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Luís R. Vieira a,b, José O. Fernandes f, Sara C. Cunha f, Lúcia Guilhermino b,a 

a CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and 
Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, 
Portugal 
b ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and 
Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal 
c CRETUS Institute, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus 
Vida, Santiago de Compostela, 15782, Spain 
d REBUSC, Network of Biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain 
e RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio 
Cactus, Campus Vida, Santiago de Compostela, 15782, Spain 
f LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050- 
313, Porto, Portugal   

A R T I C L E  I N F O   

Keywords: 
Microplastics 
Brain 
Neurotoxicity 
Wild fish 
AChE activity 
One health 

A B S T R A C T   

Pollution-induced neurotoxicity is of high concern. This pilot study investigated the potential 
relationship between the presence of microplastics (MPs) in the brain of 180 wild fish (Dicen-
trarchus labrax, Platichthys flesus, Mugil cephalus) from a contaminated estuary and the activity of 
the acetylcholinesterase (AChE) enzyme. MPs were found in 9 samples (5% of the total), all of 
them from D. labrax collected in the summer, which represents 45% of the samples of this species 
collected in that season (20). Seventeen MPs were recovered from brain samples, with sizes 
ranging from 8 to 96 μm. Polyacrylamide, polyacrylic acid and one biopolymer (zein) were 
identified by Micro-Raman spectroscopy. Fish with MPs showed lower (p ≤ 0.05) AChE activity 
than those where MPs were not found. These findings point to the contribution of MPs to the 
neurotoxicity induced by long-term exposure to pollution, stressing the need of further studies on 
the topic to increase ‘One Health’ protection.   

1. Introduction 

Worldwide plastic production has been growing faster than the manufacture of any other material [1]. Compared with two decades 
ago, the plastic production has doubled [2] and the environmental contamination by plastics considerably increased during the 
SARS-CoV-2 pandemics [3–6]. Due to their long persistence in the environment, plastics became a major pollution problem worldwide. 
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Among plastics, debris with size lower than 5 mm commonly designated by microplastics (MPs) are of high concern. MPs present in 
the wild result from the progressive break down of larger plastic fragments and from the input of particles already with size lower than 
5 mm into the environment [7]. Studies have shown that MPs are worldwide distributed in the environment, being present in the 
atmosphere, freshwater, transitional waters and marine water, soils and sediments, and food webs [8–14]. Such MPs generally have 
other chemicals (MP-Chem), including additives added during their production and preparation for several applications, and other 
environmental contaminants that adsorb to their surface when they are in the environment [15–17]. MPs may also carry microor-
ganisms, including multi-resistant pathogenic ones [18]. 

When MPs enter into the body of animals through ingestion, respiration, or other ways, some of them are internalized into the 
circulatory system, as shown by several studies with different species [19,20], including humans [21]. Then, they are distributed, some 
are likely excreted whereas others reach internal organs and tissues where they can be retained and possibly accumulated [5,22–24]. 
Laboratory studies demonstrated that very small MPs, including nanoplastics (NPs), can cross the blood-brain barrier [25] and cause 
neurotoxicity through inhibition of the acetylcholinesterase (AChE) enzyme [26–28], brain oxidative stress and damage [29–31], 
alteration of neurotransmitters’ levels and other processes as recently reviewed [32]. In fish, such effects have been related with 
decreased feeding [33,34], reduced swimming performance [35] and other behaviour alterations [36,37], among other effects that can 
reduce the individual and population fitness, with potential negative impacts on biodiversity, and human food safety and security [38]. 
Moreover, MPs interact with the toxicity of many other contaminants in fish often leading to a greater negative impact [29,39,40]. 
Furthermore, warmer water temperature and other alterations resulting from global warming influence the uptake, accumulation and 
toxicity of MPs [41,42], and often act synergistically with chemical toxicity in model animals, including in long-term exposures [4,43]. 
Therefore, there is high concern on the combined long-term effects of MPs, MP-Chem and other stressors on wild organisms and human 
health, including regarding neurotoxicity. 

Data on the potential MP-induced neurotoxicity in wild populations of fish is still very limited [22,32,44]. The effects induced in 
real scenarios can be different from those obtained in the laboratory due to the influence of several factors, such as individual and 
population adaptation, properties of the MPs and other pollutants present, seasonal variation in the levels of MPs and environmental 
conditions (e.g., temperature, water volume, pH), among several others [45]. The differences may be more evident in populations 
living in highly dynamic ecosystems, such as contaminated estuaries of large rivers, which often have high loads of MPs and are 
important contributors to the marine pollution by these particles [46]. Considerable concentrations of MPs were documented in fish 
from estuaries located in different regions of the world, such as the La Plata River estuary, Argentina [47], the Ciliwung River estuary, 
Indonesia [48], the Tecolutla River estuary, Gulf of Mexico [49], and the Minho River estuary, Iberian Peninsula [5]. Further research 
with fish in real scenarios is needed to better understand the pollution-induced long-term neurotoxicity in fish, which is also important 
regarding human health and wellbeing. 

The main goal of this pilot study was to investigate the potential presence of MPs in the brain of wild fish in relation to brain AChE 
activity in a real scenario of long-term exposure to pollution caused by a diversity of chemicals. Two null hypotheses were tested: H01 - 
The samples collected from fish brain do not have MPs; H02 – Brain AChE activity is not related with the presence of MPs in fish brain 
samples. 

Fig. 1. Localization of the Douro River estuary with the fish sampling areas. All fish were captured in the area defined by the coordinates 41◦

8‘37.95′′N, 8◦40’29.27′′W and 41◦ 8’39.11′′N, 8◦37’49.35′′W. Sea bass were mainly collected in the downstream area (blue) and grey mullet and 
flounders in the areas indicated in yellow and green. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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2. Material and methods 

2.1. Alternative hypotheses, fish sampling and animal ethical issues 

The alternative hypotheses to H01 and H02 were, respectively: HA1 - The samples collected from fish brain have MPs; HA2 - Brain 
AChE activity is related with the presence of MPs in fish brain samples. 

Fish were from the estuary of the Douro River, hereafter indicated as Douro estuary, which is located in the Northwest (NW) coast 
of Portugal and ends into the North East (NE) Atlantic Ocean (Fig. 1). This estuary was selected because the hydrological basin of the 
Douro River is one of the most important in the Iberian Peninsula, the Douro estuary has an extent of about 22 km, draining into the 
Atlantic Ocean [50], its environmental conditions variate along the year [51], and it is contaminated with a diversity of MPs [52,53], 
among many other environmental contaminants [54–56]. 

Three fish species were investigated: the European seabass (Dicentrarchus labrax Linnaeus, 1758), the European flounder (Plati-
chthys flesus Linnaeus, 1758) and the flathead grey mullet (Mugil cephalus Linnaeus, 1758). They were chosen for this study because 
they can be found in the Douro estuary along the year, they are fished for human consumption as food, and they were used in bio-
monitoring studies in relation to MPs and other contamination in previous studies in estuaries [5,57–60]. A total of 180 fish were 
investigated, 20 per species and per season (summer 2019, autumn 2019, and winter 2019–2020). All the fish were obtained from local 
fishery, were captured in the area defined by the coordinates 41◦ 8′37.95′′N, 8◦40′29.27′′W and 41◦ 8′39.11′′N, 8◦37′49.35′′W, and 
aimed at being sold for human food consumption. Shortly after their capture by fishermen, the fish corps were immediately transported 
intact to the laboratory to avoid contamination by MPs present in the environment, in thermally isolated boxes in cold conditions. 

The study had authorization from the “ORBEA – Orgão Responsável pelo Bem Estar Animal” of ICBAS – School of Medicine and 
Biomedical Sciences of the University of Porto, reference number P372/2020/ORBEA, and was carried out according the European and 
Portuguese principles and procedures regarding animal’s ethics and experimentation. L. Guilhermino and L.R. Vieira have accredi-
tation from the Portuguese Authority (“Direção Geral de Alimentação e Veterinária”), to coordinate studies and carry animal 
experimentation. 

2.2. Quality assurance and quality control 

Several quality assurance and quality control (QA/QC) measures were implemented during all the stages of sample collection and 
preparation (dissection, digestion, and filtration), MPs isolation and characterization (primary and chemical) to prevent external and 
cross-contamination of samples and particles as in previous studies [5,22]. Briefly, researchers used nitrile gloves and 100% cotton 
laboratory coats covering other clothes. The work was done in spaces with restrict access, the surface areas, materials and instruments 
were previously carefully cleaned and disinfected, the instruments were washed before and between tissue collection, among other 
measures. Dissections, preparation of samples and filtration were performed in a flow cabinet, to avoid the risk of external contam-
ination. All the filters were previously observed under a stereo-microscope to remove any plastic debris potentially present. Blanks to 
control for external contamination were used in all the steps, and controls with potassium hydroxide (KOH) solution in ultra-pure 
water (10% v/v) were also used. 

2.3. Sample collection 

In the laboratory, the total body length (length) and the total body weight (wet weight – ww, hereafter indicated as body weight) of 
each fish were determined, and a basic physical examination of each fish was made. Then, each fish was carefully washed to remove 

Fig. 2. Illustrative representation of the fish brain structure. Adapted from [64].  
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external particles, and several tissue/organ samples were collected for different types of analyses to take the best advantage of animal 
corps. For this study, the whole brain of each fish was isolated and divided into two portions (Fig. 2): the cerebellum was isolated and 
prepared for AChE activity determination because this region of fish brain has high activity of this enzyme [61,62]; the remaining 
regions of the brain were put together for MP analyses. Samples for AChE analyses were weighted, put in cold phosphate-buffer (1:10 
w/v; 0.1 M, pH = 7.2), and kept at − 80 ◦C until further analyses. Samples for MP analyses were weighted (Kern ABS 120–4, Kern & 
Sohn GmbH, Germany), carefully rinsed with ultrapure water to remove any potential contamination [63], and then transferred to 
pre-cleaned glass vessels, which were sealed and externally covered with aluminium foil, and kept at − 20 ◦C until further analyses. 

2.4. Microplastic isolation, visual identification and chemical characterization 

The particles isolation and primary characterization were carried out as previously described [5,22,65]. In brief, each brain sample 
was covered with a volume of a 10% potassium hydroxide solution in ultra-pure water and incubated at 60 ◦C for 24 h in an oven 
(Drying oven EV50, Raypa, Spain) [65]. After cooling, the product was filtered through 42 mm diameter glass-microfiber filter 
membranes (pore size 1.2 μm, Munktell & Filtrak GmbH, Germany) in vacuum conditions. Subsequently, the filters were put in 
previously cleaned glass Petri dishes, which were sealed and dried at 40 ◦C for 24 h (Drying oven EV50, Raypa, Spain). All the particles 
present in the filters were observed and pictures were taken (Nikon SMZ800 Stereo Microscope with integrated camera DS-Fi1, Japan). 
Each particle was measured using the ImageJ software (https://imagej.nih.gov/ij/), and its shape and colour were recorded. 

The chemical composition of all the particles isolated from brain samples was determined by Raman spectroscopy, a method used 
successfully to identify the plastic nature of particles in other studies [66,67]. The Raman spectra of the particles were recorded using a 
WITec confocal CRM alpha 300 R Micro-Raman spectroscopy (WITec GmbH, Ulm Germany) with an air-cooled solid state laser 
operating at 532 nm a CCD detector cooled to − 60 ◦C. Different Raman settings for the same spot were used or multiple spectra at 
different spots on the same sample were collected [67]. Subsequent processing of the data was conducted using a WITec Project 
software (FIVE 5.2, WITec GmbH, Ulm, Germany). All spectra were compared to reference libraries using the search/match software 
TrueMatch integrated with the WITec Suite FIVE software. Spectral identification was accepted only after spectra underwent visual 
confirmation with matched reference spectra and a minimum Hit Quality Index (HQI) of 70%. 

After characterization, in addition of being sorted by chemical composition, the particles identified as MPs were quantified by 
shape, colour and size. For the shape, the following types were considered based on the recommendations of the Technical Subgroup 
on Marine Litter (TSG-ML) for the European Marine Strategy Framework Directive document: plastic fragments, pellets, filaments/ 
fibres, plastic films, foamed plastic, granules and styrofoam [68]. Regarding colour, the following categories were considered: red, 
orange, yellow, green, blue, violet, black, white and transparent [69]. Considering size (longest dimension for fibres; Feret’s diameter 
for the other shapes) the following size classes were considered: <100 μm; 101–150 μm; 151–500 μm; 501–1500 μm; 1501–3000 μm; 
3001 < 5000 μm [22]. 

The concentrations of MPs in brain samples were expressed as the number of MP items per fish (MPs/fish) or per weight (ww) of the 
analysed brain tissue (MPs/g). 

2.5. Determination of acetylcholinesterase activity 

The activity of AChE was selected for the present study because it is widely used as a neurotoxicity biomarker, and several MPs were 
found to alter the activity of this enzyme in fish, both in laboratorial [26,29,70,71] and field conditions [22,72]. 

The procedures for further preparation of samples and determination of AChE activity were described in detail elsewhere [73,74]. 
Briefly, after defrosting on ice, each cerebellum sample was kept in phosphate-buffer (0.1 M, pH = 7.2), homogenized (1:10 w/v; Ystral 
GmbH d-7801 homogenizer, Germany) and centrifuged for 3 min at 3,300 g and 4 ◦C (Sigma 3K30 centrifuge, Germany). The su-
pernatant was carefully collected, its protein content was determined by the Bradford method [75] adapted to microplate [76], using 
bovine gama globulin as protein standard and absorbance read at 600 nm (Power Wave HT 340, BioTek, USA). The protein content of 
the samples was standardized to 0.3 mg/mL [74]. The AChE activity was determined by the Ellman technique [77] adapted to 
microplate [73], using acetylcholine as substrate and the absorbance read at 412 nm (Power Wave HT 340, BioTek, USA). After 
enzymatic determinations, the protein content of the remaining samples was determined again (as previously indicated), and used to 
express the enzymatic activity in nanomoles of substrate hydrolysed per minute per mg of protein (nmol/min/mg protein). 

2.6. Statistical analysis 

Statistical analyses were carried out in the IBM® SPSS Statistics® package, version 28.0, and the significance level was 0.05. 
For each species, the data set of each biological parameter (i.e., total body weight, total body length or AChE activity) was tested for 

normal distribution and homogeneity of variances through the Shapiro-Wilk test and the Levene’s test respectively, and the variables 
were transformed when necessary [78]. When normal distribution and homogeneity of variances were achieved, a one-way analysis of 
variance (ANOVA) was used to compare different seasons (summer, autumn and winter), followed by the Tukey’s multicomparison 
post-hoc test when significant differences were found. When the ANOVA assumptions could not be achieved, the Kruskal-Wallis test 
was used, followed by pairwise comparisons (with significance values adjusted by the Bonferroni correction for multiple test) when 
significant differences were found. 

The Student’s t-test was used to compare the AChE activity of fish having MPs in the brain sample analysed with the enzymatic 
activity of fish where MPs were not found in the analysed brain sample. For text simplicity, these two groups of fish will be hereafter 
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indicated as fish with MPs and fish without MPs in the brain, respectively. However, it should be noted that we cannot assure that fish 
with brain samples negative to MPs did not have these items in the brain because the cerebellum was used for AChE determinations and 
not analysed for MP content. 

3. Results 

The mean (± standard deviation – SD) of the biological parameters determined per species and season are indicated in Table 1, as 
well as the results of the statistical analysis comparing different seasons. In all the species, significant differences of body weight, 
length and AChE activity among seasons were found (Table 1). D. labrax specimens had significantly lower body weight and higher 
length in the winter, and lower AChE activity in the summer than in the other seasons. P. flesus specimens had significantly lower body 
weight, length and AChE activity in the winter than in the other seasons. M. cephalus specimens had significantly lower body weight in 
the winter, higher length in the autumn, and lower AChE activity in the autumn than in the other seasons. 

Seventeen MPs were recovered from the brain samples, 94% fragments and 6% film (Fig. 3-A), which are exemplified in Fig. 4(A-F). 
The size of the MPs ranged from 8 μm to 96 μm, with 70% of them having less than 50 μm (Fig. 3-B). Red, black and blue were the 
colours observed (Fig. 3-D). Three polymer types were identified: the superabsorbent polymers polyacrylamide (71%) and polyacrylic 
acid (23%), and one biopolymer (Zein) (6%) (Fig. 3-C). Representative spectra are shown in Fig. 5(A-C). Blue and green fibres were 
found in the blanks, however, no fibres were found in the analysed brain samples. 

Among the 180 fish analysed, 9 (5%) had MPs in the brain, all were D. labrax specimens collected in the summer. From the total 
number of D. labrax specimens (60), 15% had MPs in the brain, with a mean concentration (± standard deviation - SD) in the brain of 
0.3 ± 0.8 MPs/fish (2 ± 6 items/g). Considering the samples of D. labrax collected in the summer (20), 45% had MPs in the brain, with 
a mean (±SD) concentration of 0.9 ± 1.1 MPs/fish (7 ± 10 MP/g). 

Among the specimens of D. labrax collected in the summer, significant differences in the activity of AChE between fish with and 
without MPs were found (t(18) = 5.383, p < 0.001). The mean (±SD) of AChE activity was lower (80 ± 8 nmol/nmol/min/mg protein) 
in fish with MPs in the brain than in fish where MPs were not found in the analysed samples (117 ± 19 nmol/nmol/min/mg protein) 
(Fig. 6). 

4. Discussion 

The values of AChE activity determined in the studied specimens of D. labrax and P. flesus are in the range values reported in other 
studies for the same species. For example, AChE activity between 100 and 140 nmol/min/mg protein in wild D. labrax specimens from 
the Arade Estuary, Portugal [79], between 89 and 174 nmol/min/mg protein in wild P. flesus from the Minho River estuary, Portugal 
[80], and between 50 and 121 nmol/min/mg protein in wild P. flesus collected in the Gulf of Gdańsk, Poland [81], were documented. 
The total mean of AChE activity determined in M. cephalus from the Douro estuary is lower than the mean of 45.1 ± 26.4 μmol/min/mg 
protein documented in wild flathead grey mullets from the Pontine Lakes [82], possibly reflecting biological and environmental 
differences. 

Seasonal variability in fish weight and length was found, which did not have a common pattern to all the species. This is a common 
situation in estuarine fish and a diversity of factors can account for the differences, such as the biology of distinct species, life-cycle 
phase of each species, specific habitat and feeding ecology, variation of environmental conditions, such as availability of food, 
water temperature, concentration of contaminants, among others, and is important to take into consideration such variation in bio-
monitoring studies [83]. 

Table 1 
Mean and standard deviation of total body weight, body length and brain acetylcholinesterase activity in Dicentrarchus labrax, Platichthys flesus, and 
Mugil cephalus from the Douro estuary. Different letters indicate statistically significant differences (p ≤ 0.05) among seasons per species.   

N Total body weight (g) Total body length (cm) AChE activity (nmol/min/mg protein) 

Dicentrarchus labrax 
Summer 20 656 ± 89 a 31 ± 4 a 100 ± 24 a 
Autumn 20 625 ± 95 a 35 ± 3 b 165 ± 20 b 
Winter 20 532 ± 61 b 36 ± 2 b 151 ± 24 b 
Total mean 60 604 ± 97 34 ± 4 139 ± 36 
Comparison among seasons 60 H (2) = 21.000 p < 0.001 H (2) = 20.643, p < 0.001 F (2,57) = 46.017 p < 0.001 
Platichthys flesus 
Summer 20 307 ± 30 a,b 20 ± 2 a 91 ± 29 a 
Autumn 20 337 ± 65 a 30 ± 2 b 96 ± 37 a 
Winter 20 290 ± 60 b 29 ± 2 b 51 ± 16 b 
Total mean 60 311 ± 56 26 ± 5 79 ± 35 
Comparison among seasons 60 H (2) = 41.721, p < 0.001 F (2,57) = 4.024 p = 0.023 F (2,57) = 25.181 p < 0.001 
Mugil cephalus 
Summer 20 811 ± 74 a 33 ± 4 a 87 ± 13 a 
Autumn 20 1003 ± 511 a 46 ± 3 b 43 ± 17 b 
Winter 20 386 ± 78 b 36 ± 2 a 81 ± 25 a 
Total mean 60 733 ± 394 38 ± 7 71 ± 27 
Comparison among seasons 60 H (2) = 33.446 p < 0.001 H (2) = 29.806 p < 0.001 H (2) = 31.639 p < 0.001  
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4.1. MPs were found in brain samples of fish 

MPs were found in brain samples of D. labrax fish collected in the summer, leading to the refusal of H01 and acceptance of HA1. The 
presence of MPs in brain samples indicates that fish have uptake MPs, which entered into the blood circulation, crossed the blood-brain 
barrier and entered into the brain where they were accumulated or at least retained for some time. The presence of NPs and MPs in the 
brain was documented before in fish and crabs exposed in laboratorial conditions. In fish, particles in the brain were found in Crucian 
carps (Carassius carassius) exposed for 64 days to amino-modified polystyrene NPs with 53 or 180 nm [25], in Nile tilapia (Oreochromis 
niloticus) exposed for 14 days to polystyrene MPs with 0.1 μm [20], 0.3, 5 or 70–90 μm [70], and in zebrafish (Danio rerio) exposed for 
96 h to polystyrene NPs with 100 nm [84] or after ~7 weeks to polystyrene NPs with 70 nm [85]. In crabs, plastic particles entered and 
remained within the brain of the velvet swimming crab (Necora puber) after 1 h, 24 h, 7 days and 21 days post consumption of mussels 
contaminated with 0.5 μm polystyrene MPs [86]. Our study shows that this happens also in real scenarios, in agreement with the prior 
report of MPs in the brain of wild fish from the Black Sea [65]. 

Our results show that from all the three sampling seasons and studied species, MPs were only found in one species, in the summer 
period. Such difference could be driven by contrasting seasonal MP abundance and distribution patterns in the Douro estuary [52] or 
by differences in the feeding features and habitat preferences of the studied fish species [87]. Given these results, further research is 
needed to understand the factors that control and influence the presence of MP particles in the brain of wild fish populations. 

The high observed proportion (70%) of small MP particles (<50 μm in size) in the brain of D. labrax specimens indicates that the 
smaller the particle size is, the easier it is for MPs to penetrate the blood-brain barrier. Our findings also relate to previous research 
highlighting that smaller MP particles are seemingly able to be retained in the brain of fish more readily than larger particles (70 − 90 
μm) [70], although MPs up to 200 μm in size were also found in the brain of fish species caught in the Black Sea [65]. 

In addition to the size, the internalization of MPs into cells and tissues has been also related to other characteristics, such as shape, 
surface chemistry, softness and smoothness of the material [88]. Therefore, the results of the present pilot study showing that irregular 
shaped MPs, such as fragments and films, can reach the brain in fish exposed in real scenarios increases the concerns regarding the 
long-term exposure of wildlife and humans to a variety of MPs present in the environment. 

The mechanisms allowing the MPs to cross the blood-brain barrier are not known. Several mechanisms were proposed, such as the 

Fig. 3. Characteristics of microplastics recovered from brain samples of wild fish. (A-) shape; (B) polymer composition; (C) size class; and (D) 
colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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disturbance of the tight junction of the blood-brain barrier facilitating MPs entry [89], microglial phagocytosis [90], and via retrograde 
transport through olfactory nerve endings [32]. Independently of the mechanisms involved, the presence of MPs in the brain of fish can 
cause several adverse effects, such as neuronal degeneration and necrosis, cytoplasmic vacuolation, inflammatory cell infiltration and 
haemorrhage [91], decreased brain mass and morphological changes in the cerebral gyri [25], alterations in neural circuits [71] and 
alterations of brain enzymes [70], among other adverse effects as recently reviewed [32]. Further studies need to be performed to 
improve our understanding about the mechanisms involved in the internalization and retention of MPs (including bioplastics) in the 
brain of fish and other animals, and the influence of several factors, including biological variables (e.g., species, life-cycle phase), 
properties of the MPs (surface chemistry, size, shape), and environmental determinants (MP concentration, temperature variation, 
presence of other stressors). 

The polymer composition of the MPs found in the brain of fish from the Douro estuary was dominated by two acrylic polymers 
(polyacrylamide (PAM) and polyacrylic acid (PAA)), followed by one biopolymer (Zein). Considering that the seasonal distribution of 
MPs in the environment is likely more related to specific plastic types than to the overall plastic concentration [92], one can 
hypothesise that the predominance of acrylic polymers in the brain of D. labrax specimens in the summer can be related with the 
increasing demand for shipping activities during the summer period (e.g., boat tours) or with the seasonal cleaning of the boats in the 
boat dock near the area where the fish were captured. These hypotheses can be supported by reports indicating that the presence of 
acrylic polymer fragments in aquatic environments are normally generated during boat maintenance and cleaning [93,94] or in areas 
of intense maritime traffic and related activities [95]. In addition, previous studies from the Douro estuary provide supporting evi-
dence of micro-sized acrylic polymers fragments presence near a boat dock/maintenance area [53]. The presence of Zein within fish 
brain also deserves attention, because it is a main component of bioplastics [96,97]. Products manufactured from Zein can be used to 
package and/or protect food stuffs [98]. The presence of Zein in fish from the Douro estuary is in agreement with the findings in 
commercial fish species from the Adriatic Sea [97]. These findings draw attention to the new plastic materials that are now being used, 

Fig. 4. Examples of microplastics recovered from brain samples of Dicentrarchus labrax from the Douro estuary (Portugal). (A–E) fragments; (F) film.  
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Fig. 5. Representative spectra of the microplastic particles polymers found in brain samples of wild fish. (A) Polyacrylamide; (B) Polyacrylic acid; 
(C) Zein (biopolymer). 

Fig. 6. Acetylcholinesterase activity (AChE) in brain of Dicentrarchus labrax, in groups of fish with (n = 9) and without (n = 11) microplastics in the 
brain captured during the summer period. Results are expressed as mean values ± standard errors for each group of fish. * indicates statistical 
significant differences between groups of fish with and without microplastics (Student’s t-test, p ≤ 0.05). 
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and the need of more studies on their potential adverse effects. 

4.2. Brain AChE activity is related with the presence of MPs in fish brain samples 

In the summer, D. labrax specimens having MPs in the brain had significantly lower brain AChE activity than specimens of the same 
species where MPs were not found in the part of the brain analysed. The Douro estuary is contaminated with a diversity of MPs all 
through the year, and the contamination is considerable including in the summer [52]. All the specimens of D. labrax used for the 
statistical analyses comparing AChE activity in fish with and without MPs in brain samples were collected in the same estuary 
minimizing the potential influence of previous developmental conditions in different habitats, which may influence some of the MP 
effects [33,99]. All the fish with MPs in brain samples were collected in the same season (summer), therefore minimizing the potential 
influence of seasonal variability and other contaminants that may inhibit AChE activity (e.g., some metals, PAHs, organophosphate 
pesticides) known to be present in the Douro estuary [99,100]. Moreover, in studies carried out in laboratory conditions, AChE in-
hibition has been documented in several fish species exposed to MPs with a variety of sizes, chemical composition and shape. Just to 
give some examples, inhibition of brain AChE activity was documented in Pomatochistus microps from wild populations exposed to 1–5 
μm polyethylene beds [26,33], in Argyrosomus regius exposed to 125 μm irregular low-density polyethylene [34], in Oreochromis 
niloticus exposed to 0.1 μm polystyrene beads [20], in Symphysodon aequifasciatus exposed to 70–88 μm polyethylene microspheres 
[27], in D. labrax exposed to 1–5 μm beds with unknown polymer composition [29], in Clarias gariepinu exposed to polyvinyl chloride 
pellets (3.0 g/kg) [28], and in Etroplus suratensis from wild populations exposed to 80.72 μm polyvinyl chloride pellets [101]. 
Furthermore, it is important to highlight that acrylamide, widely employed as a monomer used in the polymer industry, including to 
produce polyacrylamide, one of the MP types identified in the brain samples of D. labrax from the Douro estuary, can cause AChE 
inhibition, alterations in neurotransmitter levels among other effects in the central nervous system [102–105]. Therefore, the lower 
AChE activity (~32%) in fish with MPs in the brain than in fish with samples negative for MPs lead to the refusal of H02 and acceptance 
of HA2. 

Brain AChE inhibition in fish with MPs points to neurotoxicity induced by long-term exposure to MPs, MP-Chem or both. These 
findings are in line with previous studies [32]. It may cause a diversity of effects, some of them also documented in fish exposed to MPs 
in controlled conditions, such as alterations in behavioral patterns, swimming performance decrease, and reduction of feeding activity 
[27,35,106]. Inhibition of AChE may also influence key neurodevelopmental events, including cell migration, neurite outgrowth, 
synaptogenesis, among others [32,91]. This highlights the importance of further research on the neurotoxic effects induced by 
long-term exposure to MPs and also MP-Chem. 

5. Conclusions 

Among the 180 wild fish (D. labrax, P. flesus, M. cephalus) analysed, 9 had MPs in brain samples (all the brain except the cerebellum 
that was used for AChE analyses). All the fish with MPs in brain samples were D. labrax specimens collected in the summer, accounting 
for 45% of the 20 seabasses collected in the summer. These findings demonstrate the ability of MPs to cross the blood barrier of fish 
exposed in a real scenario (Douro River estuary discharging into the NE Atlantic Ocean), likely for a considerable or long time, to a 
diversity of MPs and other contaminants. Seventeen MPs (16 fragments, 1 film) with sizes between 8 μm and 96 μm were recovered 
from the analysed brain samples. Two superabsorbent polymers and one biopolymer were identified. Compared with D. labrax 
specimens collected in the summer with brain samples negative for MPs, fish with MPs in brain samples had significant inhibition (by 
32%) of brain AChE activity pointing to neurotoxicity induced by MPs. The findings of this pilot study carried out in a real scenario 
together with previous studies in the laboratorial and field conditions highlight the potential neurotoxicity that long-term exposure to 
MPs, MP-Chem and other pollutants may have been inducing on wild species, domestic animals and humans, and stress the urgent need 
of further studies on the topic using ‘One Health’ approaches. 
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