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Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and
higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based
feature selection (FCBF) method was used to preprocess the data to eliminate irrelevant and redundant features. Then, the
classification was carried out in the stacking ensemble learner. A library for support vector machine (LIBSVM), K-nearest
neighbor (KNN), decision tree C4.5 (C4.5), and random forest (RF) were used as the primary learners of the stacking ensemble.
Given the imbalanced characteristics of cancer gene expression data, the embedding cost-sensitive naive Bayes was used as the
metalearner of the stacking ensemble, which was represented as CSNB stacking. The proposed CSNB stacking method was
applied to nine cancer datasets to further verify the classification performance of the model. Compared with other classification
methods, such as single classifier algorithms and ensemble algorithms, the experimental results showed the effectiveness and
robustness of the proposed method in processing different types of cancer data. This method may therefore help guide cancer
diagnosis and research.

1. Introduction

Cancer is a malignant tumor originating from epithelial tis-
sues. It is a disease caused by the loss of normal regulation
and the excessive proliferation of cells in the body. In recent
years, cancer incidence and mortality have increased, thus
posing severe risks to human health and life. In addition,
because the occurrence and development of cancer are
dynamic, most patients are diagnosed with cancer in late
stages, thus making clinical diagnosis and treatment chal-
lenging [1, 2]. With the continual development of DNA
microarray technology, gene expression profile data are gath-
ered by synchronously tracking the expression of many
genes. Consequently, early physiological information on can-
cer can be determined at the molecular level, and the type of
cancer can be identified and used to guide biomedicine.
However, many features are irrelevant and redundant for
classification in gene expression profiles. Moreover, massive

computational challenges, such as high dimensionality, small
sample sizes, high noise, and unbalanced categories, intro-
duce difficulties in the analysis and processing of cancer gene
data. Therefore, various powerful methods have been pro-
posed by researchers to address these problems [3].

At present, the application of machine learning methods
to cancer classification is a significant research field in bioin-
formatics [4, 5]. Many traditional machine learning methods
have been successfully applied to the classification analysis of
gene expression data [6–9], such as RF, decision tree, KNN,
and neural networks. However, with the increasing amounts
and diversification of data, the traditional classification
algorithm has been unable to meet the requirements of
processing existing data and solving practical problems
[10, 11]. Ensemble learning is a notable research direction
in machine learning, in which multiple base learners are
used for combined learning, and the combined classifier is
often more accurate than its base classifier, thereby improving
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performance in classification problems. Combined classifica-
tion algorithms have consequently been widely applied in clas-
sification problems [12, 13].

Boosting [14] and bagging [15] are two popular com-
bined classification methods. Among them, bagging is a typ-
ical representative of a parallel ensemble learning method
[16]. In this method, new training subsets are generated by
adopting random sampling with putting back on the training
set; then, individual learners are trained with different train-
ing subsets, respectively, and finally, they are integrated as a
whole [17]. In this sampling process, it is inevitable that some
instances will be sampled multiple times while others will be
ignored [18]. Therefore, for a specific subspace, the individ-
ual learner will have high classification accuracy, while for
those neglected parts, the individual learner is difficult to cor-
rectly classify [19]. In addition, the classification perfor-
mance of the bagging method depends on the stability of its
base classifier. It has a good classification effect for unstable
classification algorithms (such as decision tree, neural net-
work, etc.), but it is not very ideal for stable classifier integra-
tion [20]. Different from bagging, boosting is an iterative
algorithm that transforms weak learners into strong ones
[21]. A new weak classifier is added to each round to produce
a strong learner with superior performance by increasing the
number of iterations. Although the algorithm improves the
generalization performance of the combined classification
algorithm, the algorithm will suffer from performance degra-
dation and long training time due to the excessive tendency
to some difficult samples and the fact that the update of each
round of sample distribution depends on the accuracy of the
previous round of classifiers [13, 19, 20].

Compared with the two ensemble classification algo-
rithms of bagging and boosting, stacking [22] provides a
novel idea for ensemble learning, by emphasizing the devia-
tions of the classifier from the training set and then learning
these deviations to enhance classification performance.
Stacking improves flexibility in combining learners that pro-
vide category output. In addition, this algorithm uses multi-
ple types of individual classifiers to form a two-layer
combined classification model. The first layer adopts multi-
ple base learners to train the datasets, and a metalearner is
used in the second layer to learn the output of the base
learners [16, 18]. Generally, to avoid the overfitting caused
by directly using the training sets of the primary learner,
cross-validation is usually used to generate the new second-
ary training set. In addition, how to choose the data type of
the secondary training set and the best secondary learner
are the two key points that the algorithm must solve [19].
In recent years, stacking ensemble learning methods have
been successfully applied in many fields [21]. For example,
Ekbal and Saha [23] proposed the extraction of biomedical
entities with combined feature selection and a stacking
ensemble. The feature selection technique based on genetic
algorithms was used to determine the most relevant feature
sets of the support vector machine and conditional random
field classifiers. Kwon et al. [22] applied a stacking ensemble
to breast cancer classification and achieved better classifica-
tion performance by using a gradient boosting machine and
generalized linear model as metaclassifiers. Wang et al. [24]

proposed a decision tree ensemble method based on stacking
for prostate cancer detection, which achieved good results in
classification accuracy, sensitivity, and specificity.

To further explore the effects of ensemble learning
applied to cancer gene expression data, we adopted a two-
layer classification model using a stacking ensemble learning
strategy in combination with feature selection technology to
conduct a classification study on binary cancer datasets. First,
the original gene expression dataset was standardized and
transformed into data with a mean value of 0 and a standard
deviation of 1. Then, we used FCBF to calculate the C-cor-
relation value of each gene and category through symmetric
uncertainty, and the irrelevant genes were eliminated. The
F-correlation value between features was calculated to elimi-
nate the redundant genes and obtain the candidate gene sub-
set, so as to simplify the combined classification model.
Second, in the multiclassifier combination method based on
the stacking algorithm, LIBSVM, KNN, C4.5, and RF were
used as primary learners. Given the problem of imbalanced
cancer gene expression data, CSNB was used as the metalear-
ner of the stacking ensemble to perform combinatorial
learning, which was expressed as CSNB stacking. Nine cancer
datasets were tested for experiments and then compared with
other single classifier algorithms and ensemble algorithms:
cost-sensitive KNN stacking (CSKNN stacking), cost-
sensitive C4.5 stacking (CSC4.5 stacking), cost-sensitive
LIBSVM stacking (CSLIBSVM stacking), bagging, AdaBoost,
CSNB, NB, LIBSVM, KNN, RF, and C4.5. The experimental
results demonstrated that the proposed method provided
more accurate classification and was effective and robust in
handling various cancer classification data.

The rest of the paper is organized as follows. Section 2
reviews the related work about cancer classification problem.
Section 3 introduces the materials and methods of this study,
and Section 4 exhibits and discusses the experimental results.
In the end, we summarize the paper.

2. Related Work

The mature development of DNA microarray technology
provides important guidance for cancer diagnosis and recog-
nition. At present, many scholars have applied the machine
learning method to cancer classification and thus designed
various classification models and achieved satisfactory
results. For example, Musheer et al. [25] used a naive Bayes
classifier to classify and evaluate six microarray cancer data-
sets after feature reduction, which proved that the algorithm
has certain significance. Ye et al. [1] applied the KNN classi-
fier to evaluate the extracted information gene subset, which
improved the classification accuracy. Besides these, there are
also some classification models composed of hybrid methods.
Ren et al. [26] proposed an integrated method named
correntropy-induced loss-based sparse robust graph regular-
ized extreme learning machine and applied it to the classifi-
cation and recognition of cancer samples. Gao et al. [27]
performed cancer classification based on SVM optimized by
particle swarm optimization combined with artificial bee col-
ony approaches, and the effectiveness of these methods was
verified by the experimental results. In addition, with the
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continuous development of machine learning, many studies
have shown that the application of ensemble learning to clas-
sification problems is often better than traditional classifica-
tion algorithms and single classifiers, and it can also solve
the problem of increased data volume and data diversifica-
tion [23, 26]. Therefore, a large number of classification
models based on ensemble learning have been proposed.
For example, Lee et al. [5] developed an ensemble model
based on random forest and deep neural network for cancer
classification and achieved an accuracy of 94%. ALzubi
et al. [28] used the boosted weighted optimization neural net-
work ensemble classification algorithm to classify cancer
patients, thereby improving the accuracy of cancer diagnosis.
Ghiasi and Zendehboudi [29] proposed a classification algo-
rithm based on random forest and extreme random tree of
decision tree, which was applied to the classification of breast
cancer, and verified the diagnostic performance of the algo-
rithm. Li and Luo [30] proposed a performance-weighted
voting model for cancer classification. This ensemble model
was composed of five weak classifiers: logistic region, SVM,
RF, XGBoost, and neural networks, which achieved high
accuracy of tumor diagnosis.

Stacking is widely used as a more flexible combination
classification model in ensemble learning. However, in the
process of constructing the combination model, how to
choose the base classifier and give full play to their effective-
ness and how to choose the best secondary learner are prob-
lems worthy of attention. In addition, the types and
characteristics of experimental data will also affect the effec-
tiveness of the classification model. Therefore, in view of
the above problems, first of all, we used the FCBF algorithm
to reduce the data dimension and achieve the purpose of sim-
plifying the classification model. In addition, four base classi-
fiers (LIBSVM, KNN, C4.5, and RF) were used as the primary
learners of the ensemble model. Meanwhile, cost-sensitive
learning idea was introduced as a secondary learner to solve
the imbalance of microarray gene expression data, so as to
overcome these problems and achieve high-quality classifica-
tion results.

3. Materials and Methods

3.1. Cancer Datasets. For evaluation of the effectiveness of the
proposed method, we used nine groups of cancer datasets of
two classes derived from the Kent Ridge Biomedical Dataset
database. These datasets included central nervous system
embryonal tumors (NervSys), leukemia, three groups of dif-
fuse large B-cell lymphoma (DLBCL), prostate cancer, ovar-
ian cancer, and two groups of lung cancer. A detailed
description of these datasets is shown in Table 1.

Among these sample data, DLBCL1 was derived from
Stanford data, including a total of 62 samples of two sub-
types. DLBCL2 and DLBCL3 were selected from two sets of
data detected by Harvard. DLBCL2 included two types of
patients: those with DLBCL and those with follicular lym-
phoma. DLBCL3 comprised the outcome prediction data,
including cured patient samples and relapsed patient sam-
ples. Lung cancer1 was derived from the University of
Michigan, including ten normal samples and 86 diseased

samples. Lung cancer2 contained 181 samples comprising
31 cases of malignant pleural mesothelioma and 150 cases
of adenocarcinoma, with 12533 genes detected. Notably, the
NervSys and DLBCL3 data were outcome prediction data,
whereas the ovarian cancer data were protein data, and the
remaining samples were from two categories of data.

3.2. Stacking Ensemble Learning Algorithm. Stacking, also
known as stacked generalization [31], is a technology involv-
ing heterogeneous classifier collections. By integrating multi-
ple different types of base classifiers and combining them into
a strong classifier, the generalization ability of the strong clas-
sifier can be improved. The stacking ensemble learning algo-
rithm adopted a two-layer framework structure, as shown in
Figure 1. The main idea of this algorithm was to train the
dataset with multiple primary learners first. Then, the predic-
tion results obtained by each base classifier were used as the
input of the metaclassifier to perform training again. Finally,
the training result of the metaclassifier was the final predic-
tion result. The stacking ensemble algorithm took into
account the learning ability of the primary classifier and
metaclassifier, so that the final classification performance
was significantly improved [32–34].

3.3. KNN. KNN [35] is a classification algorithm in super-
vised learning and also a lazy learning algorithm. The algo-
rithm has the advantages of simple use, rapid calculation,
and good predictive effects. However, when the sample dis-
tribution is uneven, the prediction error also increases.

The basic idea of the algorithm was that if a prediction
sample has K-nearest neighbors in the feature space, the cat-
egory of the prediction sample was usually determined by
most of the categories of the K-nearest neighbors. The effects
and performance were optimized by selecting the K value,
distance measurement method, and classification decision
rules.

3.4. C4.5. The three commonly used decision tree algorithms
[36] are Iterative Dichotomiser (ID3), C4.5, and CART.
Among them, decision tree C4.5 was an improvement on
ID3. The C4.5 algorithm used the information gain ratio as
the index to select the best split, which accommodated con-
tinuous variables and missing values, thereby addressing
the disadvantage of ID3’s tendency to select attributes with

Table 1: Details of cancer datasets.

Datasets Samples No. of genes Classes Labels

NervSys 60 7129 2 Outcome prediction

Leukemia 72 7129 2 Two categories

DLBCL1 47 4026 2 Two categories

DLBCL2 77 7129 2 Two categories

DLBCL3 58 7129 2 Outcome prediction

Prostate 102 12600 2 Cancer or not

Ovarian 253 15154 2 Protein data

Lung1 96 7129 2 Cancer or not

Lung2 181 12533 2 Two categories
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many categories. Pruning could be performed during the
construction of the tree to avoid overfitting.

3.5. RF. RF [37] is an ensemble algorithm that constructs a
strong classifier by training multiple weak classifiers. The
prediction results were determined by the average or voting
of multiple base classifiers, thus giving the prediction model
good accuracy and generalization ability. The decision tree
was used as the base classifier in the RF. When making pre-
dictions, each decision tree in the forest participated in clas-
sification prediction. Finally, the classification with the
highest number of votes was selected as the prediction value.
The accuracy of RF depended on the strength of the base
classifier and the dependence between them. Moreover, it
was relatively robust to errors and outliers.

3.6. SVM. SVM [38] is a classic stability classifier. The SVM
method was based on the VC dimension theory of statistical
theory and the principle of minimum structural risk. The VC
dimension represented the complexity of the problem. Nor-
mally, the higher the VC dimension, the more complex the
function. SVM had advantages in handling nonlinear high-
dimensional problems, and it is widely used in the classifica-
tion and recognition fields [39].

For nonlinear samples, SVM used a kernel function to
map the original data to a high-dimensional space, thus mak-
ing the samples linearly separable. The optimal classification
hyperplane was constructed to separate the samples cor-
rectly. Generally, different forms of kernel functions strongly
affected the classification performance of SVM. Among
them, the radial kernel function (RBF) [40] had fewer param-
eters and better performance and consequently was widely
used in practical applications. The formula of the RBF kernel
function can be expressed as follows:

K x, xið Þ = exp −
x − xik k2
σ2

� �
, ð1Þ

where x and xi are two sample vectors, K is the value of the
RBF kernel function, and σ is a free parameter.

3.7. CSNB. Cancer gene expression data are a type of unbal-
anced data [41]. Traditional classification algorithms often
do not consider the factor of misclassification cost, thereby
leading to classification results that tend to focus on the
learning of large categories while ignoring the learning of

small categories. In this experiment, the idea of cost sensitiv-
ity was introduced into a naive Bayes classification algorithm
to make it sensitive to cost. In this way, the recognition rate of
rare classes was improved, and the validity of classification
was strengthened.

First, the definition of misclassification cost was given.
Taking a binary classification dataset as an example, let the
c0 class be the minority class and the c1 class be the majority
class. The misclassification cost can usually be represented by
a 2 × 2 cost matrix, and each element in the matrix represents
the misclassification cost of samples [42].

C =
C00 C01

C10 C11

" #
, ð2Þ

where Cij represents the cost of mistakenly classifying sam-
ples that are i classes into j classes. Generally, for the rational-
ity condition of two classification problems [43], correct
classification is not considered to bring losses; consequently,
the cost of misclassification is 0. However, the cost of small
classes being misclassified into large classes is much higher
than that of large classes being misclassified into small clas-
ses. Therefore, we can derive the following relationship:
C00 = C11 = 0 and C01 > C10.

After the cost matrix is determined, the naive Bayes the-
ory is used to construct the risk function [38]. When a sample
x with an unknown category is classified by a classification
algorithm, the sample x can be represented by a vector (a1,
a2, a3,⋯, an). The probability that it belongs to the category
cj is Pðcj ∣ xÞ, which is expressed by the Bayesian formula as

P cj ∣ x
� �

=
P x ∣ cj
� �

P cj
� �

P xð Þ =
P a1, a2, a3,⋯an ∣ cj
� �

P cj
� �

P xð Þ :

ð3Þ

When its category is determined to be cj, the expected
misclassification cost is

R cj ∣ x
� �

=〠
i

P ci ∣ xð ÞCij, ð4Þ

where Pðci ∣ xÞ represents the posterior probability that
sample x belongs to the ci category. Its value is obtained
by the naive Bayes formula. Furthermore, the corresponding
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Figure 1: Ensemble learning method based on stacking.
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categories are determined by minimizing the posterior prob-
ability as follows:

c = arg min
j=0,1

R cj xj
� �� �

: ð5Þ

The sample x is finally predicted to be a certain category
cj that makes Rðcj ∣ xÞ have a minimum value, which can be
expressed as

R cj∗ ∣ x
� �

=minjR cj ∣ x
� �

, ð6Þ

where formula (6) is the CSNB formula.

3.8. FCBF. FCBF [39] is a supervised fast filtering feature
selection algorithm. Its core idea is to define C-correlation
and F-correlation, where C-correlation is the degree of corre-
lation between features and categories and F-correlation is
the degree of correlation between features. When a feature
has high C-correlation with a category and low F-correla-
tion with other selected features, the feature is marked as an
important feature. In this algorithm, symmetric uncertainty
(SU) was adopted as the standard to measure the degree of
correlation. SU is defined as the standardized information
gain:

SU X, Yð Þ = 2 IG X Yjð Þ
H Xð Þ +H Yð Þ

� 	
, ð7Þ

where X and Y represent two random variables, IGðX ∣ YÞ
denotes the information gain, andHðXÞ represents the infor-
mation entropy.

3.9. The Proposed CSNB Stacking Algorithm. In this article,
the FCBF algorithm was first used to reduce the dimension-
ality of the datasets. Then, LIBSVM, KNN, C4.5, and RF were
used as primary learners. In addition, given the unbalanced
classification of cancer gene expression data, the naive Bayes
with embedded cost sensitivity was adopted as the metalear-
ner of the stacking ensemble. In the experiment, the 5 × 10
-fold nested cross-validation method was used to divide the
data to prevent overfitting. The experimental process is
shown in Figure 2.

4. Results

4.1. Feature Selection. Cancer datasets contain many genes
that are irrelevant and redundant for classification, thus lead-
ing to more complex classification tasks and inaccurate clas-
sification results. In fact, few informative genes are known to
directly affect the classification results. Therefore, to save
time and calculation costs and obtain better classification
performance, we used the FCBF method to quickly and effec-
tively reduce the dimensionality of the cancer datasets before
classification, by discarding features making little or no con-
tribution to classification. In this article, data were prepro-
cessed first, and FCBF was used in WEKA for feature
selection. The data information after reduction is provided
in Table 2.

As shown in Table 2, the feature dimensions of the nine
cancer datasets were greatly reduced after feature selection
with the FCBF algorithm. Among them, ovarian cancer was
reduced from the original 15154 attributes to 30, whereas
the number of features of DLBCL2 was decreased from
7129 to 27. In addition, lung cancer ultimately retained only
one important feature among 7129 original features. Hence,
after the feature reduction by the FCBF algorithm, the subse-
quent classification task was greatly simplified.

4.2. Cancer Classification. In this article, the nine cancer data-
sets after feature reduction are used as the input to the pro-
posed method CSNB stacking classifier for classification. To

Gene expression data
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Forecast results
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Forecast
results

Forecast
results

Forecast
results

CSNB model
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C4.5
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Figure 2: The experimental flow of the proposed method.

Table 2: Reduced attributes by FCBF.

Datasets Original attributes Reduced attributes

NervSys 7129 28

Leukemia 7129 51

DLBCL1 4026 60

DLBCL2 7129 73

DLBCL3 7129 27

Prostate 12600 77

Ovarian 15154 30

Lung1 7129 1

Lung2 12533 128
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test the quality of the proposed method, we compared this
method with CSKNN stacking, CSC4.5 stacking, CSLIBSVM
stacking, bagging, AdaBoost, CSNB, NB, LIBSVM, KNN, RF,
andC4.5.

Among these methods, the primary learners with the
CSKNN stacking, CSC4.5 stacking, and CSLIBSVM stacking
were the same as with the proposed method, but the meta-
learners were different. CSKNN stacking adopts embedded
cost-sensitive KNN as a metalearner for combinatorial
learning. CSC4.5 stacking used embedded cost-sensitive
C4.5 as a metalearner for classification, whereas the metalear-
ner of CSLIBSVM stacking applies embedded cost-sensitive
LIBSVM. Both bagging and AdaBoost ensemble methods
used CSNB as the base classifier. The CSNB algorithm intro-
duced cost-sensitive information into naive Bayes, thus mak-
ing it sensitive to cost and emphasizing the learning of small
samples. The above classification models all used cost-
sensitive learning. In addition, several other comparison
methods exist. Among them, the naive Bayes algorithm was
simple and provided stable classification efficiency, but it
was highly sensitive to the expression form of the input data;
for example, if the training data error is large, the predictive
effect will be poor. The LIBSVM classification algorithm
had few parameters, flexible operation, and broad application
capability. KNN was simple and effective and had low train-
ing costs, but it was computationally expensive. RF adopted
an integrated algorithm with high accuracy and fast training
speed, but the training required large amounts of time and
space. Moreover, the RF model was prone to overfitting for
sample sets with high noise. The classification rules generated
by the C4.5 algorithm were easy to understand and have high
accuracy; this algorithm handled discrete and continuous
data, but its computational efficiency was low.

Furthermore, owing to the small training set, we evalu-
ated the classification performance with 5 × 10-fold nested
cross-validation to avoid overfitting. That is, the data were
first divided by the 5-fold cross-validation method, and then,
the datasets were divided according to the 10-fold cross-
validation method before the primary classifier of stacking
carries out the training data. The classification accuracy,

recall rate, F-score, specificity, and receiver operating charac-
teristic (ROC) curves were used to evaluate the effectiveness
of the proposed method. The final classification accuracy
results are shown in Table 3.

As shown in Table 3, the first row represented the classi-
fication results of the proposed CSNB stacking method,
which always obtained the best value for the nine datasets.
In these classification results, such as those with NervSys,
the proposed CSNB stacking method achieved the same
accuracy as CSC4.5 stacking (both 90%, a value higher than
those of other methods). For the DLBCL3 and prostate can-
cer datasets, the method proposed in this article, compared
with other classification methods, had the highest classifica-
tion accuracy. In addition, the proposed classification model
achieved 100% classification accuracy on the leukemia,
DLBCL1, ovarian cancer, and lung cancer2 datasets. Accord-
ing to the classification results, the classification method
based on a stacking ensemble was better than the single clas-
sification model. To visually demonstrate the classification
effect of different models, we have converted the experi-
mental results in Table 3 to a line graph, as shown in
Figures 3 and 4. Because the classification results for the
leukemia, DLBCL1, and ovarian datasets were all 100%, they
were not shown in the figure. In Figure 4, the remaining
classification methods were combined and compared with
the proposed method. Similarly, because lung1 achieved
98% in these comparison methods, it was also not shown
in the figure.

Figure 5 shows the values of the recall rates obtained by
the various classification methods on nine cancer datasets.
The results show that the proposed CSNB stacking method
achieves the highest recall rate on all nine datasets, followed
by the CSKNN stacking method. For DLBCL3 and prostate
cancer, the recall rate of the proposed method reached
87.90% and 95.10%, respectively; these results were superior
to those of other classification models.

Figures 6 and 7 illustrate the specificity values obtained
by the various classification methods on nine cancer datasets.
Figure 6 shows the comparison between the proposed
method and the other five ensemble classifiers. Since the

Table 3: Classification accuracy (%) of different methods.

Datasets NervSys Leukemia DLBCL1 DLBCL2 DLBCL3 Prostate Ovarian Lung1 Lung2

CSNB stacking 90.00 100 100 98.70 87.93 95.10 100 98.96 100

CSKNN stacking 83.33 100 100 98.70 84.48 92.16 100 98.96 100

CSC4.5 stacking 90.00 100 100 98.70 86.21 93.14 100 89.58 99.45

CSLIBSVM stacking 86.67 100 100 97.40 77.59 92.16 100 92.71 99.45

Bagging 83.33 100 100 97.40 84.48 93.14 100 98.96 100

AdaBoost 81.67 100 100 96.10 84.48 95.10 100 98.96 100

CSNB 76.67 100 100 96.10 86.21 92.16 100 98.96 100

NB 76.67 100 100 96.10 86.21 92.16 100 98.96 100

LIBSVM 86.67 100 100 98.70 82.76 94.12 100 98.96 99.45

KNN 86.67 100 95.74 93.51 70.69 89.22 100 98.96 100

RF 88.33 98.61 100 96.10 86.21 94.12 99.60 98.96 99.45

C4.5 75.00 81.94 78.72 84.42 72.41 88.24 98.02 98.96 95.58
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specificities of the six ensemble classifiers in the three data-
sets of leukemia, DLBCL1, and ovarian cancer were all 1, they
were not shown in the figure. Figure 7 is a comparison of
other remaining classification models and the proposed
method. It can be seen from the figure that the proposed
methods in this paper can obtain better specificity on nine
datasets. In addition, compared with other ensemble classi-
fiers, the proposed method had a better classification effect
and achieves specificity of 0.9 and 1 on lung1 and lung2 data-
sets, respectively. However, CSC4.5 stacking performed
poorly, especially for the lung1 dataset, with a specificity
value of 0. Although C4.5 achieved a specificity of 1 on the
lung1 dataset, the results on the remaining eight datasets
were not good.

Table 4 lists the F-score of different classification
methods on each cancer dataset. As can be seen from the
table, the proposed method obtained the highest F-score on
all nine datasets. Since the F-score represents the harmonic
mean value of precision and recall rate, the experimental
results further verified the effectiveness of the proposed
method.

In order to display the ROC curves of different classifica-
tion models more clearly and intuitively, we selected NervSys
and prostate datasets from nine datasets for graphing. In
addition, we divided all classifiers into two groups to show
them more aesthetically and clearly. Figure 8 shows the
ROC curves of the NervSys dataset on different classifiers.
Figure 9 shows the ROC curves of the prostate dataset on
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different classifiers. It can be seen from the figure that the
proposed classification model in this study had a better per-
formance, and the curve corresponding to CSNB stacking
was closer to the upper left corner of the ROC chart, which
further proved the great advantage of the proposed method
in dealing with cancer datasets.

5. Discussion

As a combinatorial learning method, the stacking method is
supported by less theoretical research than the boosting and

bagging combination method, but it is welcomed by many
researchers because of its strong flexibility and scalability in
algorithms [44, 45]. However, the choice of the output data
type of the base learner and the metalearner are longstanding
problems in the stacking method. Some researchers favor
using the output probability of the base learner as the input
of the secondary learner. In addition, if some relatively sim-
ple learners are selected as primary learners and more com-
plex learners are selected as metalearners, the stacking
performance will be more robust in terms of classification
accuracy [46, 47]. Therefore, herein, we propose the novel
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Figure 6: Specificity of different ensemble methods.
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combination classification model CSNB stacking and per-
form experimental verification.

The datasets selected in this experiment were diverse,
including prognostic data, protein data, and two-category
data. The experimental results showed that the proposed
method achieved the best classification accuracy in different
types of cancer datasets, thus reflecting the superiority of
the CSNB stacking classification model in processing cancer
datasets. On the other hand, through the experimental verifi-
cation, the four base classifiers selected in this study consti-
tute the primary learner of stacking, which is a satisfactory
combination. At the same time, the cost-sensitive idea was
introduced into the metalearner of stacking, which can well
deal with the problem of unbalanced data. In addition, the
proposed classification combination model was superior to
the single classifier and ensemble algorithm in terms of sta-
bility and generalization ability, and it achieved better classi-

fication results. Furthermore, the proposed method provided
a feasible reference scheme for the two-classification prob-
lem, and it may potentially aid in cancer prediction, identifi-
cation, and classification.

6. Conclusion

Owing to its high incidence and mortality, cancer has always
been a threat to human health. Its complexity and variability
make clinical diagnosis and treatment difficult. The emer-
gence of cancer gene expression profiles, by synchronously
tracking the expression levels of many genes, is important
for early diagnosis of cancer at the molecular level. However,
the analysis and processing of gene expression data are
accompanied by problems such as high dimensionality, rela-
tively small samples, high noise, and class imbalance. There-
fore, to improve the quality of cancer classification and

Table 4: F-score of different classification methods.

Datasets NervSys Leukemia DLBCL1 DLBCL2 DLBCL3 Prostate Ovarian Lung1 Lung2

CSNB stacking 0.900 1.00 1.00 0.987 0.878 0.951 1.00 0.989 1.00

CSKNN stacking 0.829 1.00 1.00 0.987 0.844 0.922 1.00 0.989 1.00

CSC4.5 stacking 0.899 1.00 1.00 0.987 0.861 0.931 1.00 0.945 0.995

CSLIBSVM stacking 0.869 1.00 1.00 0.974 0.775 0.922 1.00 0.909 0.995

Bagging 0.829 1.00 1.00 0.974 0.842 0.931 1.00 0.989 1.00

AdaBoost 0.813 1.00 1.00 0.961 0.844 0.951 1.00 0.989 1.00

CSNB 0.767 1.00 1.00 0.961 0.862 0.922 1.00 0.989 1.00

NB 0.767 1.00 1.00 0.961 0.862 0.922 1.00 0.989 1.00

LIBSVM 0.867 1.00 1.00 0.987 0.821 0.941 1.00 0.989 0.995

KNN 0.869 1.00 0.957 0.937 0.707 0.892 1.00 0.989 1.00

RF 0.879 0.986 1.00 0.960 0.860 0.941 0.996 0.989 0.994

C4.5 0.741 0.822 0.785 0.838 0.724 0.882 0.980 0.952 0.955
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determine the genes that contribute to classification, we pro-
posed a novel method for gene expression data classification:
CSNB stacking, based on a CSNB stacking ensemble. This
algorithm is based on the traditional stacking algorithm. In
addition, because of the imbalanced characteristics of cancer
gene expression data, we adopted the embedding CSNB as
the metalearner of the stacking ensemble.

In the experiment, FCBF was first used to reduce the
dimensionality of the data and discarded the irrelevant and
redundant attributes. Then, the feature subset was input into
the CSNB stacking classification model for classification. The
experimental results for nine sets of cancer datasets demon-

strated that the CSNB stacking method achieved the best
classification performance among the tested methods. Simul-
taneously, this method had advantages in processing out-
come prediction data, protein data, and two categories of
data, and it therefore should have high guidance potential
and clinical value for cancer classification and prognosis
prediction.

In addition, through the comparison and analysis of the
experimental results, the superiority of the proposed method
in the binary classification problem was verified. Our next step
will be to expand to the multiclassification task on the basis of
the algorithm, to explore its effectiveness. Simultaneously, to
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Figure 9: ROC curves of the prostate dataset by different classification methods.
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make the algorithm more conducive to solving practical
problems, we will also focus on combining multiple types of
data to achieve more detailed analysis in the future.
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