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The task of planning a collision-free trajectory from a start to a goal position is fundamental for an autonomous mobile robot.
Although path planning has been extensively investigated since the beginning of robotics, there is no agreement on how to measure
the performance of a motion algorithm. This paper presents a new approach to perform robot trajectories comparison that could
be applied to any kind of trajectories and in both simulated and real environments. Given an initial set of features, it automatically
selects the most significant ones and performs a statistical comparison using them. Additionally, a graphical data visualization
named polygraph which helps to better understand the obtained results is provided. The proposed method has been applied, as an
example, to compare two different motion planners, FM* and WaveFront, using different environments, robots, and local planners.

1. Introduction

The task of planning a collision-free trajectory from a start
to a goal position is fundamental for an autonomous mobile
robot. Although path planning has been extensively investi-
gated since the beginning of robotics, there is no agreement
on how to measure the performance of a motion algorithm.
Measuring the performance of a motion planner is not an
easy task. On the one hand, the existing motion planning
approaches are different in nature and their implementations
heavily depend on the underlying environment representa-
tion. Whether a motion planner performs well or not depends
on a large number of factors, often related with the task for
which the method is being used. On the other hand, another
issue when evaluating a motion planner is that robot motion
task is an active task: it is not possible to collect logs and
then run algorithms off-line, since the decisions taken by the
algorithm in each step determine a new situation and thus
new sensor readings and possibilities.

Many scientific disciplines take advantage of widely
accepted comparison methodologies, performance metrics,
and benchmark databases. Some examples are the PASCAL
Object Recognition Database Collection for vision (http://
pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html),

UC Irvine Machine Learning repository (http://archive.ics.
uci.edu/ml/) for the empirical analysis of machine learning al
gorithms, and Radish (http://radish.sourceforge.net/) (Robotic
Data Set Repository), focused on localization and mapping.
It is of vital importance for any evaluation framework to
identify some performance metrics, define a comparison
methodology, and offer a set of benchmark problems.

In this paper, we present a method to compare different
navigation approaches, with the aim of helping decide which
of them would be better for the purposes in which the robot
is to be used. The approach we present is mainly based
on statistical measures for the trajectories performed and
automatically selects the most significant features among a
set of initial features to measure the goodness of a trajectory.
The proposed method is used to compare two motion
planners, the Fast Marching Square (FM?) planner [1] and
the WaveFront planner [2]. The FM? planner has been
integrated as a plug-in driver in the Player/Stage multirobot
simulation tool [3] and compared with the already existing
WaveFront planner. The algorithms have been applied under
the same conditions and tested in different environments
and for two different robots combined with two local
planners.
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The rest of the paper is organized as follows: after review-
ing the related works (Section 2), Section 3 focuses on the
proposed approach; Section 4 is devoted to the experimental
setup; obtained experimental results are shown in Section 5,
and finally in Section 6 the conclusions are presented and the
future work lines are pointed out.

2. Related Works

The field of robot motion planning has been an active area
of research over the last forty years, yielding many motion
planning approaches. For example, Berg et al. present LQG-
MP (linear-quadratic Gaussian motion planning) [4], a new
approach to robot motion planning that takes into account
the sensors and the controller that will be used during the
execution of the robots path. LQG-MP is based on the linear-
quadratic controller with Gaussian models of uncertainty and
explicitly characterizes in advance (i.e., before execution) the
a priori probability distributions of the state of the robot
along its path. Wei and Liu [5] present a novel evolution-
ary G3continuous (continuous-differentiable curvature) path
planner for nonholonomic wheeled mobile robots.

Smith et al. [6] present a method for automatically
generating optimal robot paths satistfying high-level mission
specifications. The motion of the robot in the environment
is modelled as a weighted transition system. The mission is
specified by an arbitrary linear temporal-logic (LTL) formula
over propositions satisfied at the regions of a partitioned envi-
ronment. The mission specification contains an optimizing
proposition, which must be repeatedly satisfied.

Montemerlo et al. [7] present the architecture of Junior,
a robotic vehicle capable of navigating urban environments
autonomously. In doing so, the vehicle is able to select its
own routes, perceive and interact with other traffic, and
execute various urban driving skills including lane changes,
U-turns, parking, and merging into moving traffic. The
vehicle successfully finished and won second place in the
DARPA Urban Challenge.

There is also lot of research devoted to path selection
and trajectory optimization approaches. Adouane et al. [8]
show a method based on elliptic trajectories to perform robot
navigation, and Willms and Yang [9] present a robot path
planning approach based on a dynamic propagation system.

Other approaches try to obtain optimal trajectories for
manipulators: Constantinescu [10] presents a method to
obtain smooth and time-optimal paths under some con-
straints; Gasparetto and Zanotto [11] present an approach to
obtain trajectory plans based on an objective function which
takes into account the integral of the squared jerk along the
trajectories; Zanotto et al. [12] propose a methodology to
compare trajectory planning algorithms for robotic manip-
ulators, considering both the execution time and the squared
jerk along the trajectory.

There are many other path planners found in the litera-
ture: Dolgov and Thrun [13] present a path planning algo-
rithm that generates smooth paths for an autonomous vehicle
settled on an unknown environment; Chang and Yamamoto
[14] present a hybrid path planning based on Potential Field
method and Voronoi Diagram approach whose aim is to
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concurrently navigate and perform map-building in a mobile
robot.

Although lots of planning algorithms have been pro-
posed over these years, a measurement of their performance
only recently gained significant attention by the research
community. Some examples of the efforts made to build
common test environments are the collection of benchmark
problems of the Algorithm and Application Group at Texa
s A&M University (https://pwww2.cse.tamu.edu/dsmft/bench-
marks/) and the MOVIE project (http://www.cs.uu.nl/centers/
give/movie/index.php), whose outcome is a database that con-
tains many different test scenes that can be used to bench-
mark different motion planning techniques.

Calisi and Nardi [15] concentrate on pure-motion tasks:
tasks that require moving the robot from one configuration
to another, either as an independent subtask of a more
complex plan or as a goal itself. After characterizing the goals
and the tasks, they describe the commonly used problem
decomposition and different kinds of modelling that can
be used, from accurate metric maps to minimalistic repre-
sentations. The contribution of their paper is an evaluation
framework that they adopt in a set of experiments showing
how the performance of the motion system can be affected
by the use of different kinds of environment representa-
tions. In the same line, Calisi et al. [16] present a frame-
work of benchmarks (MoVeME) (http://www.dis.uniro-
mal.it/calisi/index.php?page=moveme) for evaluating and
comparing motion algorithms for autonomous mobile robots
and vehicles. Karaman and Frazzoli [17] present an attempt to
compare path planning algorithms from the quality point of
view.

Many recent research papers address the problem of
motion planning for self-driving vehicles, a context in which
navigation evaluation methodologies become important.
Werling et al. [18] deal with the trajectory generation problem
faced by an autonomous vehicle in moving traffic. They
propose a semireactive planning strategy that realizes all
required long-term maneuver tasks (lane-changing, merging,
distance-keeping, velocity-keeping, precise stopping, etc.)
while providing short-term collision avoidance. Rastelli et al.
[19] present a smooth trajectory generator computationally
efficient and easily implementable, which considers Bezier
curves and circumference parametric equations for a real
vehicle. Moreover, this new trajectory generator reduces the
control actions, generated with to a fuzzy controller.

3. Proposed Approach

The approach we present in this paper is mainly based on
statistical measures for the trajectories performed. In this
way, we first decide which set of features could be useful to
measure the quality of a trajectory; then, we automatically
select the most significant features among them; afterwards,
we collect the selected features for a set of different trajec-
tories, and finally we use these feature values to compare,
from a statistical point of view, which of the used navigation
techniques show a greater quality in the trajectories made.
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The new approach works as follows.

(1) Decide the feature set which could help in the statis-
tical measure of the trajectory quality.

Depending on the environment, goal, sensors provided
by the robot, and the amount of possible dynamic obstacles
expected, it is not supposed to be a unique set of features to
be used. Nevertheless, the proposed approach could be used
almost in any situation in which a navigation method has
to be selected (semistructured environments, outdoor ones,
UAYV, submarine robots, etc.).

(2) Collect the values of these features for a set of
trajectories.

It is noteworthy that the data can be obtained with the
real robot in its appropriate environment or by a simulation
software.

(3) Select the subset of features which maximizes the
information.

This is the first thing to be done by a statistical analysis
of the data. There are several ways to obtain this subset,
but we have selected to use the Friedman test statistic [20],
which is used as fitness value in an Estimation of Distribution
Algorithm (EDA) [21] guided search. Friedman test has
been found as a very sound method to compare the joint
probability behaviour when different approaches are to be
tested [22].

(4) Perform a statistical comparison using the selected
features.

In this step, a statistical hypothesis test is carried out for
each of the selected features to identify the statistically signif-
icant differences; obtained results are visualized graphically
in the next step.

(5) Visualize the data.

We present a new approach to show the results of the
tests and to decide, for each type of environment, which is
the navigation technique that performs best.

Using this new approach an experiment has been per-
formed in order to make a comparison between two global
navigation algorithms. Next sections present the experimen-
tal design and the obtained results.

The self-driving vehicles framework is a context of inter-
est for the proposed approach to be applied, due to its
increasing interest during last years. Different kind of sensors,
such as Kineck RGB-D [23], and different environments in
which real-time trajectory calculation is needed have been
presented in the literature [24, 25]. The approach introduced
in this paper can be used as well in these scenarios; a specific
feature selection is needed: the procedure to be used is the
one presented in this paper.

4. Simulation Setup

We tested the proposed approach using two motion planners.

(i) Fast Marching Square (FM?). The Fast Marching Square
(FM?) planner is a potential field based path planning
algorithm whose main goal is to drive the robot to the goal
in a smooth and safe way. The FM* method is based on the
way electromagnetic waves propagate in nature, because the
potential and its associated vector field have good properties

desired for the trajectory, such as smoothness and absence
of local minima. The FM* method makes use of the Fast
Marching (FM) method, an efficient numerical algorithm to
represent the front propagation proposed by Sethian [26]. It
is a particular case of the Level Set methods [27], designed
for problems in which the speed function never changes sign,
so that the front is always moving forward or backward. The
FM? method is a two-step algorithm. In the first step, a wave
is propagated using FM starting from the points representing
the obstacles. The result of this step is a greyscale potential
map where obstacles are black, and the farther a location is
from an obstacle, the lighter it becomes. This map is known
as a refraction index map because it can be seen as a varying
refraction index environment where a new wave will draw
a trajectory. In the second step, a new wave is emitted from
the goal point over the refraction index map using FM.
This way a unique field is obtained and its associated vector
field is attracted to the goal point and repulsed from the
obstacles. Finally, the shortest time trajectory is calculated in
this potential surface by using the gradient method.

(ii) WaveFront. This planner shares some similarities with the
FM? method in the way the wave is propagated. Besides, it is
offered as a planner driver within the Player/Stage software
set. The WaveFront planner works as follows: it first creates a
configuration space of grid cells from the map that is given,
treating both occupied and unknown cells as occupied. Then,
based on their distance to the nearest obstacle the planner
assigns a cost to each of the free cells (the nearer the obstacle,
the higher the cost). When the planner is given a new goal,
it starts from the goal cell and assigns plan costs to the cells
as it expands like a WaveFront. The plan cost in each cell is
dependent on its distance from the goal, as well as the obstacle
cost assigned in the previous step. Once the plan costs for all
the cells have been evaluated, the robot can simply follow the
gradient of each lowest adjacent cell all the way to the goal.

Usually, global planners should be combined with some
obstacle avoidance strategy or local planner in order to cope
with dynamic environments and reduce the need and hence
the computational payload of replanning when changes in the
environment make the original path unfeasible. Therefore,
we used the stated global planners in combination with two
local planners (also available within Player/Stage): the Vector
Field Histogram Plus (VFH+) [28] and the Nearness Diagram
(ND) [29]; the local planners were used in order to see how
the local method affects the performance of the whole system.

Tests were made in simulation environments as the first
step towards the application in the real world. Simulation
tools allow analysis of the behavior of the methods with
respect to a wide spectrum of situations and collect a great
amount of data for statistical analysis. The stage simulator
of the Player/Stage package was chosen for this experiment
because it is widely used by the scientific community and is
also included in some Linux distributions. Tests were made
using two simulated robots, the popular Pioneer 2DX and our
Segway RMP 200.

4.1. Environments Used. To test the proposed approach, six
simulation environments were used with the Player/Stage
software. Three of these environments were created by us
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FIGURE 1: Used environments.

(a synthetic test room, an office indoor environment of  shows these environments, as well as the size of each of
Carlos III University and Teknikers laboratory) and the  them. The idea behind the selected environments is to test
other three were taken from the “Mobile robots and Vehi-  the motion methods under typical and critical situations.
cles Motion algorithms Evaluation” (MoVeME) benchmark  Thus, room, uc3m, tmm, and hospital correspond to typi-
database (hospital, minguez00nd2, and ulrich00vth). Figure1  cal office-like indoor scenarios whereas minguez00nd2 and
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(c) WaveFront + VFH + Pioneer

(g) WaveFront + ND + Pioneer

(h) WaveFront + ND + Segway

FIGURE 2: Hospital: examples of performed trajectories.

ulrichO0vth are critical situations examples given in past
research papers [28, 29].

4.2. Trajectories. The data collection is made based on ten
trajectories performed by the robots in each of the six
environments using FM* and WaveFront as global planners
and in both of them the local navigation algorithms VFH+
and ND. In order to ensure the soundness of the experiments,
the robot start position was fixed in each environment and
10 goal positions were randomly selected. For comparison
purposes the same targets were commanded to both FM?* and
WaveFront motion planners.

Figure 2 shows an example of the different trajectories
performed in order to achieve a randomly obtained goal.

4.3. Data Collection. It seems logical to characterize the
trajectories using the data provided by the sensors on the
robot. In the experiment performed, we use a laser device as
leading sensor for the navigation system, and hence the laser
readings are used for comparison purposes. First of all, four
different regions of the laser reading area were defined (see
Figure 3):

(i) Left side angle 1, from —90 to —60 degrees.
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FIGURE 3: The angle areas used for data collection.
TaBLE 1: Collected data.
Feature Data
X, Right angle region 1
X, Left angle region 1
X; Right angle region 2
X, Left angle region 2
X Right side minimum laser range value
X Left side minimum laser range value
X, Right side minimum five laser range values mean
X Left side minimum five laser range values mean
X, All reading mean
X0 All reading minimum five laser range values mean
X1 Length of the performed path

(ii) Left side angle 2, from —60 to 0 degrees.
(iii) Right side angle 2, from 0 to 60 degrees.
(iv) Right side angle 1, from 60 to 90 degrees.

Once these regions were defined, the data collection
consisted of measuring, for each trajectory, the 11 features
shown in Table 1.

As the proposal is to compare two global navigation
algorithms, we performed 10 random trajectories in each
of the 6 environments, using two robots and two local
navigation algorithms, which sum up a total of 10 x 6 x 2 x
2 = 240 trajectories, and the values of these 11 variables were
collected for all the trajectories performed.

It is worth mentioning that, in the experiments carried
out, some of the trajectories (48, all of them with the
WaveFront planner) did not arrive to the commanded final
location. Although this fact could give some information for
the comparison, we decided to remove the data of the failed
trajectories. The reason to do so is that it could be considered
as a specific problem of the used environment/goals, and we
aim to present a general comparison approach in any situa-
tion. Nevertheless, in any comparison to be done, the amount
of nonending paths for each of the compared approaches is a
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matter to be taken into account, as it could indicate that one
of the used methods outperforms the other in the amount of
completed trajectories, even though in completed ones the
performance of the worst approach seems to be better.

4.4. Feature Subset Selection. Not all the initially selected
features are going to be used for the performance comparison
activity; a feature selection is made previously, in order
to obtain the feature subset which gives more information
about the differences between the used global navigation
algorithms. The selection is based on the Friedman test value
(see the Appendix), while the search is made using and
evolutionary algorithm called Estimation of Distributions
Algorithm (EDA), as explained below.

4.4.1. Searching Method. Feature Subset Selection (FSS) can
be viewed as a search problem [30], with each state in the
search space specifying a subset of the possible features of
the task. Exhaustive evaluation of possible feature subsets
is usually infeasible in practice due to the large amount of
computational effort required.

Estimation of Distribution Algorithms (EDAs) have suc-
cessfully been developed for combinatorial optimization
[31, 32]. They combine statistical learning with population-
based search in order to automatically identify and exploit
certain structural properties of optimization problems. EDAs
typically work with a population of candidate solutions to the
problem, starting with the population generated according
to the uniform distribution over all admissible solutions.
The population is then scored using a fitness function. This
fitness function gives a numerical ranking for each string, so
that the higher the number the better the string. From this
ranked population, a subset of the most promising solutions
are selected by the selection operator. An example selection
operator is truncation selection with threshold 7 = 50%,
which selects the 50% best solutions. The algorithm then
constructs a probabilistic model which attempts to estimate
the probability distribution of the selected solutions. Once
the model is constructed, new solutions are generated by
sampling the distribution encoded by this model. The new
solutions are then incorporated back into the old population,
possibly replacing it entirely. The process is repeated until
termination criteria are met (usually when a solution of
sufficient quality is reached or when the number of iterations
reaches some threshold), with each iteration of this procedure
usually referred to as one generation of the EDA.

4.5. Selected Attributes. After the search process, we obtain as
the most valuable feature subset that composed by the vari-
ables {X5, X4, X7, X5, X;;} (see Table 2), that is, the length of
the trajectories, the mean of the five minimum values (right
and left), and the mean of the front laser readings (right,
left). These are the variables to be used in the experimental
phase below, to establish a comparison between different
global navigation algorithms, and to be able to select the most
suitable navigation method for each environment. As a result,
the remaining variables are discarded by the Friedman test
guided EDA selection approach.
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TABLE 2: Selected features. TABLE 3: Wilcoxon test results.
Feature Data X5 X, X, Xg X1
X, Right angle region 2 (0 to 60 degrees) All 1 82E-19 0.9977 0.4363  0.9999
X, Left angle region 2 (-60 to 0 degrees) Hospital ~ 0.9999 42E-05 08318 01469  0.3192
X, Right side minimum 5 values mean Minguez  0.9999 0.0013 0.9999  0.9982  0.9998
Xg Left side minimum 5 values mean Room 0.9999 0.9999 0.2658 0.7 0.9999
X, Length of the performed path T™MM 0.9999 0.9999 0.8364 0.9819 0.9999
UC3M 0.9999 0.9941 0.3182 0.5916 0.9895
Ulrich 3.1E - 07 0.9966 0.0696 0.5015 0.8032

4.6. Feature Based Comparison: One by One. First of all,
we compare the selected attributes one by one, in order to
determine whether there are any differences between the
feature values obtained by each of the compared methods.
A nonparametric statistical test called Wilcoxon Rank test
[33] is used to this end; the Wilcoxon test was developed
to analyze data from studies with repeated-measures and
matched-subjects designs. Obtained variable values are used
in the comparison.

4.6.1. Wilcoxon Signed Rank Test. Suppose we collect 2n
observations, two observations of each of the n subjects. Let i
denote the particular subject that is being referred to and let
the first observation measured on subject i be denoted by x;
and the second observation be denoted by y;. For eachi in the
observations, x; and y; should be paired together.

LetD;, =x;—y;, Vi=1,...,n

Main Idea. If neither condition has an effect, then not only
should the differences be equally distributed on either side of
0, but also the distance from 0 should be the same on either
side. Consider the following:

(1) let R; be the rank of | D;| (absolute value of difference);
(2) restore signs of D; to the ranks — signed ranks;
(3) calculate either

W, = sum of ranks with positive signs,

W_ = sum of ranks with negative signs;

H,: distribution of D; is symmetric about 0;

H,: we can not say that distribution of D; is symmetric

about 0.

It can show (if no ties)

By, (W,) = n(n4+ 1)’
VarHO (W+) = W’ (1)

W, -(n(n+1))/4

— ~approxN 0,1 .
Vn(n+1)(2n+1) /24 .1

Using this nonparametric test we can compare couples of
values obtained for the values of some variable (feature) by
two different methods.

Table 3 shows the obtained P value results of the Wil-
coxon test using all the data collected in the performed tra-
jectories. The first row presents the results obtained using all

the collected data (six environments, two robots, two navi-
gation algorithms for each of the compared methods). The
rest of the rows show the results obtained for each of the
environments. As it can be seen, differences appear in some of
the selected variables, but it is still needed to visualize which
of the methods obtains better result (i.e., which method is
the difference for). With this goal in mind, a graphical data
visualization has been depicted in order to obtain a more clear
view of the obtained results.

4.7. Data Visualization: All the Selected Variables in One Single
Picture. The proposed method to visualize the obtained
results after applying the Wilcoxon test is a graphical one.
More precisely, it is a polygon in which the obtained results
for each individual test are shown. As five are the selected
variables for the proposed comparison, pentagons are used
for this case, but the number of sides could vary, as it depends
on the proposed experiment, resulting in general in a polygon
of n sides, where 7 is the number of selected variables.

The selected value to be shown graphically is the 1 — P
significance of the Wilcoxon test. The reason is that the aim of
the comparison is to stress the differences—if any—between
the compared two approaches. If we directly plot P values, the
appearance of differences results in values placed in the centre
of the pentagon, making visualization more difficult and thus
the finding of clear conclusions. By contrast using 1 — P, if
there exist differences they are placed close to the perimeter
and the figure results more visual.

In this way, and aiming at highlighting the significance
of the test made over each edge, we inscribe an internal
pentagon which has a 0.8 length in each edge—that is, a P
value of 0.2. The idea is that the values over that inscribed
pentagon are those to be taken into consideration for the
comparison. It could be seen as a “trajectory” of the values
over 0.8, which show the differences.

Figure 4 shows the defined visualization approach named
as polygraph; the pentagon is shown in the left side. The order
of the five edges has been set for clarity, and therefore the
right edges correspond to the 5 minimum values mean (up)
and —60 to 0 values mean (bottom) while the left edges refer
to the 0 to 60 values mean (bottom) and 5 minimum values
mean (up); the central edge depicts the differences between
the length of the performed paths. In addition, differences
could favor the first or the second method. For instance, if
our purpose is to reach the goals as soon as possible, shortest
trajectories are desired. To clarify that, as shown in the right
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FIGURE 4: Developed visualization method.
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M1 versus M2

(d) Left side differences

(e) Right side differences, length difference

(f) Right side differences

FIGURE 5: Pentagon like comparisons.

side of Figure 4, we draw a shape composed by two triangles,
in which the filled one indicates the winner method.

Therefore, what is important to take into account is the
surface obtained (both in area and in shape) after the five edge
values are given. Figure 5 shows several pentagon shapes that
can be obtained depending on the results of the comparison.
Hence, the pentagon should appear clean if no differences are
identified (Figure 5(a)), full signigicant differences appear in
all the variables (Figure 5(b)), and the different shapes it can
take depending on the source of the differences, as shown in
Figures 5(c), 5(d), 5(e), and 5(f).

Regarding the differences which appear as it has been
stated above, it has to be shown which of the compared
methods obtains better results. For that purpose a symbol has
been defined as shown in Figure 5. The defined symbol is only
used when differences are present, so it is only drawn in those
1 — P values over 0.8. For instance, Figure 5(b) is an example
in which one of the compared methods (the first one, M1)
outperforms on all aspects of laser readings, while it obtains
worse result for the length of the performed trajectories.
In this case, the selected approach would be probably Ml;
the same happens with Figure 5(e), where only right side
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All data
FM? versus WaveFront

< FM?
>4 WaveFront

FIGURE 6: All data results.

differences appear in favor of MI, but M2 performs better
with respect to the length of the trajectories (in some few
cases, the user could select M2, mainly if all the trajectories
made with it reached the goal).

More clear differences are shown in Figure 5(d), in which
M1 would be selected as the best method, whereas the results
obtained in Figure 5(f) indicate that M2 is the approach to be
used. Finally, the decision to be made under Figures 5(a) and
5(c) is not clear at all: Figure 5(a) results indicate the same
behaviour of the compared methods, so other parameters are
to be taken into consideration (price, computational load.,. . .).
On the other hand, the decision in the case of Figure 5(c)
will completely depend on the specific task to be done (Ml
behaves more secure; M2 optimizes the trajectories).

5. Experimental Results

Using these polygraphs (pentagons in the experiments per-
formed, which can be used in a wide range of environments)
we have carried out a comparison between the two global
navigation algorithms: FM* and WaveFront. The idea is to
select the best algorithm in general, or the more appropriate
one for a given environment.

5.1. All Collected Data. In order to show the obtained results,
we present in Figure 6 the pentagon which contains the
overall Wilcoxon related results when all the environments,
robots, and local navigation systems are considered. As it
can be seen, differences appear over the threshold established
in four of the five edges; three of the edges indicate a
better performance of FM” against the only one that favors
WaveFront (shorter lengths are obtained), and hence FM?
would be the selected one. At this point, if the user is not
sure about the selection to be made, it would be necessary
to look at the failed trajectories—if any—which in our case
strengthens the FM? quality.

It is interesting to point out that the selection has been
made based on the total number of edges that indicate a
better performance, giving the same weight to all of them. If
the task for which the method is going to be used imposes
some requirements, one could consider to give more weight
to the features that better represent those requirements. For
example, if our main goal is to reach a destination as soon
as possible, we would choose WaveFront instead of FM?,
because it generates shorter trajectories (see edge 1 of the
pentagon), at the expense of losing safety (see edges 2, 3, and
5 of the pentagon).

5.2. Environments One by One. As stated before, for each
environment an initial position has been fixed, and 10 goal
positions have been randomly selected. Figure 7 shows the
starting points (with a blue circle) and the goal points (with
a red “X”) used in each environment. The experimental
results obtained with the collected data in each environment
are shown in Figure 8. A thorough look at the obtained
pentagons shows that length differences appear in all the
environments (WaveForm is better from that point of view),
but the other differences found are better for the FM?
approach. In this way, right side differences appear in the
Hospital environment (Figure 8(a)), which probably are due
to the random trajectories selected (see Figure 2); in Room,
TMM, UC3M, and Ulrich environments differences in left
and right sides appear (except in the right side 5 minimum
mean) which indicates that the distance to obstacles from
both sides is larger when using the FM? algorithm; in the
same way, with respect to Minguez environment, differences
appear in the left side readings mean and in the right 5
minimum mean in favor of the FM? algorithm.

6. Conclusions and Future Work

A new approach to perform robot trajectory comparison is
presented in this paper; the method could be applied to any
kind of trajectory comparisons, both in indoor and outdoor
environments and also in simulated and real situations. As an
example, the approach is applied to analyse trajectories made
by two navigation algorithms (FM* and Waveform) in six
different simulation environments, with two different robots
and using two different local planners as well.

The trajectory comparison method is based on well
known statistical tests and thus provides a sound mathe-
matical foundation, and it can help to decide the navigation
algorithm to use, the most suitable robot to a particular
environment, or to select a combination of methods (for
instance, local navigation and global navigation) that are
preferred for the goal the robot is programmed for.

It is also important to note that the method offers a visual
way to compare different aspects related to the trajectories
performed. The polygonal structures obtained give us an
image of the relationships of the edges among the selected
features. This fact could be used by users to understand better
the meaning of the obtained polygons (pentagons in the
experiments performed).

In the near future a set of experiments are planned
with real robots in real outdoors environments; to deal with
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the sensors data, a DGPS system with a 2 cm localization error
is to be used, combined with a laser sensor and a camera.

As future work, this statistical comparison has to be
extended to other environments in which the application
is not direct (or, to be more precise, it can be applied but
maybe not so well visualized). A set of experiments has to
be done with 3D environments (UAV, submarines) in order
to improve the way to visualize the 3D comparisons.

Appendix
Friedman Test

The Friedman test [20] is used to guide the selection or, to
be more precise, the obtained Friedman test value for a set
of variables; Friedman test is a nonparametric randomized
block analysis of variance. That is to say, it is a nonparametric

version of a one-way ANOVA with repeated measures. This
means that while a simple ANOVA test requires the assump-
tions of a normal distribution and equal variances (of the
residuals), the Friedman test is free from those restrictions.
This test has been used in the literature when different
collections of multiple variable data are to be compared [22]
and hence it has been found appropriate for the purpose of
this research.

The hypotheses for the comparison across repeated mea-
sures are

(i) HO: the distributions (whatever they are) are the same
across repeated measures;

(ii) H1: the distributions across repeated measures are
different.
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The Friedman statistic (M) is calculated by using

12

M=—=>" YR - 1),
nk(k+1)ZRJ 3n(k+1)

(A])

where (i) k is number of columns (features in our case), (ii)
n is number of rows (trajectories), and (iii) R ; is sum of the
ranks in column j.

The test statistic for the Friedman test is a Chi-square with
[(number of repeated measures) — 1] degrees of freedom.

This statistic is used to select among initial set of features
those which result in a bigger difference between the methods
to be compared. Hence, a bigger value of the Friedman Test
statistic is preferred.
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