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Article Type: Review Article  Artificial intelligence (AI) is transforming the diagnostic methods and treatment approaches in 
the constantly evolving field of endodontics. The current review discusses the recent 
advancements in AI; with a specific focus on convolutional and artificial neural networks. 
Apparently, AI models have proved to be highly beneficial in the analysis of root canal anatomy, 
detecting periapical lesions in early stages as well as providing accurate working-length 
determination. Moreover, they seem to be effective in predicting the treatment success next to 
identifying various conditions e.g., dental caries, pulpal inflammation, vertical root fractures, 
and expression of second opinions for non-surgical root canal treatments. Furthermore, AI has 
demonstrated an exceptional ability to recognize landmarks and lesions in cone-beam computed 
tomography scans with consistently high precision rates. While AI has significantly promoted 
the accuracy and efficiency of endodontic procedures, it is of high importance to continue 
validating the reliability and practicality of AI for possible widespread integration into daily 
clinical practice. Additionally, ethical considerations related to patient privacy, data security, 
and potential bias should be carefully examined to ensure the ethical and responsible 
implementation of AI in endodontics. 
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Introduction 

rtificial Intelligence (AI) is transforming healthcare by 
bridging the gap between computers and humans. It 

exhibits intelligent behavior to achieve specific goals. AI was 
formally established in the 1950s and has since evolved into a 
cornerstone of healthcare. It promises to bring a paradigm shift 
in diagnostic accuracy, treatment planning, and clinical 
decision-making [1]. The applications of classical machine 
learning (ML) have garnered attention, particularly in precision 
medicine. They can predict treatment success based on patient 
traits. Deep neural networks (DNN) have also revolutionized 
medical image analysis. They demonstrate superior outcomes in 
tasks such as detecting cancer through lymph nodes. 
Implementing AI can improve diagnostic accuracy, reduce 
healthcare costs, and enhance overall patient care [2]. Robotic 
process automation, a facet of AI, can perform administrative 

procedures and alleviate physician burnout by automating 
repetitive tasks. AI’s ability to extract medical insights enhances 
decision-making in patient healthcare. It contributes to 
anticipatory decision-making and targeted treatment. ML 
algorithms contribute to radiological analysis, early disease 
detection, and diagnosis. Digitization of provider-patient 
interactions through AI-driven technologies enhances user 
experience and personalization in healthcare services. AI has the 
potential to provide up-to-date guidelines, foster economic 
growth, and contribute to innovation. However, misconceptions 
surrounding AI contribute to sensationalism and unrealistic 
expectations, emphasizing the need for accurate understanding 
and awareness in healthcare. The integration of AI represents a 
transformative era in healthcare, promising improved patient 
care, efficiency, and overall advancement in the medical field. 

AI in dentistry  
AI technology has brought about a significant transformation in the 
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field of dentistry [3, 4]. AI applications leverage models such as 
convolutional neural networks (CNN) and artificial neural 
networks (ANN) to perform a wide range of functions within dental 
practice. Virtual dental assistants powered by AI ensure precision 
and efficiency in dental offices, performing tasks with reduced 
manpower and high accuracy. AI's diagnostic capabilities are 
particularly useful in oral and maxillofacial surgery, aiding in 
procedures such as dental implants and tumor removal. Design 
assistants such as RaPiD contribute to prosthetic dentistry by 
ensuring optimal aesthetic prostheses through anthropological 
calculations and patient preferences. Moreover, AI facilitates 
personalized care in orthodontics by analyzing radiographs, 
predicting malocclusion, identifying cephalometric landmarks, 
eliminating the need for multiple laboratory procedures and 
offering more precise diagnostics than human perception alone. 
Forensic odontology benefits from AI applications that can 
determine biological age and gender and analyze bite marks. Dental 
radiology harnesses AI's ability to recognize teeth, diagnose 
conditions such as caries, and predict issues like root caries and TMJ 
osteoarthritis. Also, periodontics and endodontics benefit from AI 
algorithms that enhance the diagnosis of compromised teeth [3, 4]. 

Rapid evolution of AI in endodontics  
The rapid progress of AI in endodontics illustrates its potential to 
revolutionize patient care in this specialized field. Specifically, the 
emergence of CNN has led to remarkable advancements in 
diagnostic accuracy and treatment planning [5]. For instance, 
CNNs have demonstrated exceptional capabilities in tasks such as 
identifying intricate root canal morphology, determining working 
length (WL), detecting vertical root fractures (VRF), predicting 
thrust force and torque in canal preparation and detecting subtle 
signs of pathology in radiographic images [6]. These advances 
enable endodontists to make more precise diagnoses and develop 
tailored treatment plans, ultimately improving patient outcomes. 

In addition to enhancing precision/efficiency, AI offers a range 
of other benefits in endodontics. For example, AI-powered 
algorithms can aid in treatment planning by analyzing patient data 
and predicting the optimal course of action based on individual 
characteristics and treatment objectives. Furthermore, AI can help 
reduce errors by providing real-time feedback during procedures 
and alerting clinicians to potential complications or deviations from 
optimal treatment protocols. Moreover, AI-driven technologies 
enable earlier detection of endodontic issues, allowing for timely 
intervention and prevention of disease progress. 

The integration of AI into endodontic practice is supported by 
thorough research methodologies aimed at evaluating the 
reliability/accuracy of AI-driven diagnostic tools and treatment 
algorithms. Studies utilizing large datasets of clinical cases and 

employing rigorous validation techniques, such as cross-validation 
and external validation, provide compelling evidence for the 
efficacy of AI in endodontics. Moreover, the seamless integration of 
AI into clinical workflows is facilitated by user-friendly interfaces 
and interoperability with existing dental software systems. 

Despite its transformative potential, the integration of AI into 
endodontic practice is not without challenges and limitations. For 
example, concerns related to data privacy and security must be 
addressed to ensure the ethical and responsible use of patient data 
in AI-driven applications. Additionally, the reliance on AI 
algorithms may pose challenges in cases where clinical judgment 
and expertise are required to interpret complex clinical scenarios 
or make treatment decisions.  

Role of CNN and ANN 
The combination of CNNs and ANNs has led to significant 
progress in endodontics, especially in tasks related to image 
recognition. Endodontists frequently use CNNs, which are a 
type of neural network (NN), to determine the working length 
(WL), detect vertical root fractures (VRFs), and evaluate root 
morphology. These networks comprise convolutional and 
pooling layers, which relevant features from input images, 
enabling accurate predictions [7]. Training CNNs involves 
exposing them to labeled datasets, allowing the network to 
learn associations between extracted features and correct labels 
through back propagation and optimization. Each layer in 
CNNs, including convolutional, pooling, activation, batch 
normalization, dropout, and fully connected layers, 
contributes to the network’s ability to extract intricate features 
and make precise predictions. Understanding the role of each 
layer assists researchers and practitioners in designing effective 
CNN architectures for various computer vision tasks. 

Moreover, the advancement of ANNs has been instrumental 
in the development of AI in endodontics. The first generation of 
ANNs, characterized by linear logic networks, treated neural 
events using propositional logic. The second generation, known 
as connectionist networks, emerged in the mid-1980s and 
experienced a resurgence driven by the demand for AI 
development and debugging. This period saw the creation of 
various neural models and learning algorithms, contributing to 
the revival of ANNs. The third generation, represented by spiking 
neural networks (SNNs), incorporates neurobiological findings 
related to synaptic transmission, ion channel conductance, and 
spike-timing-dependent plasticity [8]. SNNs, with categories like 
rate encoding, paired-pulse ratio (PPR) encoding, and spike-time 
encoding, demonstrate enhanced capabilities in temporal 
coincidence and noise considerations, aligning with the intricacies 
of endodontic diagnoses and predictions. 
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Objectives of the review  
The purpose of this review is to analyze the recent advances and 
performances of AI models in endodontics, and to examine how 
they can enhance prognosis predictions and improve treatment 
outcomes. The review will cover various applications of AI in 
endodontics, including determining critical parameters such as 
WL, VRFs, root canal failures, root morphology, and diagnostic 
aspects like pulpal diseases and periapical lesions. By synthesizing 
findings from various sources, this review aims to provide a 
contemporary understanding of AI’s potential to increase the 
accuracy, efficiency, and accessibility of endodontic services. The 
ultimate goal is to be a valuable resource for practitioners and 
researchers in endodontics, guiding the development of precise AI 
models tailored to the field’s unique challenges and informing 
future research directions.  

Materials and Methods 

A systematic search was conducted to find relevant articles about 
AI in endodontics, covering studies published up to October 15, 
2023. The search protocol involved the next steps: 
1. Database selection and search strategy: PubMed and Scopus 
were chosen as primary sources for the systematic search because 
they extensively cover medical/dental literature. The search 
strategy involved the use of carefully selected search terms and 
Boolean operators, including ("artificial intelligence," OR 
"machine learning," OR "deep learning," OR "neural network*," 
OR "dental diagnosis," OR "prognosis prediction" AND 
"endodontic*"). These search terms were combined using Boolean 
operators to ensure comprehensive retrieval of relevant articles. 
Filters/limitations were applied to narrow the search results to 
articles published prior to the specified cutoff date, increasing 
their relevance and specificity. 
2. Adherence to guidelines: Although no official guidelines were 
followed, best practices were adhered to ensure reproducibility 
and rigor throughout the search/review process. 
3. Inclusion and exclusion criteria: Inclusion criteria were 
established to select articles relevant to the topic of AI applications 
in endodontics. Articles were included if they addressed AI 
technologies, machine learning algorithms, or deep learning 
models in the context of endodontic diagnosis, treatment planning, 
or clinical decision-making. Studies published in peer-reviewed 
journals up to the specified cutoff date were considered. Exclusion 
criteria included non-English articles, studies unrelated to 
endodontics or AI, and articles not relevant to the research focus. 

Each selected article underwent complete data extraction, 
including author identification, title, year of publication, and 

extraction of key findings and conclusions. Articles were 
systematically categorized based on their research focus and 
specific topics related to AI applications in endodontics to 
facilitate subsequent data analysis and synthesis. 

Results 

The systematic search yielded a significant number of articles 
from two major databases. PubMed provided 131 results, while 
Scopus contributed 103 relevant documents. Additionally, a 
thorough manual search uncovered 18 pertinent articles that may 
have been initially overlooked. After meticulously removing 
duplicate publications and those deemed unrelated, the research 
team identified and selected 58 unique articles for detailed 
scrutiny/synthesis (Table 1). Our meticulous curation process 
ensures a comprehensive review of AI in endodontics. 

Discussion 

This review is focused solely on original research contributions in 
AI applications in endodontics, setting it apart from other scholarly 
discussions. The review process only included original studies, 
which provide new insights and methodologies directly from 
primary research. While acknowledging previous review articles [9-
12], this compilation prioritizes original research, offering an 
authentic snapshot of the latest advancements in integrating AI 
technologies into endodontic practice. This approach enhances the 
reliability and credibility of the included studies, reinforcing the 
scholarly rigor of this comprehensive exploration. 

Furthermore, it is important to recognize the diversity in 
diagnostic accuracy among different imaging modalities 
employed across these studies. Variations in diagnostic accuracy 
among panoramic radiographs/orthopantomographs (OPGs), 
periapical radiographs (PRs), cone-beam computed tomography 
(CBCT) scans, and micro-CT scans should be considered when 
interpreting the results. Each modality has its strengths and 
limitations, which can significantly influence diagnostic 
outcomes. Therefore, discussions should account for these 
differences to ensure accurate assessments and informed 
decision-making in clinical practice. 

Automated canal/root/tooth morphology detection systems 
Over the years, several studies have explored the potential of using 
AI to improve endodontic diagnostics. Automated systems have 
been developed to detect canal, root, and tooth morphology in 
endodontics, using advanced algorithms to analyze dental images. 
These systems provide endodontists with precise assessments of 
root canal configurations and tooth structures.  
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Table 1. A succinct summary of the selected studies delving into the application of AI in endodontics is presented below. The table encompasses 
crucial details such as the study title, author, publication year, employed algorithms, objectives, study factors, modality, and the number of patients or 

images involved. The results column succinctly outlines the key findings or outcomes of each study. The classification of studies is based on their 
research focus, with emphasis on automated root/tooth morphology detection systems, caries detection, pulpal diagnosis, working length 

determination, vertical root fracture detection, automated endodontic/periapical lesions detection, endodontic prediction, case difficulty, fluid 
behavior, and other applications of AI in endodontics. This structured categorization facilitates a nuanced exploration of AI’s multifaceted 

contributions to various facets of endodontic practice 
 

Objective Author 
Year [Ref.] Algorithm Study Factor Modality 

No. of 
Patients/ 
Images 

Results 
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at
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 ca

na
l/r
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t/t
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 m
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og
y d
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tio
n 

sy
ste

m
s 

Automated detection 
system for endodontic-

treated teeth 

Chen et al. 
2022 [13] CNN 

Retained roots, 
endodontic treated 

teeth, implants 
OPG Not specified 

Improved image 
segmentation and anomaly 

detection 
Detection of root canal 
obturation from noisy 

radiographs 

Hasan et al. 
2023 [14] 

YOLOv5s, 
YOLOv5x, 
YOLOv7 

Endodontic 
treatment outcomes PRs 250 PRs Successful classification of 

obturation and mishaps 

Assessment of root 
morphology on OPG 

Hiraiwa et al. 
2019 [15] DLM Root morphology of 

molars OPGs 
760 
mandibular 
first molars 

High accuracy in root 
morphology diagnosis 

Tooth and pulp 
segmentation in 

CBCTs 

Duan et al. 
2021 [16] U-Net Tooth and pulp 

segmentation CBCT 
Feature 
Pyramid 
Network 

Accurate segmentation of 
tooth and pulp in CBCT 
images 

Tooth Segmentation Lahoud et al. 
2021 [17] 

Feature 
Pyramid 
Network 

Tooth morphology CBCT 433 images 
Fast and accurate tooth 
segmentation on CBCT 
imaging 

Tooth detection and 
segmentation 

Leite et al. 
2021 [18] Deep CNN Tooth detection  OPG 153 OPGs Accurate and fast tooth 

detection and segmentation 
Pulp cavity and tooth 

segmentation 
Lin et al. 
2021 [19] 

U-Net 
Network Micro-CT data CBCT 30 teeth Enhanced tooth and pulp 

cavity segmentation 
C-shaped canal 
detection and 
classification 

Sherwood et 
al. 2021 [20] DL (U-Nets) C-shaped canal 

classification CBCT 100 training 
and 35 testing 

Improved C-shaped canal 
detection and classification 

C-shaped Canals 
Prediction 

Jeon et al. 
2021 [21] CNN C-shaped canal 

prediction OPGs 1020 patients 
Accurate prediction of C-
shaped canals on panoramic 
radiographs 

C-shaped Canal 
Classification 

Yang et al. 
2022 [22] Deep CNN C-shaped canal 

classification PRs 1000 teeth 
Effective C-shaped canal 
diagnosis in mandibular 
second molars 

Accurate/automatic 
root canal 

segmentation 

Wang et al. 
2023 [23] 

DentalNet 
and PulpNet 

Automatic tooth and 
root canal 
segmentation 

CBCT Two clinical 
datasets  

Efficient, precise, and fully 
automatic tooth and root 
canal segmentation in 
difficult RCTs 

Ca
rie

s d
et

ec
tio

n Automatic diagnosis of 
dental diseases using 

CNN 

Ghaznavi 
Bidgoli et al. 

2021 [24] 
Deep NN Dental diseases 

diagnosis OPG Standard 
dataset 

Automatic diagnosis of 
decayed, root-canaled, and 
restored teeth 

Dental Caries 
Detection 

Oztekin et al. 
2023 [25] ML models Different pre-trained 

models OPGs 562 subjects Accurate dental caries 
detection  

Pu
lp

al
 d

ia
gn

os
is 

To identify pulpitis 
through PRs 

Tumbelaka 
et al. 2014 

[26] 
ANN Normal pulp, 

pulpitis, necrotic pulp PRs 
20 (10 molar 
and 10 canine 
teeth) 

Direct reading radiography 
is better to be digitized for 
improved diagnosis 
validation 

To diagnose deep caries 
and pulpitis on PRs 

Zheng et al. 
2021 [27] 

CNN 
(VGG19, 
Inception 

V3, 
ResNet18) 

Deep caries and 
pulpitis PRs 

844 PRs (717 
for training, 
127 for testing) 

Multi-modal CNN 
(ResNet18 integrated with 
clinical parameters) 
demonstrated significantly 
enhanced performance 
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W

L 
de

te
rm

in
at

io
n 

To locate the minor 
apical foramen using 
radiograph features 

Saghiri et al. 
2012 [28] 

ANN 
Perceptron ANN 
model 

PRs  
50 straight 
single-rooted 
teeth 

ANN enhances accuracy in 
WL determination by 
radiography. 

To evaluate ANN's 
accuracy in a cadaver 
model 

Saghiri et al. 
2012 [29] 

ANN 
Location of the file in 
relation to AF 

Human 
cadaver  

50 single-
rooted teeth  

ANN outperformed 
endodontists in WL 
determination when 
compared to real 
measurements 

To measure working 
length (WL) using 
multifrequency 
impedance 

Qiao et al. 
2020 [30] 

NN 
Impedance ratios, 
type of tooth, and file 

Circuit 
system & 
impedance 
ratios 

Not specified 

The multifrequency 
impedance method using 
NNs showed improved 
accuracy and robustness in 
WL measurement. 

V
er

tic
al

 ro
ot

 fr
ac

tu
re

 d
et

ec
tio

n 

Develop a PNN for 
VRF detection using 
DR 

Kositboworn
chai et al. 
2013 [31]  

Probabilistic 
NN 

150 VRF and 50 
sound  teeth 

DR 200 images  
PNN proves to be an 
effective model for VRF 
detection in DR 

Design a PNN to 
diagnose VRFs  

Johari et al. 
2017 [32] 

Probabilistic 
NN 

Intact/endodontically 
treated teeth 

PRs, 
CBCTs 

240 
radiographs of 
teeth 

PNN-based models 
effectively diagnose VRFs in 
both PRs and CBCT images 

Demonstrate DSR in 
the detection of VRFs  

Mikrogeorgi
s et al. 2018 
[33] 

DSR 
Endodontically 
treated teeth 

DSR 
images 

Four clinical 
cases 

DSR proves to be a useful 
diagnostic tool for VRF 
detection  

Evaluate the use of 
CNN for detecting VRF 
on OPG 

Fukuda et al. 
2020 [34] 

CNN CNN-based DLM OPG 300 OPGs 
The CNN model detected 
VRFs on OPGs and serves 
as a CAD tool 

Develop an algorithm 
for detecting 
microfractures  

Vicory et al. 
2021 [35] 

AIA and ML 
Wavelet Features and 
ML 

CBCTs 
22 teeth (=14 
microfractures) 

The algorithm enables the 
quantification of 
microfractures in teeth 

Efficiency of DLM in 
diagnosing VRFs on 
CBCT images 

Hu et al. 
2022 [36] 

DLM Three DLNs CBCTs 276 teeth  
ResNet50 showed promise 
in diagnosing in vivo VRFs 

A
ut

om
at

ed
 en

do
do

nt
ic

/p
er

ia
pi

ca
l l

es
io

ns
 d

et
ec

tio
n 

Differential diagnosis of 
periapical lesions in 
CBCT scans 

Okada et al. 
2015 [37] 

CAD 
Differential 
Diagnosis  

Histology 
and CBCT  

28 CBCT scans 
CAD showed promise for 
noninvasive differential 
diagnosis of apical lesions 

Automated detection of 
apical lesions in OPGs 

Birdal et al. 
2016 [38] 

DWT Apical lesion OPGs Not specified 

The used methodology can 
efficiently assist in 
examining radiographs for 
apical lesions 

DL for radiographic 
detection of apical 
lesions on OPGs 

Ekert et al. 
2019 [39] 

7-layer Deep 
CNN 

Apical Lesion 
Detection 

OPG 
2001 tooth 
segments  

The deep CNN detected 
apical lesions on OPGs. 

DLA for periapical 
disease detection 

Endres et al. 
2020 [40] 

DLA 
OMF surgeons' 
assessments and 
DLM 

OPG 2902 OPGs 
DLA has the potential to 
assist in detecting periapical 
lesions. 

Diagnostic 
performance of AI in 
detecting periapical 
pathosis  

Orhan et al. 
2020 [41] 

Deep CNN 
Localization, lesion 
detection, and lesion 
volume 

CBCTs 
153 lesions in 
109 patients 

AI-based DLS were useful 
for detecting apical pathosis 
on CBCT  

AI for the CAD of apical 
lesions  

Setzer et al. 
2020 [42] 

DL 
Periapical lesion 
detection  

CBCTs 20 scans 
DL algorithm displayed 
high lesion detection 
accuracy 
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Disease detection on 
PRs 

Chen et al. 
2021 [43] 

Deep CNNs 
Disease categories, 
severity levels, train 
strategies 

PRs Not specified 

Deep CNNs detected 
diseases, with varying 
performance based on 
severity and training 
strategies 

CNNs for detecting 
apical lesions 

Li et al. 2021 
[44] 

CNN 
Image database of 
individual tooth 
images 

Automatic 
diagnosis  

Standardized 
database  

The CNN model efficiently 
diagnosed apical lesions 

Diagnostic 
performance of CNNs 
vs. human observers 

Pauwels et al. 
2021 [45] 

Convolution
al CNNs 

Comparison of 
CNNs and human 
observers 

PRs, 
CBCTs 

Simulated 
periapical 
lesions 

CNNs showed promise for 
periapical lesion detection, 
surpassing human 
observers 

Automatic detection of 
endodontic lesions in 
CBCTs 

Calazans et 
al. 2022 [46] 

CNN 
(Siamese 
Network) 

Apical lesion 
classification 

CBCT 1000 scans 

The proposed system 
achieved an accuracy of 
about 70%, offering 
diagnostic support in 
endodontics 

Determine the efficacy 
of AI in detecting apical 
radiolucencies 

Hamdan et 
al. 2022 [47] 

Denti.AI DL 
Tool 

Dentists' 
performance 

PRs 68 PRs 
Enhanced diagnostic 
accuracy for apical 
radiolucencies 

Automated detection of 
osteolytic apical lesions 

Kirnbauer et 
al. 2022 [48] 

Deep CNNs 
Tooth localization 
and lesion detection 

CBCTs 
144 CBCT 
images 

The method provided 
excellent results in detecting 
osteolytic apical lesions in 
CBCT. 

DL for caries and apical 
periodontitis detection 

Li et al. 2022 
[49]  

DLM 
Detection of dental 
caries and apical 
periodontitis 

PRs 4129 images  

DLM achieved scores of 
0.829 for dental caries and 
0.828 for apical 
periodontitis 

Categorization of apical 
lesions based on PAI 

Moidu et al. 
2022 [50] 

CNN Different PAI scores  PRs 
3000 areas 
(1950 digital 
PRs) 

The CNN model performed 
well in categorizing 
endodontic lesions  

PRs image classification 
using Deep NN 

Vasdev et al. 
2022 [51] 

Pipelined 
Deep NN 
(AlexNet 
model) 

Healthy vs. Non-
Healthy 
Classification 

PRs 16000 images 

The AlexNet model 
outperformed other models 
in dental disease 
classification 

Accuracy of AI in 
detecting periapical 
periodontitis on PRs 

Issa et al. 
2023 [52] 

Diagnocat AI 
System 

Diagnostic Test 
Accuracy 

PRs 
20 PRs (60 
teeth) 

The AI algorithm showed 
high accuracy in detecting 
apical periodontitis 

Automatic differential 
diagnosis of apical 
lesions 

Patel et al. 
2023 [53] 

Image 
Processing 
Tool 

Differential 
Diagnosis  

PRs 
60 images 
(gold standard 
dataset) 

The tool achieved high 
sensitivity, specificity, and 
accuracy in differential 
diagnosis of apical lesions 

En
do

do
nt

ic
 p

re
di

ct
io

n 

Predict the practicality 
of performing or not 
performing a 
retreatment 

Campo et al. 
2016 [54] 

Case-Based 
Reasoning 
(CBR) 

Dental retreatment 
Not 
specified 

Not specified 
The system minimizes false 
negatives 

Assess factors 
influencing endodontic 
failure & and predict 
failure using ML 

Herbst et al. 
2022 [55] 

ML (LogR, 
RF, GBM, 
XGB) 

Tooth-, treatment-, 
and patient-level 
covariates 

Endodonti
c 
treatments 

458 patients 
(591 teeth) 

Tooth-level factors strongly 
associated with failure 

Predict prognosis of 
endodontic 
microsurgery  

Qu et al. 2022 
[56] 

GBM, RF 

Tooth type, lesion 
size, type of bone 
defect, root filling 
density, etc. 

CBCT 
234 teeth (178 
patients) 

ML model improve the 
efficiency of clinical 
decision-making 
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Automated evaluation 
of RCT results from X-
ray images 

Li et al. 2022 
[57] 

AGMB-
Transformer 
Network 

Anatomy features 
and multi-branch 
Transformer network 

X-ray 
images 

245 
endodontically 
treated teeth 

AGMB-Transformer 
significantly improved 
evaluation of RCT 
outcomes 

Predict endodontic 
treatment outcome 
based on preoperative 
PRs 

Lee et al. 
2023 [58] 

Deep CNN Seven clinical features PRs 
598 single-root 
premolars 

Efficient, precise, and fully 
automatic root canal 
segmentation to support 
clinical decisions 

Identify factors 
affecting optimal RFL 
during RCT and predict 
RFL 

Herbst et al. 
2023 [59] 

ML (LogR, 
SVM, DT, 
GBM, XGB) 

Operator, indistinct 
canal paths, root 
canals reduced in size, 
retreatments 

Apical 
extent 
prediction 

555 completed 
RCTs (343 
patients) 

Limited predictive ability 

Enhancing endodontic 
precision 

Latke & 
Narawade 
2023 [60] 

Hybrid 
Ensemble 
Classifier 

Root canal curvature 
and calcification 

Dental 
Imaging N/A Refining endodontic 

treatments 

Ca
se

 d
iff

icu
lty

 Predict case difficulty in 
endodontic 
microsurgery 

Qu et al. 2023 
[61] 

LR, SVR, 
XGB 

Lesion size, 
anatomical 
structures, root filling 
density, etc. 

CBCT 261 patients 
(341 teeth) 

XGBoost outperformed LR 
and SVR models 

Automated assessment 
of case difficulty and 
referral decisions 

Mallishery et 
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unobturated MB2 
canals in CBCTs 

Albitar et al. 
2022 [65] 

CNN (U-
Net) 

Unobturated MB2 
canals CBCT 57 scans 

Potential for identifying 
obturated and unobturated 
canals 

Detect separated 
instruments on 
radiographs 

Buyuk et al. 
2023 [66] 

CNN (Gabor 
filtered) and 
LSTM 

Separated 
endodontic 
instrument 

OPG 915 teeth 
Gabor filtered-CNN model 
achieved the best 
performance 

Differentiating stress 
from EPT-induced 
electrodermal activity 

Kong et al. 
2023 [67] 

Multilayer 
Perceptron 

Stress and EPT 
stimulation 

EDA 
Signals 

51 subjects 
Successful discrimination 
between stress and EPT 
stimulation 

Predicting pulp 
exposure risk in 
radiographic images 

Ramezanzad
e et al. 2023 
[68] 

Multi-path 
NN 

Dental pulp exposure 
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radiograph
s 

292 images 
DenseNet provided best 
predictive effect for pulp 
exposure 

Interactive system for 
access cavity assessment 
in preclinic 

Choi et al. 
2023 [69] 

Software 
Access cavity 
assessment 

Three-
dimension
al models 

44/79 students 
Integration into preclinical 
curriculum for dental 
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Evaluate consistency 
and accuracy of 
ChatGPT in 
endodontics 

Suárez et al. 
2023 [70] 

ChatGPT 
(AI Chatbot) 

ChatGPT 
performance 

Clinical 
questions 

91 
dichotomous 
(yes/no) 
questions 

Currently, ChatGPT is not 
capable of replacing dentists 
in clinical decision-making 

AGMB: Anatomy-Guided Multi-Branch; AIA: Advanced Image Analysis; ANN: Artificial Neural Networks; CAD: Computer-Aided Detection; CBCT: Cone-beam 
Computed Tomography; CNN: Convolutional Neural Networks; DLA: Deep Learning Algorithm; DLM: Deep Learning Models; DLN: Deep Learning Networks; DLS: 
Deep Learning Segmentation; DR: Digital Radiography; DSR: Digital Subtraction Radiography; DT: Decision Tree; DWT: Discrete Wavelet Transformation; GBM: 
Gradient Boosting Machine; LogR: Logistic Regression; LR: Linear Regression;  ML: Machine Learning; NN: Neural Networks; OPG: Panoramic Radiograph; PRs: 

Periapical Radiographs; RF: Random Forests; RFL: Root filling length; SVM: Support Vector Machine; SVR: Support Vector Regression; VRF: Vertical Root Fracture; 
XGB: Extremely Gradient Boosting 
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One study by  Chen et al. [13] used a convolutional neural 
network (CNN) to create an automated detection system for 
endodontic-treated teeth using orthopantomograms (OPGs). 
This algorithm significantly improved image segmentation and 
anomaly detection, demonstrating its potential to enhance 
endodontic treatment planning. Another study by Hasan et al. 
[14] used YOLOv5s and YOLOv5x to detect root canal 
obturation from noisy periapical radiographs (PRs), successfully 
classifying obturation and mishaps, demonstrating the efficacy 
of these algorithms in assessing endodontic treatment outcomes. 
Hiraiwa et al. [15] utilized a Deep Learning Model (DLM) to 
assess root morphology, particularly focusing on mandibular 
first molars using OPGs. Their study achieved high accuracy in 
root morphology diagnosis, showcasing the potential of AI in 
enhancing diagnostic precision. Duan et al. [16] explored tooth 
and pulp segmentation in CBCT scans using the U-Net 
algorithm and Feature Pyramid Network, demonstrating 
accurate segmentation and showcasing the potential for AI to 
contribute to detailed diagnostic processes.  

Lahoud et al. [17] utilized the Feature Pyramid Network for 
tooth segmentation, focusing on tooth morphology in CBCT 
imaging. This indicates the versatility of AI in addressing 
specific diagnostic needs. Leite et al. [18] implemented a Deep 
CNN for tooth detection using OPGs, demonstrating accurate 
and rapid detection and segmentation of teeth, emphasizing the 
efficiency AI can bring to diagnostic processes in endodontics. 

Lin et al. [19] applied a U-Net Network to enhance pulp 
cavity and tooth segmentation using micro-CT data in CBCT 
scans, showcasing improved segmentation and contributing to 
the precision of endodontic diagnostics. Sherwood et al. [20] 
utilized Deep Learning (DL; U-Nets) for the detection and 
classification of C-shaped canals in CBCT scans, significantly 
improving C-shaped canal detection and classification. Jeon et 
al. [21] focused on CNN for the prediction of C-shaped canals 
on OPGs, accurately predicting C-shaped canals and showcasing 
the potential of AI in addressing complex diagnostic challenges. 

Finally, Yang et al. [22] explored the application of Deep 
CNNs for the classification of C-shaped canals in PRs, 
demonstrating effective C-shaped canal diagnosis in mandibular 
second molars. Wang et al. [23] employed DentalNet and 
PulpNet for automatic tooth and root canal segmentation in 
CBCT scans, showcasing efficient, precise, and fully automatic 
segmentation that is particularly beneficial in challenging root 
canal treatments. 

Caries detection 
Caries detection is an important area where AI has made 
significant strides. Machine learning algorithms have enabled 

accurate identification of carious lesions in dental images. For 
instance, Ghaznavi Bidgoli et al. [24], utilized a CNN in a deep 
NN framework to diagnose dental diseases automatically, using 
an OPG and a standard dataset. Their approach included 
identifying decayed, root-canaled, and restored teeth, which 
showcases the potential of AI in comprehensive dental disease 
diagnosis. Similarly, Oztekin et al. [25] focused on dental caries 
detection using various ML models and pre-trained models. 
They conducted their study on OPGs, with a dataset comprising 
562 subjects, and demonstrated the accuracy of AI in detecting 
dental caries. These studies highlight the versatility of AI 
applications in dentistry, particularly in the area of caries 
detection, where ML models are effective in providing precise 
and automated diagnoses. 

Pulpal diagnosis 
The field of pulpal diagnosis has benefited greatly from the 
integration of AI, as demonstrated by various studies. For 
example, Tumbelaka et al. [26] used an ANN to differentiate 
between normal pulp, pulpitis, and necrotic pulp based on PRs. 
Their study, which involved 20 teeth (10 molars and 10 canine 
teeth), showed that digitizing direct reading radiography could 
enhance the validation of pulpal diagnoses. In a more recent 
investigation, Zheng et al. [27] explored the diagnosis of deep 
caries and pulpitis on PRs, using convolutional neural networks 
(CNNs) such as VGG19, Inception V3, and ResNet18. Their 
study, which involved a comprehensive dataset of 844 PRs (717 
for training and 127 for testing), revealed that a multi-modal 
CNN, particularly ResNet18 integrated with clinical parameters, 
significantly improved the accuracy of diagnosing deep caries 
and pulpitis.  

Although AI has shown promise in distinguishing between 
different pulpal conditions using radiographs, it is important to 
recognize the limitations associated with relying solely on 
radiographic assessment. It is crucial to emphasize the 
complementary role of clinical and radiographic examinations 
alongside other diagnostic tools, such as pulp and periapical 
tests. This integrated diagnostic approach ensures a thorough 
evaluation, thereby enhancing the accuracy and reliability of 
pulpal diagnoses in clinical practice.  

Working length determination 
Determination the WL accurately is crucial for successful 
endodontic treatments, and AI has played a significant role in 
improving this process. Saghiri et al. [28] conducted a study on 
locating the minor apical foramen using radiograph features, 
which involved employing an ANN with a Perceptron model on 
PRs of 50 straight single-rooted teeth. The study concluded that 
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the ANN model was effective in enhancing the accuracy of WL 
determination through radiography. In another study, Saghiri et 
al. [29] evaluated the accuracy of ANN in a cadaver model by 
determining the location of the file in relation to the apical 
foramen. The study demonstrated that the ANN outperformed 
endodontists in determining the WL when compared to real 
measurements, using human cadavers with 50 single-rooted 
teeth. This suggests that AI, particularly ANN, has the potential 
to provide more precise WL measurements, even surpassing 
human expertise in certain scenarios. Qiao et al. [30] explored a 
different approach by utilizing a NN to measure WL using 
multifrequency impedance. They incorporated factors such as 
impedance ratios, type of tooth, and file characteristics into the 
circuit system. Although the number of specified cases is not 
provided, the multifrequency impedance method using NNs 
demonstrated improved accuracy and robustness in WL 
measurement. These studies collectively emphasize the potential 
of AI in revolutionizing the determination of WL in endodontic 
procedures, offering more accurate and reliable outcomes. 

Vertical root fracture detection 
The detection of VRF is a difficult aspect of endodontic 
diagnosis, but AI has made significant advancements in this 
field. Several studies have contributed to the development and 
validation of AI models that accurately detect VRF, providing 
clinicians with valuable tools to identify potential treatment 
complications. 

Kositbowornchai et al. [31] used a Probabilistic Neural 
Network (PNN) to develop an effective model for VRF detection 
using dental radiographs. Their study included 150 cases of VRF 
and 50 sound teeth, utilizing 200 images for training and 
validation. The PNN-based model demonstrated effectiveness in 
VRF detection in dental radiographs, showcasing the potential 
of AI in addressing this challenging aspect of endodontic 
diagnosis. Johari et al. [32] designed a PNN to diagnose VRFs in 
both intact and endodontically treated teeth. Their study utilized 
PRs and CBCT, involving 240 radiographs for evaluation. The 
PNN-based models were found to be effective in diagnosing 
VRFs in both PRs and CBCT images, highlighting the versatility 
of AI in fracture detection across different imaging modalities. 
Mikrogeorgis et al. [33] demonstrated the utility of Digital 
Subtraction Radiography (DSR) in the detection of VRFs in 
endodontically treated teeth. The study, based on four clinical 
cases and DSR images, showed that DSR could be a useful 
diagnostic tool for VRF detection, adding to the array of AI 
applications in this domain. 

Fukuda et al. [34] explored the use of CNN for detecting 
VRFs on OPGs. Analyzing 300 OPGs, the CNN-based DLM 

effectively detected VRFs, serving as a computer-aided diagnosis 
(CAD) tool for clinicians. Vicory et al. [35] introduced an 
algorithm for detecting microfractures, employing AI and MLs 
(AIA and ML) with wavelet features. Utilizing CBCTs with 22 
teeth (14 with microfractures), their algorithm demonstrated the 
capability to quantify microfractures in teeth, showcasing the 
potential for AI in addressing subtler aspects of fracture 
detection. Hu et al. [36] evaluated the efficiency of DLM in 
diagnosing VRFs on CBCT images. Utilizing three different 
Deep Learning Networks (DLNs) and 276 teeth, ResNet50 
showed promise in diagnosing in vivo VRFs, emphasizing the 
potential for AI in real-world clinical scenarios. These studies 
collectively highlight the positive impact of AI in enhancing the 
detection of VRF, providing clinicians with valuable tools for 
improved diagnostic accuracy and treatment planning. 

Automated endodontic/periapical lesion detection 
The use of AI in the automated detection of endodontic and 
periapical lesions has revolutionized dental diagnostics. 
Multiple studies have demonstrated the feasibility of using ML 
algorithms to identify and classify lesions, leading to faster 
diagnosis and targeted treatment planning. 

Okada et al. [37] employed CAD to distinguish between 
periapical lesions in CBCT scans. The study, which included 28 
CBCT scans, demonstrated the potential of CAD in non-
invasive differential diagnosis of apical lesions, highlighting the 
usefulness of AI in identifying different pathologies. Birdal et al. 
[38] utilized Discrete Wavelet Transform (DWT) to detect 
apical lesions in OPGs. Although the number of subjects was not 
specified, the methodology efficiently assisted in examining 
radiographs for apical lesions, showcasing the versatility of AI 
applications in different imaging modalities. Ekert et al. [39] 
implemented a 7-layer deep CNN for the radiographic detection 
of apical lesions on OPGs. With 2001 tooth segments involved 
in the study, the deep CNN demonstrated effectiveness in 
detecting apical lesions, highlighting the potential of DL in 
enhancing lesion detection.  

In 2020, Endres et al. [40] introduced a Deep Learning 
Algorithm (DLA) for periapical disease detection. Utilizing 2902 
OPGs and incorporating assessments by oral and maxillofacial 
surgeons, the DLA showed promise in assisting in the detection of 
periapical lesions, demonstrating the collaborative potential 
between AI and clinical expertise. Orhan et al. [41] investigated 
the diagnostic performance of AI in detecting periapical pathosis 
using Deep CNNs. Analyzing 153 lesions in 109 patients through 
CBCTs, AI-based Deep Learning Systems (DLS) were found to be 
useful for detecting apical pathosis, underscoring the potential for 
AI in contributing to accurate diagnoses. Setzer et al. [42] focused 
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on the use of DLA for periapical lesion detection in CBCTs. With 
20 scans included in the study, the DL algorithm displayed high 
accuracy in lesion detection, emphasizing its potential as a 
valuable tool in endodontic diagnostics. 

In 2021, Chen et al. [43] used Deep CNNs to detect disease 
on PRs achieving varying performance based on severity and 
training strategies. Li et al. [44] implemented CNNs for 
detecting apical lesions using a standardized image database, 
demonstrating the potential for AI in lesion detection in diverse 
clinical scenarios. Pauwels et al. [45] compared the diagnostic 
performance of Convolutional CNNs with human observers in 
the detection of simulated periapical lesions. The CNNs 
surpassed human observers in certain aspects, showcasing their 
potential for periapical lesion detection. 

In 2022, Calazans et al. [46] proposed a CNN-based Siamese 
Network for apical lesion classification in CBCTs. The proposed 
system achieved an accuracy of about 70%, offering diagnostic 
support in endodontics. Hamdan et al. [47] evaluated the 
Dentist.AI DL Tool for the automated detection of apical 
radiolucencies, showcasing its potential as an adjunctive 
diagnostic tool. Kirnbauer et al. [48] utilized Deep CNNs for the 
automated detection of osteolytic apical lesions in CBCTs, 
emphasizing the precision and efficiency of AI in lesion 
detection. Li et al. [49] explored the use of DLM for the detection 
of dental caries and apical periodontitis in PRs, achieving high 
scores for both pathologies. Moidu et al. [50] employed CNNs 
for the categorization of apical lesions based on Periapical Index 
(PAI) scores, indicating its potential for precise lesion 
classification. Vasdev et al. [51] utilized a Pipelined Deep NN 
model (AlexNet) for PR image classification, outperforming 
other models in dental disease classification. 

In the current year, Issa et al. [52] assessed the diagnostic test 
accuracy of the Diagnocat AI System in detecting apical 
periodontitis on PRs, showing high accuracy in detecting apical 
periodontitis. Patel et al. [53] developed an Image Processing 
Tool for the automatic differential diagnosis of apical lesions in 
PRs, achieving high sensitivity, specificity, and accuracy in the 
differential diagnosis of apical lesions. 

Overall, these studies demonstrate the versatility and 
transformative potential of AI in automating the detection and 
classification of endodontic and periapical lesions, providing 
valuable tools for clinicians in their diagnostic and treatment-
planning endeavors. 

Endodontic prediction  
Predictive modeling in endodontics has gained momentum 
through AI applications. In one study, Campo et al. [54] 
introduced a predictive model that utilized Case-Based 

Reasoning (CBR) to assess the practicality of performing or not 
performing retreatment for dental cases. The system was 
designed to minimize false negatives, offering valuable insights 
into the decision-making process. Herbst et al. [55] delved into 
assessing factors influencing endodontic failure and predicting 
failure using ML techniques such as Logistic Regression (LogR), 
Random Forest (RF), Gradient Boosting Machine (GBM), and 
XGBoost. With a study involving 458 patients and 591 teeth, the 
research highlighted tooth-level factors strongly associated with 
failure, contributing to a more nuanced understanding of 
treatment outcomes. 

Qu et al. [56] ventured into predicting the prognosis of 
endodontic microsurgery using a Gradient Boosting Machine 
(GBM) and Random Forest (RF). The study considered factors 
such as tooth type, lesion size, type of bone defect, and root 
filling density with a dataset of 234 teeth from 178 patients, 
demonstrating enhanced efficiency in clinical decision-making. 
Li et al. [57] explored the automated evaluation of root canal 
treatment (RCT) outcomes from X-ray images, introducing an 
AGMB-Transformer Network. By incorporating anatomy 
features and a multi-branch Transformer network, the study 
focused on 245 endodontically treated teeth, showcasing that the 
AGMB-Transformer significantly improved the evaluation of 
RCT outcomes. 

Lee et al. [58] employed a Deep CNN to predict endodontic 
treatment outcomes based on preoperative PRs. The study 
demonstrated the efficiency, precision, and full automation of 
root canal segmentation to support clinical decisions for 598 
single-root premolars. In another  study by Herbst et al. [59], 
ML techniques including LogR, Support Vector Machine 
(SVM), Decision Trees (DT), Gradient Boosting Machine 
(GBM), and XGBoost were employed to identify factors 
affecting optimal root filling length (RFL) during RCT and 
predict RFL. The study, based on 555 completed RCTs involving 
343 patients, revealed limited predictive ability in this context. 
Latke and Narawade [60] focused on enhancing endodontic 
precision through a Hybrid Ensemble Classifier, considering 
root canal curvature and calcification in dental imaging. 
Although specific case numbers were not provided, the research 
aimed at refining endodontic treatments through improved 
classification methods. 

Case difficulty 
The difficulty of endodontic cases can be predicted using AI 
applications, which can provide valuable insights for 
practitioners. A study by Qu et al. [61] used LR, SVR, and XGB 
models to assess case difficulty in endodontic microsurgery. By 
considering factors such as lesion size, anatomical structures, and 
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root filling density from CBCT scans of 261 patients (341 teeth), 
the study found that XGBoost outperformed LR and SVR models. 
This makes it an advanced tool for anticipating surgical 
challenges. Another approach developed by Mallishery et al. [62] 
involved an automated system that uses ANN to assess case 
difficulty and support referral decisions. The system analyzed 500 
cases, using the AAE Endodontic Case Difficulty Assessment 
Form as a standardized input. This demonstrated the potential for 
automation in evaluating the complexity of endodontic cases. 
This innovative use of AI contributes to more efficient and 
standardized case difficulty assessments in clinical practice. 

Fluid behavior  
In recent years, AI has been used in innovative studies that explore 
the potential of AI in endodontics beyond traditional diagnostic 
tasks. Peeters et al. [63] conducted a study on fluid behavior 
during endodontic procedures using AI for Fluid Motion 
Estimation. The study utilized high-speed imaging to analyze the 
EDDY® tip fluid flow behavior, providing valuable insights into 
the complex dynamics of fluid motion. Another study by Peeters 
et al. [64] focused on the fluid behavior associated with the 
EndoActivator, using AI to analyze EndoActivator tip fluid flow. 
Through high-speed imaging, the study aimed to visualize fluid 
behavior and bubbles, contributing to a comprehensive 
understanding of the dynamics involved in this specific 
endodontic procedure. These studies highlight the versatility of AI 
applications in endodontics, showcasing its potential in 
addressing practical challenges and enhancing procedural 
insights, in addition to its diagnostic capabilities. 

Other uses of AI in endodontics 
AI has a wide range of applications in endodontics beyond 

traditional diagnostic tasks. It can address various challenges in 
clinical practice, improve procedural outcomes, and provide 
valuable insights for comprehensive endodontic assessments. 
For instance, a study by Albitar et al. [65] utilized a CNN with 
U-Net architecture to identify both obturated and unobturated 
canals, while Buyuk et al. [66] introduced a CNN model with 
Gabor filtering and Long Short-Term Memory (LSTM) 
networks to detect separated endodontic instruments in OPGs. 
Kong et al. [67] used a Multilayer Perceptron to differentiate 
stress from Electric Pulp Tester (EPT)-induced electro dermal 
activity signals, and Ramezanzade et al. [68] introduced a Multi-
path NN to predict pulp exposure risk in Bitewing radiographs. 
Choi et al. [69] developed an interactive software system for 
access cavity assessment using three-dimensional models, while 
Suárez et al. [70] evaluated the consistency and accuracy of 
ChatGPT, an AI chatbot, in endodontics. Additionally, it was 

seen that ChatGPT has weaknesses and limitations in 
understanding the situation and making decisions in treatment 
planning [71]. 

These studies highlight the transformative potential of AI in 
endodontics and how it can redefine the standards of dental 
practice. The following subsections provide a detailed 
exploration of each thematic area, highlighting key 
methodologies, outcomes, and the implications of these studies 
for the broader landscape of endodontics. 

Limitations  
It is important to note that this review is limited to articles 
published before October 15, 2023, which means that it excludes 
more recent publications. 

Ethical considerations and future directions 
The integration of AI into endodontic practice shows great 
promise, but it is crucial to address ethical considerations, 
limitations, and emerging challenges to ensure responsible and 
effective implementation [72]. Ethical concerns regarding 
patient privacy, data security, and algorithmic bias require 
careful scrutiny and robust regulatory frameworks to safeguard 
patient welfare and uphold professional standards. The use of 
historical datasets for AI training raises concerns about 
representativeness and generalizability, highlighting the need 
for diverse and inclusive datasets to mitigate bias and improve 
model reliability. Additionally, the lack of interpretability of AI 
algorithms remains a challenge, limiting their acceptance and 
adoption by clinicians. Future research should prioritize 
transparency and explainability, facilitating trust and 
comprehension among endodontic practitioners. Furthermore, 
exploring novel applications such as predictive modeling for 
treatment outcomes, real-time procedural guidance, and 
patient-centered decision support systems offers exciting 
prospects for advancing clinical practice. Continuous 
interdisciplinary dialogue, ethical reflexivity, and technological 
innovation are essential to harnessing the transformative 
potential of AI while ensuring its ethical and equitable 
integration into endodontic healthcare. 

Conclusions 

The integration of AI in endodontics has had a transformative 
impact on the field. This has been exemplified by the use of 
CNN, ANN, and various ML models, which have enabled 
greater diagnostic precision, better treatment planning, and 
improved clinical decision-making. There are many diverse 
applications of AI in this field, from automated canal 
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morphology detection to caries diagnosis, pulpal condition 
assessment, WL determination, and VRF detection. These 
applications underscore the multifaceted impact of AI on 
endodontic practice. The findings presented in this review are 
robust and supported by studies employing PNN, DLM, and 
innovative algorithms like CBR and AGMB networks. They 
emphasize AI’s potential to enhance efficiency, accuracy, and 
personalized treatment strategies. As AI continues to 
demonstrate its prowess in predicting treatment outcomes, 
assessing case difficulty, analyzing fluid behavior, and venturing 
into novel applications, it emerges as an invaluable ally in 
elevating standards in patient care and reshaping the landscape 
of endodontic healthcare. 

While acknowledging these strides, careful considerations of 
reliability, practicality, and cost-effectiveness are paramount for 
the seamless integration of AI into routine endodontic 
procedures. This will ensure sustained advancements in clinical 
outcomes. It is imperative to recognize the ongoing evolution of 
AI and to address any associated limitations or challenges to 
foster its responsible and effective use in the endodontics. 
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