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A B S T R A C T   

Human liver tissue is composed of heterogeneous mixtures of different cell types and their cellular stoichiometry 
can provide information on hepatic physiology and disease progression. Deconvolution algorithms for the 
identification of cell types and their proportions have recently been developed for transcriptomic data. However, 
no method for the deconvolution of bulk proteomics data has been presented to date. Here, we show that pro-
teomes, which usually contain less data than transcriptomes, can provide useful information for cell type 
deconvolution using different algorithms. We demonstrate that proteomes from defined mixtures of cell lines, 
isolated primary liver cells, and human liver biopsies can be deconvoluted with high accuracy. In contrast to 
transcriptome-based deconvolution, liver tissue proteomes also provided information about extracellular com-
partments. Using deconvolution of proteomics data from liver biopsies of 56 patients undergoing Roux-en-Y 
gastric bypass surgery we show that proportions of immune and stellate cells correlate with inflammatory 
markers and altered composition of extracellular matrix proteins characteristic of early-stage fibrosis. Our results 
thus demonstrate that proteome deconvolution can be used as a molecular microscope for investigations of the 
composition of cell types, extracellular compartments, and for exploring cell-type specific pathological events. 
We anticipate that these findings will allow the refinement of retrospective analyses of the growing number of 
proteome datasets from various liver disease states and pave the way for AI-supported clinical and preclinical 
diagnostics.   

1. Introduction 

Tissue samples and tissue-derived biomarkers are routinely used in 
clinical medicine and biological research. Tissues are comprised of 
heterogeneous mixtures of different cell types. More than 200 distinct 
cell types have been identified in humans and additional subtypes are 

frequently discovered as technology is improved [1,2]. Transcript, 
protein, and metabolite signatures differ between cell types and, as such, 
variations in the proportions of different cell types and extracellular 
matrix (ECM) components impact the transcriptomic, metabolomic, and 
proteomic patterns of a given tissue sample. For instance, inflammation 
often results in an increased proportion of leukocytes, while ECM 
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proteins proportionally increase in fibrosis. 
Methodologies for determining composition of cell types have been 

developed for transcriptomic data using various deconvolution ap-
proaches. There are two categories of deconvolution approaches: partial 
deconvolution and complete deconvolution [3–5]. In partial deconvo-
lution, prior information about the proportions of the different cell types 
or the signatures of isolated cell types are used to deconvolute the cell 
type composition. Complete deconvolution is made without such prior 
knowledge. Both partial and complete deconvolution have been used to 
infer cell type proportions and signatures from transcriptomics data. For 
instance, deconvolution of single cell transcriptomes has been used to 
study the infiltration of lymphocytes and other immune cells in the 
tumour microenvironment [6,7]. Similarly, accounting for sample het-
erogeneity using deconvolution resulted in more accurate predictions of 
breast cancer recurrence and was able to guide clinical decision making 
[8]. However, while these strategies have been successfully applied to 
transcriptomic data, deconvolution of proteomic data has to our 
knowledge not yet been presented, at least in part because access to 
sufficiently large proteomic datasets has been limited. Furthermore, the 
number of proteins covered by state-of-the-art proteomics is signifi-
cantly lower than the number of transcripts obtained from RNA 
sequencing methods and single cell-based proteomic methods lack the 
necessary depth and resolution for partial deconvolution methodologies 
[9,10]. 

To overcome these knowledge gaps, we set out to investigate 
whether global proteomics data could be used for human cell type 
deconvolution. We compared a simple linear least squares method, as 
well as partial and complete deconvolution methods developed for 
transcriptomes [3,11]. To establish the methodology, we first generated 
20 blinded mixtures of cell lines with defined proportions, conducted 
bulk proteomics and used the resulting data to identify cell type 
composition. Although 90% of all proteins were found in all the cell 
lines, deconvolution accurately identified the proportions with corre-
lation coefficients of 0.71–0.99. To our surprise, similar accuracies were 
obtained when deconvoluting proteomic data of defined mixtures of 
primary human liver cell types (hepatocytes, endothelial cells, Kupffer 
cells and stellate cells) obtained from proteomic repositories. Encour-
aged by this finding, we analysed the proteomes of human liver tissue 
samples from 56 donors undergoing Roux-en-Y gastric bypass surgery 
[12,13] using complete deconvolution. Importantly, we found that an 
increased proportion of immune cells and stellate cells correlated with 
clinical immune response markers and altered ECM profiles, respec-
tively. Combined, our results show that proteome deconvolution pro-
vides a molecular microscope for analyses of the composition of cell 
types and extracellular compartments, which can provide additional cell 
type-specific information using input data from new proteome collec-
tions and retrospective analyses of data deposited in proteomics data-
bases [14]. 

2. Materials and methods 

2.1. Proteomic analysis of HEK 293, Caco-2 and A549 cell lines 

Samples, containing approximately 6 million cells of one cell line 
(HEK 293, Caco-2 or A549), or mixtures thereof with known proportions 
were prepared. The sample contents were blinded for the operator, and 
not decoded until deconvolution of the individual cell types in the 
mixtures was complete. The samples were prepared for proteomics 
analysis using a slightly modified MED-FASP protocol as previously 
described [15,16]. In short, the cell samples were chemically lysed, 
protein concentration was measured using the tryptophan fluorescence 
method [17] and proteolytic digestion was subsequently performed with 
Lys C and trypsin. The peptides were injected on an UltiMate 3000 RSLC 
nano system coupled to a QExactive HF mass spectrometer (Thermo--
Fisher Scientific, Palo Alto, CA, USA) using a Top15 method (full MS 
followed by 15 ddMS2 scans). The data were analysed using MaxQuant 

version 1.6.0.16 with the complete human proteome extracted from 
UniProtKB version 2015 June. The mass spectrometry proteomics data 
have been deposited to the ProteomeXchange Consortium (http://pro-
teomecentral.proteomexchange.org) via the PRIDE partner repository 
[18] with the dataset identifier PXD027282. 

Extended method descriptions are available in the Supporting 
Information. 

2.2. Pre-processing of proteome data for deconvolution 

Protein concentrations were calculated using the Total Protein 
Approach [16]. Total protein values were used as input for the decon-
volution algorithms. The COCKTAIL dataset from human liver samples 
contains samples analysed on different occasions and batch effects were 
controlled for using geometrical mean centring as described previously 
[13]. 

2.3. In silico mixing of primary human liver cells 

Endothelial cells (EC), hepatocytes (HC), Kupffer cells (KC) and 
stellate cells (SC) make up the majority of cells in the liver. Using cell 
type-specific data of these cell types from human liver [15], an in silico 
mixture of 100 samples was created. The proportions were assigned 
using a random uniform distribution divided by the sum of the pro-
portions, so the sum was equal to one. The concentrations of the proteins 
in each sample were calculated by multiplying the proportions of the cell 
type with the protein-specific variation obtained from a normal distri-
bution using cell type-specific means and standard deviations. The 
calculated concentrations of the 100 in silico mixed samples were then 
used by the algorithms to determine the cell type proportions. 

2.4. Computational deconvolution methodologies 

To investigate whether algorithms previously developed to decon-
volute transcriptomics data could be applied to proteome datasets, we 
tested MuSiC [11], a partial deconvolution algorithm that uses cell 
type-specific information to quantify cell type compositions from bulk 
data, as well as Linseed [3], which performs complete deconvolution 
and does not require input of cell type-specific data, but instead requires 
annotation of the cell types to be identified. For the latter, we used single 
cell RNA sequencing data from human liver and the UniProt database 
[19,20] to annotate the identified cell types for tissue when using 
Linseed. A linear methodology using a constrained linear least squares 
solver was developed in Matlab to investigate how the MuSiC and 
Linseed algorithms compared to a simple linear methodology without 
filtering, scaling, or identification of marker proteins. Extended method 
descriptions are available in the Supporting Information. 

2.5. Proteome data set of human liver tissue 

The human liver proteomes were obtained from the COCKTAIL study 
with trial registration number NCT02386917 [12,13]. The 56 patients 
underwent Roux-en-Y gastric bypass surgery during which liver biopsies 
were collected for omics investigation. Anthropometric measurements 
and blood samples for clinical chemistry analyses were also collected. 
The study protocol was approved by the Regional Committee for Med-
ical and Health Research Ethics (2013/2379/REK sørøst A), and all 
patients signed a written informed consent. 

2.6. Proteome data set of isolated human liver cell types 

The proteomes of isolated hepatocytes and non-parenchymal cells 
(NPCs) from human liver [15] were extracted from the PRIDE repository 
[21] using the identifier PXD012615. 

N. Handin et al.                                                                                                                                                                                                                                 



Computational and Structural Biotechnology Journal 21 (2023) 4361–4369

4363

3. Results 

3.1. Deconvolution of mixtures of cell lines 

To establish the deconvolution methodology on proteomic data, we 
first used three cell lines of different tissue origins (HEK 293: human 
embryonic kidney, Caco-2: human colorectal adenocarcinoma, and 
A549: human adenocarcinomic alveolar basal epithelium). A total of 20 
samples, consisting of six samples containing only one of the three 
selected cell lines (in duplicates), plus 14 mixtures of the three cell lines 
with different stoichiometry were generated and subjected to global 
proteomics analysis. In total, 7379 proteins were identified. More than 
90% of those were detected in all three cell lines (Fig. 1A, B). We 
furthermore confirmed that the distribution of the protein concentra-
tions was comparable between the cell lines (Fig. 1C-D). The mixtures of 
the cell lines in different proportions were used with the simple con-
strained LLS algorithm, the partial deconvolution algorithm MuSiC, and 
the complete deconvolution algorithm Linseed, to quantify cell stoichi-
ometries. In the case of MuSiC (partial deconvolution), we used the six 
single cell line samples to produce the specific proteomic signatures of 
each of the cell lines. The LLS method could not properly decipher the 
different cell proportions in any of the samples (R=0.71). However, 
despite the substantial overlap of proteomic signatures between cell 
lines, both partial deconvolution using MuSiC (R=0.98) and complete 
deconvolution using Linseed (R=0.99), accurately predicted the cell line 
stoichiometry across samples (Fig. 2A). No systematic under- or over- 
prediction was observed (Fig. 2B). 

3.2. Deconvolution of mixtures of primary human liver cells 

Since the algorithms properly estimated cell proportions using the 
proteomics data from cell lines, we next investigated whether the same 
approach could be applied to primary human liver cells, that is cells 
from the same tissue. Samples isolated from three donors [15], repre-
senting each of the four major liver cell types (hepatocytes, stellate cells, 

liver sinusoidal endothelial cells, and Kupffer cells), were used for 
proteome-informed deconvolution. All three algorithms correctly found 
that each of the samples contained mostly one cell type (Fig. 3A). We 
continued by producing 100 in silico mixtures containing the four major 
cell types in different proportions. All three algorithms accurately 
deconvoluted the mixtures; however, MuSiC and Linseed (both 
ρc=0.996) produced slightly more accurate estimates of cell proportions 
than LLS (ρc=0.974; Fig. 3B), corroborating the results obtained in cell 
lines. 

3.3. Deconvolution of human liver tissue 

Based on these results, we proceeded to deconvolute proteomes ob-
tained from liver tissue of 56 individuals undergoing Roux-en-Y gastric 
bypass surgery in the COCKTAIL study [12,13]. Since liver tissue is 
comprised by more cell types (e.g., blood/immune cells) than the four 
archetypal liver cells investigated in Fig. 3, we used the complete 
deconvolution algorithm Linseed, as partial deconvolution requires 
prior knowledge about the purified cell type proteomes to estimate the 
proportions in bulk tissue. Our aim was therefore to deconvolute the cell 
stoichiometry of the four archetypal liver cell types, as well as various 
populations of liver resident and circulating immune cells (Fig. 4A). 
Overall, the quantified proteins varied by 2–3 orders of magnitude be-
tween individuals (Fig. 4B). We used singular value decomposition 
(SVD) to estimate the number of cell types by inferring the number of 
linearly independent components [3]. Notably, 94% of the variance 
could be explained by the first eight components with a Youden index of 
0.78 (Fig. 4C). Annotation of these components using data from single 
cell transcriptomics and the UniProt database [19,20] revealed that 
component one, which alone explained 63% of variance, corresponded 
to hepatocytes. Signature proteins for this group were identified as 
HSD17B7, IDI1, SQLE and HMGCS1, which encode hepatocytic enzymes 
with important roles in steroid and cholesterol metabolism (Fig, 4D). 
Notably, typical hepatocyte markers, such as major drug metabolizing 
enzyme CYP3A4, were not part of the signature proteins. Signature 

Fig. 1. Global proteomes of cell lines from different tissues. The proteomes of three cell lines of different tissue origin were analysed. A, In total, 7043 (HEK 293), 
7057 (Caco-2) and 7064 (A549) proteins were identified. B, Most proteins (96.7%) were shared between the cell lines. C, The overall ranking of protein concen-
trations was highly similar between cell lines. D, Correlation plots of protein expression levels were also similar, but distinct differences were evident. 
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proteins for deconvolution should increase linearly with the number of 
cells. However, CYP3A4 expression is heavily influenced by both genetic 
and environmental factors [22] and, thus does not constitute a suitable 
signature protein for deconvolution. 

Components two (adding 12% to the explained variance) and three 
(adding 6%) corresponded to extracellular components in the lumen and 
space of Disse. Importantly, this variability will be missed when using 
conventional transcriptomic rather than proteomic deconvolution. 
Groups 4–7 corresponded to erythroid cells, immune cells, liver sinu-
soidal endothelial cells and stellate cells, respectively, while the last 
component was identified as a bile canalicular compartment. Compari-
son of the abundance of the annotated groups with previously published 
data on the relative composition of hepatic cell types [23] demonstrated 
an excellent alignment with the corresponding fractions of liver volume 
occupied by the respective compartments further corroborating the 

accuracy of the deconvolution method on heterogenous patient-derived 
samples (Fig. 4E). As expected, predictive accuracy increased with 
sample size (Fig. 4F). However, even when sample number were 
decreased from 56 to 20, the mean absolute error (MAE) and the root 
mean square error (RMSE) of predictions remained < 0.1 and < 0.2, 
respectively (Fig. 4E). This result demonstrates that complete decon-
volution based on proteomes even constitutes a suitable and reliable 
approach also for smaller sample sets, thus increasing applicability to 
studies for which only around 20 samples are available. 

3.4. Correlation between liver cell composition and clinical parameters 

Next, we analysed inter-individual differences in liver cell compo-
sition. Most liver samples had comparable cell compositions and formed 
one large cluster in eigenvector-based multivariate analyses (Fig. 5A). 

Fig. 2. Proteome deconvolution of cell lines results in accurate deconvolution of cell stoichiometries. The proteomes of individual and predetermined 
mixtures of cell lines were determined. A total of 20 (A-T) samples were used where six (O-T) contained only one of each cell line and the remaining samples (A-N) 
were mixtures; all samples were analysed blinded and in duplicate. A, Heat maps showing the prediction accuracy of the cell type proportions generated by three 
different deconvolution approaches. Root mean square error (RMSE), mean absolute error (MAE) and Pearson’s correlation (R) for the three algorithms are shown. B, 
Proportions of the three different cell lines in the 20 samples. Dots indicate predicted values by the different algorithms while lines show the true values. 
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However, ten of the 54 liver samples were identified as outliers. In 
sample #23, we identified elevated levels of immune cells. Comparison 
with blood samples collected at the time of the sampling of the liver 
biopsies revealed that patient #23 had the highest values of all patients 
for pro-inflammatory interleukins, chemokines, and TNF-α (Fig. 5B). 
These results suggest that the systemic inflammation identified in pe-
ripheral blood is closely aligned with an increase in hepatic immune cell 
composition. Interestingly, while elevated levels of immune cells 
revealed by the complete deconvolution agreed with clinical immune 
response markers, the patient had a hsCRP below 10 mg/l before sur-
gery and no clinically manifest symptoms of inflammation, suggesting 
that deconvolution can provide additional information that goes beyond 
what is obtained by conventional clinical chemistry testing. 

Similarly, patients #39 and #44 showed elevated levels of hepatic 
stellate cells, which play important roles in the initiation and progres-
sion of fibrosis [24]. None of these patients had FIB-4 fibrosis scores 
above the clinically relevant cut-off value (>2.67), indicating that no 
patient had advanced fibrosis [25], which was also confirmed during the 
surgery. However, the composition of ECM is altered progressively 
during fibrosis (i.e., already in early non-advanced stages) with an in-
crease in fibrillar collagen (e.g., collagen types I and III) and a decrease 
in fibril associated collagens with interrupted triple helices (FACIT; e.g. 
collagen types XII and XIV). We therefore investigated ECM protein 
composition (Suppl Fig. 1A) and found that the ECM signatures for these 
patients indeed formed a separate cluster characterized by elevated 

levels of fibrillar collagens consistent with the alterations in stellate cell 
abundance (Fig. 4C). These results indicate that complete deconvolution 
of bulk proteomic data can flag patients with altered ECM protein 
composition at early stages that are missed using conventional FIB-4 
scoring, thus providing a useful complement for diagnostics and 
in-depth investigations into disease phenotypes. 

4. Discussion 

Deconvolution algorithms have previously been used to obtain 
tissue-specific information about cell type composition from bulk tran-
scriptomic data [3,11,26]. Here we show that also proteomic data, 
which typically contains less data points than transcriptomes, can be 
used to accurately deconvolute cell-specific proportions in complex 
mixtures. The results show that it is possible to deconvolute proteomic 
data from cell lines, mixtures of primary cells, and human liver tissue, 
providing new information on tissue composition and allowing the 
identification of cell type-specific disease biomarkers from complex 
mixtures. Furthermore, in contrast to transcriptome data, proteomic 
deconvolution also allows to obtain tissue proportions of important 
extracellular components, such as matrix proteins. 

In the first set of experiments, the proteomes of blinded mixtures of 
three cell lines from different tissues were deconvoluted. The cell lines 
shared most proteins and only around 80 proteins were unique, repre-
senting 3% of the total proteome. This may seem like a small number, 

Fig. 3. Proteome deconvolution of the four major liver cell types in human liver. The proteomes of liver sinusoidal endothelial cells (EC), hepatocytes (HC), 
Kupffer cells (KC) and stellate cells (SC) were determined previously [15]. A, Heat maps showing that the different liver cell types can be accurately deconvoluted 
based on proteomic data. B, Predicted versus true cell type proportions in 100 mixtures of the four cell types. Lin’s concordance correlation coefficient (ρc) is 
indicated for each of the three algorithms. 
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but previous findings suggest that less than 5% of all gene products are 
tissue specific [27]. Hence, deconvolution based on only cell 
type-specific markers could be challenging and too noisy. Despite the 
substantial overlap, both partial (MuSiC) and complete (Linseed) 
deconvolution resulted in highly accurate inference of cell type 
composition with root mean square errors (RMSE) similar to those 
previously observed in unrelated transcriptomic data [11]. These results 
indicate that despite the smaller data size of proteomic datasets, accu-
racy does not decrease. While bias for certain cell types has previously 

been observed in deconvolution studies using transcriptomic data, likely 
due to cell type-specific differences in RNA content [3], we did not 
observe any indication of bias in our proteomic deconvolution. Addi-
tionally, Lin’s concordance correlation coefficient for both partial and 
complete deconvolution resulted in close to perfect correlations, indi-
cating that both deconvolution methods were able to determine the cell 
type proportions in mixtures of different liver cell types with high 
accuracy. 

For the identification of multiple cell types and their proportions in 

Fig. 4. Proteome deconvolution can accu-
rately reveal the composition of cell types of 
human liver biopsies. The proteomes from 56 
human liver tissue samples were analysed using 
complete deconvolution. A, Schematic drawing 
showing cell and extracellular compartments 
identified by deconvolution. Colour codes are 
harmonized between fig A, D and E. B, Vari-
ability in liver protein expression. C, Variance 
explained cumulatively for each Singular Value 
Decomposition component for unfiltered (all 
proteins; grey) and filtered (collinear proteins; 
black). The first eight components explain 94% 
of all variance for the filtered data and had a 
Youden index of 0.78. D, The eight compart-
ments identified in C and examples of their 
signature proteins. E, Average estimated pro-
portions (by volume) in human liver (n = 56) of 
the eight compartments were in excellent 
agreement with the literature values [23]. F, 
Variability as a function of sample size.   

N. Handin et al.                                                                                                                                                                                                                                 



Computational and Structural Biotechnology Journal 21 (2023) 4361–4369

4367

tissues, complete deconvolution algorithms are preferred as they do not 
require prior knowledge of the proteomes of each cell type. Another 
advantage is that tissue proteomes provide a snapshot of the different 
cell types in their natural environment compared to isolated cell types 
used in partial deconvolution. Therefore, we proceeded with complete 
deconvolution of data from the human liver tissue. An important aspect 
of complete deconvolution methods is that they require an estimate of 
the number of constituents, which can be cell types or distinct extra-
cellular compartments, present in the sample [20,27,28]. To mitigate 
this problem, we used Singular Value Decomposition (SVD) to predict 
the number of constituents. Importantly, SVD showed that around 95% 
of the variance could be explained by eight proteome groups, which 
could be annotated to liver-specific cell types and compartments and 
corresponded to previously published proportions of liver cell types and 
extracellular tissue components [23]. These results provide an orthog-
onal validation of the approach and paved the way for analyses of 
inter-individual differences in liver proteome compartmentalization. 

While liver compositions were similar among most of the 56 in-
dividuals analysed, some patients displayed elevated numbers of im-
mune cells or stellate cells, characteristic of hepatic inflammation and 
fibrosis, respectively. Importantly, the patient with elevated levels of 

immune cells passed the standard clinical evaluation prior to surgery, 
had low level of hsCRP, and displayed no apparent signs of inflammation 
during surgery. Nevertheless, this patient had the highest levels of all 56 
patients for 18 of the most relevant immune response markers. This 
relationship between elevated hepatic immune cell numbers and 
increased cytokine and chemokine levels are in alignment with a patient 
history of weekly cholestatic episodes [29]. Two other patients (patients 
#12 and #13), who showed significantly elevated levels of immune 
response markers did not exhibit increased immune cell numbers in the 
liver. These results are important as they indicate that liver proteome 
deconvolution can distinguish systemic and liver-specific inflammation, 
which can allow the refinement of further clinical interventions. 

Two patients showed an increase in stellate cell numbers but were 
not classified as having clinically manifestation of hepatic fibrosis based 
on FIB-4 scoring, which considers demographic factors, thrombocyto-
penia as well as blood-based parameters of liver injury. A sub-analysis of 
all extracellular matrix proteins found in the liver at different stages of 
fibrosis [30] found that proteins associated with fibrosis, such as fibrillar 
collagen, were elevated in these two patients. Notably, while FIB-4 
scoring has been shown to be superior to other non-invasive algo-
rithms for the prediction of fibrosis in NAFLD [31] with performance 

Fig. 5. Patients with deviating cellular proportions have altered clinical chemistry. A, Principal component analysis biplots of the estimated cell proportions 
for the 56 human liver samples. Green indicates livers that deviate from the average liver cell type proportions. Arrows indicate the loading vectors. The numbers in 
parentheses represent the percentage of variability explained by each principal component. B, Immune response markers in patient blood samples (n = 56). Note the 
agreement between the enhanced immune cell proportion identified by deconvolution and the high levels of inflammatory markers in patient #23. C, Fibrosis 
markers identified in the patient proteomes (n = 56). Note the agreement between the increased stellate cell proportions and the altered composition of extracellular 
matrix proteins in patients’ number #39 and #44. Coloured symbols indicate outlier patients of interest, while grey symbols denote the other patients. 
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similar to liver biopsies (AUC, 0.71–0.89), its accuracy for the progres-
sion of fibrosis is considerably lower (AUC, 0.57–0.81) [32]. Thus, ob-
servations of elevated stellate cell numbers correlate with clinical 
markers of altered ECM composition characteristic of fibrosis develop-
ment and can provide complementary information that might refine risk 
stratification based on conventional non-invasive markers. 

In conclusion, our results show that proteome deconvolution pro-
vides an effective tool for investigating the cell type composition human 
liver. A unique feature of proteome deconvolution is that it also provides 
valuable information about extracellular compartments. Importantly, 
complete deconvolution of patient liver biopsies allowed to identify 
individuals with altered tissue composition, which correlated with 
haematological parameters and established histological markers of liver 
fibrosis. Combined, this provides an opportunity for the analysis of 
disease mechanisms and the identification of diagnostic markers in 
disease-specific proteome collections. 
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K., R.J., J.H., A.Å., V.M.L and P.A., Visualization, N.H., V.M.L and P.A.; 
Supervision, D.Y. and P.A.; Project administration, N.H. and P.A.; 
Funding acquisition, P.A. All authors have read and agreed to the pub-
lished version of the manuscript. 

Declaration of Competing Interest 

Volker M. Lauschke is CEO and shareholder of HepaPredict AB, as 
well as co-founder and shareholder of PersoMedix AB. Rasmus Jansson- 
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