Meaning 

that we are deriving the characteristics of the sub-population 

sub
�~  and subc  by an minimization of the mean square de-

viation of the simulated data and the predicted model in a 

logarithmic representation. 
sub

�~  represents the “averaged” 

scaling exponent, while subc  is related to the pre-factor of 

the scaling law. To achieve the agreement between the sam-

ple MSD, �~  and the average defined in Eqn. (12), we have 

in addition to minimize the variation between the experimen-

tal scaling exponent �~  and the sub-population scaling expo-

nent 
sub

�~

maxmin
~~~

~~min
���

��
��

�
�
	�



� �

subsub
with  (13)

 This way of minimizing the variations allows us not only 

to derive bounds for the scaling exponents 
sub

�~  in the 

subpopulation of single molecules as [ ]maxmin

~,~~ ��� �
sub

but moreover to fix the number of single-molecule tracks in 

the subpopulation as 
max�

N . It turns out that the optimal 

number of tracks 
max�

N  is a small number taken from an 

infinite set of possible values �~ . In Fig. (1), the global min-

ima occurring in this minimization process of single-

molecule variations are shown for the simulated scaling ex-

ponent �~ = 0.689. The bounds for �~  are given in general by 

Eqs. (12) and (13). Fig. (1) shows how the simulated scaling 

behavior of the exponent �~  changes in a subpopulation of 

simulated single-molecule variations. The curves in Fig. (1)

represent the variation of the simulated scaling exponent 

compared with the sub-population exponent 
sub

�~  if the 

number of simulated tracks included in the optimization (12) 

changes. The different curves are related to the maximal 

scaling exponent max

~� taken from the set 

{ }8.0.799.0,797.0,795.0,785.0~
max =� . These values are a re-

sult of the simulations published in ref. [11]. The values 

max

~� are assigned to the curves from top to bottom and, re-

spectively, they are selected at the far right side of the Fig. 

(1) from top to bottom. 

 The global minima of 
sub

�~  are determined under the 

constraint of Eqn. (13), i.e. 
maxmin

~~~ ��� ��
sub

 . 

The minimization of 
sub

�� ~~ �  is carried out under the 

constraint that the lower and upper boundary of the �~ -

values are unknown. These variations of the interval 

[ ]maxmin

~,~ ��  are determined by the minimization of Eqn. 

(13). The resulting intervals of the minimization of Eqn. (13) 

under the change of �~  itself are shown in Fig. (2). The 

global minima of the variations are determined by �~  as 

shown in Fig. (2). We depict an example of averaging and 

the resulting scaling behavior of the �~ -interval [ ]maxmin

~,~ ��

in subpopulations of biomacromolecules for the chosen 

simulated value �~  = 0.689 of Eqn. (5). Boundary values 

[ ]maxmin

~,~ ��  of dynamically distinct regions change with 

different simulated�~ values. The �~ -interval [ ]maxmin

~,~ ��  for 

single-molecule tracks in a subpopulation shows a certain 

bandwidth. Only within that bandwidth, variations of single-

molecule responses are possible. Thus, we are able to charac-

terize the response pattern of single-molecule variations by 

the heterogeneity parameter � , which is modulated by the 

network of interactions. �  is experimentally accessible by 

means of fluorescence correlations spectroscopy and two-

color fluorescence crosscorrelation spectroscopy. The dy-

namic interaction and cellular function of a cellular protein is 

modulated by up to 100 different proteins at different sites in 

the cell [18-24]. The spatio-temporal organization is 

achieved by cellular networks that we characterize by their 

temporal heterogeneity � .

 Fig. (3) shows an ensemble of 32 randomly selected sin-

gle-molecule tracks represented as dots. These tracks are the 

basis of the determination of 
sub

�~  based on the minimiza-

tion processes (12) and (13). Each of these tracks shows a 

specific scaling exponent which is combined in the minimi-

zation to a common scaling exponent. The most striking fea-

ture of performing ensemble averaging in sparse subpopula-

tions of single molecules, however, is a mean value
sub

�~  of 

the solid green line in Fig. (3) that is the same mean value 

obtained in an ergodic system. Hence, broken ergodicity and 

unbroken ergodicity are not anymore distinguishable. In ad-

dition, when averaging procedures are carried out without
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Fig. (1). The minima of the variations 
sub

�� ~~ �  are shown as a function of the number of single molecule tracks �
�

N . In these graphs, 

the lower bound min

~�  is fixed to the value min

~� =0.243 representing the optimal choice for the experimental �~ = 0.689. The curves are as-

signed to the upper bounds of �~  from top to bottom. On the right side of the figure we have { }8.0.799.0,797.0,795.0,785.0~
max =� . We 

identify that for a given �~ = 0.689 the interval for selecting the random number of single-molecule tracks from the total ensemble of single-

molecule macromolecules in the subpopulation (the total ensemble of single-molecule tracks) should range from [ ]maxmin

~,~ ��  = [0.243, 

0.799]; for this range [ ]maxmin

~,~~ ��� �
sub

, we find the minimal variation if the number of randomly selected single-molecule tracks is 
max�

N =

32. All other values of 
�

N  deliver only a local minimum instead of a global minimum. The graphs also show that the variation approaches a 

stable value if 
�

N  approaches large values; i.e. only a small subpopulation of single molecules delivers the minimal variation.  

Fig. (2).  The variation of the �~ -interval [ ]maxmin

~,~ ��  with respect to the MSD scaling behavior �~   in the optimization process for deriving 

sub
�~ by using Eqs. (12) and (13). In the graph we can distinguish different domains for �~ . The first domain ranges from 

…392.0~0 << �  allowing a fixed interval for the limits [ ]maxmin

~,~ ��  = [0, 1/2]. For values …… 878.0~392.0 << � , we observe a highly 

structured set of intervals where the upper and lower limit reaches some minimal or maximal value and allows the whole range [0, 1] for spe-

cific values. The optimal number of tracks is for both �~ -intervals equal to 32. For the last interval 1~878.0 << �… , we observe the maxi-

mal value 1~
max ��  while the lower limit min

~�  varies between 21~0 min << � . For this last domain of �~ , the number of tracks decreases 

to a smaller value 
max�

N < 32. The resolution in �~ to derive the shown plot was =��~ 0.00078125.  

�
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Fig. (3).  The graph shows a random selection of 
max�

N = 32 single-molecule tracks (dots) within the bounds [ ]maxmin

~,~ ��  determined in the 

optimization for a given value of �~ = 0.689. The graph is using the data listed in Fig. 1. The solid green line corresponds to the average 

sub
�~  over the 32 randomly selected single-molecule tracks. 

knowing whether the underlying molecular system behaves 

in ergodic or non-ergodic ways, each measurement can be 

related to an ergodic or a non-ergodic behavior unless one is 

able to show the single-molecule fingerprint of non-

ergodicity. 

Fig. (4).  A single HeLa cell was optically sectioned by two-photon 

imaging after transfection with an Alexa488-labeled short RNA 

duplex (SQ-dsCon2) in order to visualize the geometrical dimen-

sion of the cell nucleus, i.e. its measured geometrical size. Two-

photon imaging is described elsewhere [40].  

 How does the merging of variations of single-molecule 
tracks by ensemble averaging in a sparse subpopulation un-

der broken ergodicity affect the primary observable in fluo-

rescence fluctuation spectroscopy and imaging that is ‘fluo-

rescence fluctuations’? Changes in fluorescence intensity 

reflect the time-averaged molecule number fluctuations of a 

molecular system. Here, we record the absolute number of 

molecule events X occurring in a period of T units time (infi-
nite number of periods of T units time). The events x = 1 

molecule, x = 2 molecules, etc. happen with an average de-

tection probability P per unit time. For example, we record 

the number of molecules passing �V in each of 200 different 

10-microsecond periods. The theoretical frequency was first 

derived thus [36] 

( )

( ) ( ) ( )

( )
.
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�
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�
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=����
�
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==��

�

  (14)

The mean number of molecules in �V observed per period 

time is given by the total of molecules observed in a total of 

different time periods. Hence, the mean value of x happen-

ings in the observation volume �V recorded or taken over an 

infinite number of time periods denotes the mean value of 

the subpopulation of molecules and equals P·T = C. By this 

representation Eqn. (14), we have immediate access to the 

measurable value of VNcC Am ���= , where the molar 

concentration of other molecules of the same kind in the bulk 

is cm and Avogadro's number of [mol
-1

] is NA. In order to 

guarantee that the Poisson probability ln{N} �
ln{P(X=1,C)} = ln{P1} = lnC � C (see Eqn. (14)) of finding 

a single molecule in the femtoliter-sized observation volume 

�V= 0.14·10
-15

 [L] is N < 1 [37], a cut-off at about 11 nM 
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bulk concentration is motivated for �V = 0.14 ·10
-15

 [L]. For 
CeC �<< , it follows straightforwardly CPN �� 1

 [37]. If 

the random waiting time distributions ( )t�  are sampled at 

points which do not fulfill the condition N < 1, we must be 

aware of aliasing effects with terms of two, three, etc. mole-

cules at the same time in the observation volume �V = 

0.14·10
-15

 [L].  

 Let us ask now how long does it take to record 32 differ-

ent single molecules of the same kind in the observation vol-

ume �V = 0.14·10
-15

 [L]? The probability that the entering 

molecule is the original molecule was found to be 

Npp nnnn =�= ,,
1 , where pn,n is the reentry probability for 

non-meaningful reentries [14]; if the selfsame molecule does 

not diffuse out or in the observation volume �V then there is 

a non-meaningful molecular situation and, therefore, no tem-

poral fluctuations in the fluorescence intensity traces of that 

molecule. Hence, the meaningful time Tm to observe just one 

single molecule in �V is [14] 

{ }VNcVNc
T

AmAm

D
m

��������
=

exp

�  .  (15)

D�  is the diffusion time of the molecule. This is the exact 

physical solution for the time that one can study the same 

molecule within �V [14].The probability that the single ob-

servation has the given variate value X = 1 is the proportion 

of times the variate-value X = 1 turns up when a larger num-

ber (theoretically, infinity) of random selections are made. 

The proportion of times that the same single molecule turns 

up exactly equals the proportion of individual molecules in 

the subpopulation which have a variate-value X = 1, in the 

long run T. Hence, given a subpopulation of different single 

molecules of the same kind, the ratio T/Tm that a randomly 

selected molecule has a variate-value X = 1 allows to com-

pare different individual molecules 
max�

N of the same kind in 

the subpopulation at the measured time-averaged molecule 

number N < 1 per observation volume �V

mT
TN =

max�
 .    (16) 

We can, each time Tm we take a sample, calculate the num-

berof different single molecules of the same kind 
max�

N = 32: 

which are recorded or taken over a finite longer time period 

T, by the useful and simple Eqn. (16). We found that for any 

choice at all for N < 1 there is a solution whose probability is 

given by the second and third criterion: the analytical sensi-

tivity to detect a single molecule [37] and the arrival and 

departure probability of the same single molecule [15, 38] 

(see also Fig. 48.2 in ref. [39]: Synopsis of a new physically 

grounded technology of fluorescence fluctuation spectros-

copy for observing single molecules at longer time scales 

than currently available). The corresponding discussion of 

Baumann and Földes-Papp [17] also applies here. 

�~  is related by Eqs. (8)-(10) to anomalous diffusive mo-

tion in fluorescence correlation spectroscopy and two-color 

fluorescence crosscorrelation spectroscopy. As indicated in 

the method section, Dapp(t) is a function of the continuously 

but slowly varying network conditions �~ , i.e. ( )�� f=~ .

We assume that the distribution of exposure to interactions 

depends on the square root of the mean square displacement. 

The longer the diffusive path of the molecules, the 

broader the distribution of exposure to ligands (biochemical 

traps). We mean that the molecules are more frequently ex-

posed to neighboring ligands, the longer their diffusive paths 

become. This is a very reasonable assumption. The property 

of self-similarity implies that a scaling relation exists be-

tween the structure observed at one scale r and that found at 

subsequent scales. However, this is not the scaling that as-

sumes ��� �=~  with 1~,0 << ��  is uniform but rather a 

new kind of scaling that is filled with heterogeneity� . Due 

to different selectivity in the biological binding events of a 

crowded and highly heterogeneous environment like a living 

cell or body fluids like blood and its components, we choose 

the so-called Weibull distribution as the frequency distribu-

tion of exposure to interactions for molecules. 

( )
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total r
r

m
rm

max

exp1  ,   (17)

where m(< r) is the cumulative exposure of molecule species 

with size less than r, mtotal is the total exposure of molecule 

species, and rmax is related to their maximum size given by 

the geometrical size of the living cell or its nucleus (geomet-

rical dimension). The power q is an arbitrary constant but is 

taken to be a positive integer; q is the parameter of the distri-

bution. Because molecules have different shapes it is con-

venient to take a linear dimension r as the cube root of the 

molecule volume �r . For the total exposure to mo-

lecular complexes and species, respectively, we can write 

( ) ( )rmrmmtotal <+>=  ,  (18)

where m(>r) is the cumulative exposure of molecular com-

plexes with size greater than r. Hence, expansion according 

to McLaurin's formula yields 

( ) ( ) …±�
�
�

�
�
�
�

�
��

�
�
�

�
�
�
�

�

��=
	�

	
�

�

	


	
�

�

�
�
�

�
�
�
�

�
�=

>

�




=
�

q

hq

h

h
q

total r
r

h
r

r

r
r

m
rm

max

max

0max

1
!

1exp
 (19)

in which higher powers of ( ) hqrr �

max are neglected. By 
substitution (19) into the exposure-frequency distribution 

(17), we obtain  

( ) q

total r
r

m
rm

�
�
�

�
�
�
�

�
=

<

max

 .   (20)

 Eqn. (20) reduces the Weibull distribution (17) to a 

power law for small r. The power-law scaling (20) describes 

how the property ( ) totalmrm < of molecular exposure to 

interactions sites (complexes) depends on the scale r at 

which it is measured. We now turn to Eqs. (17) and (20). It is 

often convenient to specify a distribution with a probability 

density function (PDF). Taking the derivative of the Weibull 

relationship (17), we obtain the density function fWeibull(r), 

which is the Weibull function, and apply Eqn. (19) to it 
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In our Eqn. (21), fWeibull(r)dr is the fraction of interactions 

with size between r and r+dr. The integral of Eqn. (21) from 

r = 0 to �=r is unity because it includes all molecule in-
teraction sites. The probability density (PDF) for the power-

law distribution (20) is 

( ) q

q

lawpower r
rqrf

max

1�

� �=  .   (22)

Assuming 0>q , the average interaction size is determined 

by the first moment of Eqn. (22) that is 

max
1

r
q

qr �
+

= .   (23)

The variance about this average interaction size r  is 

( ) ( )
2

max2

2

12
r

qq
q

r �
+�+

=� .                   (24)

 In Fig. (4), the measured rmax value of the nucleus of a 

HeLa cells is 22.8 �m. Taking the scale exponent 2=q  in 

Eqn. (21), we obtain a quadratic Weibull distribution of ex-

posure to interaction sites with a mean interaction size r  = 

15.2 �m and =2

r�  28.88 �m
2
 (Eqs. (23) and (24)). Thus, 

the upper limiting value of the MSD is 2r�  = 2.31·10
-10

±

2.92·10
-11

 [m
2
]. 

 In summary, the probability to perform n steps during 

time t is denoted by ( )tn� , which is related to the waiting 

time distribution by the Laplace transform 

L ( )( ) ( ) ( )( ) ( )( ) sssst n
n ���� ��== 1 . (25)

This probability is needed to analyze the MSD for a random 

walk on a fractal support carried out as a CTRW [41, 42]. 

The probability ( )tn�  of the random waiting time distribu-

tions ( )t�  is sampled at points which fulfill the condition N
< 1 per observation volume �V and Eqn. (16). The MSD
traveled by the molecule during the time t is given by  

( ) ( )trtr n
n

n ��= �
�

=0

22 ��  ,   (26)

where 2

nr
�

 is the average distance traveled in n steps on the 

fractal. 2

nr
�

 is determined by the experimentally accessible 

condition of Eqn. (23). In our experiment Fig. (4), 2

nr
�

=

2.31·10
-10

± 2.92·10
-11

 [m
2
]. Here, we first introduce this kind 

of CTRW, which we call Limited Continuous Time Random 

Walks (LCTRW) on fractal supports. 

CONCLUSIONS 

 Anomalous diffusion behavior is an important issue es-

pecially in cellular single-molecule measurements and ways 

to precisely quantify this behavior are in high demand. Here, 

we present an approach on how to decide from a subset of 

single-molecule measurements how heterogeneous the stud-

ied system is in time. Specifically, we present an approach to 

distinguish between ergodic and non-ergodic behavior. We 
have proposed a change of the molecular behavior when 

single molecules are trapped in interactions with their neigh-

boring ligands and reaction partner(s), respectively or/and by 

conformational changes in a crowded environment. We as-

sume that spatial and temporal conditions are decoupled. �
is the spatial, molecular crowding parameter and �  is the 
heterogeneous parameter of the temporal randomness. In this 

original research article, we present solutions to the problem 

how bulk egodicity behaves for subpopulations of biomac-

romolecules and in what ways, and by how much the interac-

tion network of single molecules can be rendered non-

ergodic by ensemble averaging during the measurement. We 
display the notations, introduce our definitions and report 

some general results. The complete absence of spatial ge-

ometry �  is, of course, the simplest assumption [43] but 

more complicated structures have been considered in our 

models by numerical simulation on fractal supports. Differ-

ent physical situations correspond to different values of the 
experimentally accessible parameters ��� ~=�  with 

1~,0 << �� . The novel theory presented here offers a new 

way to understand the molecular behavior when single bio-

macromolecules are trapped in interactions with their neigh-

boring ligands and reaction partner(s), respectively, in a 

crowded environment. 
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