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Abstract Obesity is primarily caused by excessive intake as well as absorption of sugar and lipid. Post-

prandial surge in distention pressure and intestinal motility accelerates the absorption of nutrients. The

response of intestinal epithelial cells to mechanical stimulation is not fully understood. Piezo1, a mechan-

osensitive ion channel, is widely expressed throughout the digestive tract. However, its function in intes-

tinal nutrient absorption is not yet clear. In our study, excessive lipid deposition was observed in the

duodenum of obese patients, while duodenal Piezo1eCaMKK2eAMPKa was decreased when compared

to normal-weight individuals. Under high-fat diet condition, the Piezo1iKO mice exhibited abnormally

elevated sugar and lipid absorption as well as severe lipid deposition in the duodenum and liver. These

phenotypes were mainly caused by the inhibition of duodenal CaMKK2eAMPKa and the upregulation

of SGLT1 and DGAT2. In contrast, Yoda1, a Piezo1 agonist, was found to reduce intestinal lipid absorp-

tion in diet induced obese mice. Overexpression of Piezo1, stretch and Yoda1 inhibited lipid accumula-

tion and the expression of DGAT2 and SGLT1, whereas knockdown of Piezo1 stimulated lipid

accumulation and DGAT2 in Caco-2 cells. Our study reveals a previously unexplored mechanical regu-

lation of nutrient absorption in intestinal epithelial cells, which may shed new light on the therapy of

obesity.
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1. Introduction

Obesity is emerging as a significant global public health concern.
The excessive intake and absorption of nutrients are increasingly
recognized as contributing factors to the growing epidemics of
obesity1,2. It is reported that obese patients tend to absorb the
nutrients more efficiently and promptly, especially in their upper
small intestines3. The duodenum and jejunum are the major sites
for the digestion and absorption of dietary sugar and fat4. After
being decomposed by digestive enzymes, the monosaccharides are
transported into intestinal epithelial cells followed by entrance
into the blood circulation. Sodium-dependent glucose cotrans-
porter 1 (SGLT1) and glucose transporter 2 (GLUT2) are the most
important glucose transporters in this procedure5. More impor-
tantly, accelerated intestinal lipid absorption is another primary
impetus of obesity6. Lipid absorption is a complex multi-step
process. Dietary triacylglycerols (TAGs) are emulsified and
hydrolyzed into free fatty acids and monoacylglycerols in the
lumen of the intestine. Fatty acids are taken up from the gut lumen
into enterocytes by either passive transport or active transport
mediated via CD36 and/or fatty acid transport protein 4
(FATP4)7,8. Subsequently, the digested products are transported
to the endoplasmic reticulum (ER), where TAG is then re-
synthesized. The monoacylglycerol (MAG) pathway and the
glycerol 3-phosphate pathway are major pathways to re-synthesize
triacylglycerol (TAG), and the MAG pathway accounts for 75%e
80% of TAG synthesis9-11. In the MAG pathway, mono-
acylglycerol acyltransferase (MGAT) catalyzes the MAG to
diacylglycerol (DAG), diacylglycerol acyltransferase (DGAT)
catalyzes the DAG to triacylglycerol (TAG)12,13. Catalyzing DAG
to generate TAG is a major rate-limiting step. The TAGs are then
used for chylomicron packaging and enter the lymphatics to
eventually re-enter the blood circulation14. During these
processes, APOB is an essential protein required for chylomicron
packaging in the small intestine15. Previous studies illustrated that
the development of obesity is associated with the abnormal
expression of the absorption-associated proteins such as CD36,
DGAT1, DGAT2, MGAT2, APOB and SGLT1. Pharmacotherapy
targeting absorption-associated proteins could be used to treat
obesity and its associated complications16e22.

After primary digestion in the stomach, chyme enters into
duodenum. It is notable that intestinal epithelial cells receive the
mechanical stimulation when the chyme passing through the
intestine, including stretching, pressure and shear force23. The
mechanosensing in enterocytes and its role in nutrient absorption
is still unexplored. Piezo1 is a mechanosensitive ion channel that
converts mechanical force into electrical and chemical signals via
transmembrane calcium influx24. Piezo1 is widely expressed in
nonsensory tissues including the lung, endothelial cells, erythro-
cytes, urinary bladder and kidney25. It plays crucial roles in
various physiological processes such as stabilizing lung endothe-
lial barriers26, regulating blood pressure27, maintaining vascular
integrity28, as well as contributing to erythrocyte volume
homeostasis29 and mechanosensory transduction in the urinary
system30. In the gastrointestinal epithelium, Piezo1 channels act as
pressure sensors to regulate cell proliferation and migration,
mucosal barrier function and intestinal motility31e33. Thus we
assume that Piezo1-mediated mechanosensing in enterocytes
regulates intestinal nutrient absorption.

In the present study, intestinal lipid accumulation was observed
in obese patients, which was associated with a decrement of
Piezo1. To better understand the role of Piezo1 in enterocytes, we
created a mouse model with specific deletion of Piezo1 in intes-
tinal epithelial cells (Piezo1iKO). We observed a slight increase in
lipid accumulation in the duodenum and liver under normal chow
diet conditions. After fed with high fat-diet, Piezo1iKO mice dis-
played over-absorption of fat and sugar, impaired glucose
homoeostasis and severe lipid deposits in multiple organs. Phar-
macological, mechanical and genetic manipulations of Piezo1
regulated the expression of DGAT2 and SGLT1 as well as sugar
and lipid accumulation in Caco-2 cells. Mechanistically, Piezo1
regulates DGAT2 and SGLT1 via Ca2þ/CaMKK2/AMPKa
pathway. In sum, current study reveals that Piezo1 functions as a
suppressor of sugar and lipid absorption in intestinal epithelium
cells. We propose that mechanoperception in the enterocytes plays
a crucial role in nutrient absorption, and targeting intestinal Piezo1
may offer a promising approach for the therapy of obesity and
diabetes.

2. Methods and materials

2.1. Materials

Yoda1, olive oil and glucose were purchased from SigmaeAldrich
(St. Louis, MO, USA). GsMTx4 was purchased from Alomone
Labs Ltd. (Jerusalem, Israel). STO-609 was obtained from Selleck
Chemicals (Houston, TX, USA). Anti-SGLT1 (1:1000 dilution),
and anti-b-actin (1:10,000 dilution) antibodies were purchased
from Abcam (Cambridge, MA, USA). Anti-PIEZO1 (1:1000
dilution), anti-DGAT2 (1:1000 dilution), anti-CD36 (1:1000 dilu-
tion), anti-APOB (1:1000 dilution), anti-CaMKK2 (1:1000 dilu-
tion) antibodies were obtained from Affinity Biosciences
(Cincinnati, OH, USA). Anti-PGC1a (1:1000 dilution) and anti-
ACADL (1:1000 dilution) antibodies were purchased from Pro-
teintech (Chicago, IL, USA). Anti-AMPKa (1:1000 dilution) and
anti-Phospho-AMPKa (Thr172) (1:1000 dilution) antibodies were
purchased from Cell Signaling Technology (Danvers, MA, USA).

2.2. Animals

The mice used in this study were housed in specific pathogen-free
conditions and all animal experiments complied with the relevant
ethical regulations. All animal protocols were approved by the
Animal Care and Use Committee of Jinan University.

Piezo1flox/flox mice and Villin-cre mice were obtained from
Jackson Laboratory (Bar Harbor, ME). To generate intestinal
epithelium cell-specific Piezo1 deletion mice (Piezo1iKO), the
Piezo1flox/flox mice were crossed with the Villin-Cre mice. PCR is
used to identify the genotype of mice during the subsequent
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mating and breeding process. The primers required for mouse
genotyping are shown in the Supporting Information Table S1.

2.3. Yoda1 treatment

After 8 weeks of HFD feeding, Yoda1 was administrated to
C57BL/6 mice intraperitoneally (i.p.) at a dose of 80 mg/kg once
daily for a week. Body weight was monitored daily.

2.4. Food and water intake detection

The food and water consumption were measured using the
metabolic cages with feeding/drinking analysis (Cat. No.
41853, Ugo basile, Comerio, Italy). Mice were singly housed
and acclimatized in metabolic chambers for three days before
data collection. Mice had free access to food and water. Each
mouse was continuously monitored for food and water intake.
Data was recorded and analyzed by software/interface package
41850-010 which includes EXPEDATA (data analysis) and
METASCREEN (data acquisition) software and IM-2 Interface
Module. Additionally, the urine and feces were collected
daily.

2.5. Xylose or oil gavage experiments

The Piezo1iKO and control mice were fasted overnight and
received the administration of either 1 g/kg or 10 mL/g body
weight of D-xylose or olive oil via gavage, respectively. Blood
samples were collected from the tail vein before oral adminis-
tration and at different time points thereafter. The plasma levels of
D-xylose were measured using commercial kits (Solaibao, Beijing,
China) in accordance with the provided instructions. Plasma TAG
and FFA were determined using commercial kits (Boxbio,
Shanghai, China) according to the instructions.

2.6. IPGTT and ITT

For the IPGTT, the Piezo1iKO and control mice were fasted over-
night and then injected intraperitoneally with glucose (1.5 g/kg).
The Insulin Tolerance Test (ITT) was performed on mice that were
fasted for 4 h and then received an intraperitoneal injection of
insulin (0.5 IU/kg for NCD mice, 1 IU/kg for HFD mice). Blood
sample was collected from the tail vein at various time points (0,
15, 30, 60, 90, 120 min) for glucose determination using the Accu-
Chek Performa glucometer (Roche).

2.7. Biochemical analysis

FFA and TAG levels in blood, liver, duodenum and feces were
measured and determined using commercial kits (Boxbio,
Shanghai, China) according to the instructions. Biochemical
analysis was performed as described previously34.

2.8. H&E staining

Paraffin-embedded sections were cut and stained with hematox-
ylin and eosin. Image acquisition was performed with Lecia
microscope (Leica, Germany).
2.9. Oil-red O staining

The liver and duodenum were fixed in 4% paraformaldehyde and
embedded in O.C.T. compound for histological analysis. To
perform Oil-red O staining, 10-mm-thick slices of the tissues were
cut and stained with Oil-red O. Hematoxylin was used to stain
the nucleus, and the red lipid droplets were observed
microscopically.

2.10. Immunofluorescent staining

The sections underwent standard dewaxing, followed by antigen
retrieval treatment. Primary antibodies for PIEZO1 (1:400
dilution), DGAT2 (1:100 dilution), and SGLT1 (1:100 dilution)
were incubated overnight at 4 �C with the sections. After
washing with PBS, fluorescein-conjugated secondary antibodies
were added, and the sections were counterstained with DAPI.
The images were captured using a Lecia SP8 microscope (Leica,
Germany).

2.11. Cell culture and transfection

The human Caco-2 cells were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA) and were
maintained in DMEM containing 10% fetal bovine serum (FBS) at
37 �C in a 5% CO2 humidified atmosphere.

For stable knockdown of Piezo1 in Caco-2 cells, Firstly,
shRNA sequences for human Piezo1 interference were cloned in
to pLKO.1 vector. psPAX2, pMD2G and pLKO.1 or pLKO.1-
shPiezo1 plasmids (siPiezo1: CCCTGTGCATTGATTATCCT)
were co-transfected into 293T cells for 48 h to produce lentiviral
supernatants. After collecting and filtering, the lentiviral super-
natants were added to the culture medium of Caco-2 cells for 24 h.
After that, the Caco-2 cells were subjected to 5 mg/mL puromycin
selection for 48 h.

2.12. Real-time PCR

Total RNA was extracted using Trizol reagent (Takara, Shiga,
Japan) and reversely transcribed to cDNA. qPCR was performed
using SYBR Green Master Mix according to the manufacturer’s
instructions. Primers are listed in Supporting Information
Table S2.

2.13. Western blotting

Western blot analysis was performed as described previously35,36.
Briefly, the proteins were separated by SDS-PAGE and detected
with specific antibodies.

2.14. Luciferase reporter assay

Caco-2 cells were co-transfected with Dgat2 luciferase reporter
(generously gifted by Prof. Baojian Wu, Guangzhou University of
Chinese Medicine, Guangzhou, China) and pRL-TK plasmids.
Cells were then transfected with GFP or Piezo1 constructs using
transfection reagent, or treated with 10 mmol/L of STO-609 for
24 h. Cell lysates were analyzed for luciferase activity with the
dual-luciferase reporter assay system according to the manufac-
turer’s instructions.
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2.15. Collection of human intestine samples

Five normal-weight individuals and five obese individuals were
enrolled in the study. All participants had not taken any drugs one
week before biopsy collection. Participation in this study was
voluntary and written informed consent was obtained from each
participant. All protocols were approved by the Institutional
Review Board of Jinan University (Guangzhou, China).

2.16. Detection of glucose uptake with fluorescent D-glucose
analog (2-NBDG) in Caco-2 cells

Glucose uptake was assessed using the glucose analogue 2-NBDG
(MedChem Express, Monmouth Junction, NJ, USA), which was
conducted in the Caco-2 monolayer model. Caco-2 cells and
Piezo1 knockdown Caco-2 cells were treated with Yoda1 (5 mmol/L)
for 24 h, after which the cells medium was replaced with PBS
buffer containing 2-NBDG (100 mmol/L), then incubated at
37 �C for 30 min. The wells were then washed three times with
PBS to eliminate excess 2-NBDG. Subsequently, 2-NBDG
imaging was performed using a 488 nm laser, and pictures
were taken with an inverted fluorescence microscope.

2.17. Cell mechanical stretching assay

Caco-2 cells were cultured in 0.1% gelatin-coated silicone elastic
chambers, then chambers were placed on manual retractors and
subjected to mechanical stretch to 120% of their original length.

2.18. Calcium imaging

Caco-2 cells were seeded onto confocal dishes at optimal densities
and cultured for 24 h. Subsequently, the cells were incubated with
the calcium fluorescent probe fluo-4 AM (1 mmol/L) (Thermo
Fisher Scientific, Waltham, MA, USA) for 1 h at 37 �C. After that,
cells were treated with Yoda1 and/or GsMTx4. Intracellular cal-
cium ions were measured at room temperature using a laser
confocal microscope. The change in fluorescent signal was pre-
sented as DF/F0 and plotted against time.

2.19. Whole-cell patch-clamp recording

Caco-2 cells were cultured on sterile glass coverslips and subse-
quently utilized for patch clamping experiments. Patch pipettes
made of borosilicate glass were pulled using a micropipette puller
and then fire-polished to achieve a resistance of 3e5 MU. The
inward current of the Caco-2 cells was amplified, filtered, and
recorded using the EPC10 USB patch-clamp amplifier (HEKA,
Germany) along with PatchMaster software for data acquisition
and analysis. The electrode solution contained 138 mmol/L KCl,
10 mmol/L NaCl, 1 mmol/L MgCl2, 10 mmol/L glucose and
10 mmol/L HEPES (pH 7.4). The extracellular solution contained
130 mmol/L NaCl, 5 mmol/L KCl, 1 mmol/L MgCl2, 2.5 mmol/L
CaCl2, 10 mmol/L glucose, 20 mmol/L HEPES (pH7.4).

2.20. Statistical analyses

All data were expressed as mean � standard error of mean (SEM).
Statistical differences were evaluated by one-way ANOVA,
repeated ANOVA or Student’s t-test. P < 0.05 was considered
significant. *P < 0.05, **P < 0.01, ***P < 0.001. Randomization
and blinding manner were used whenever possible. The sample
size in animal studies was determined on the basis of previous
experience with similar animal studies.

3. Results

3.1. Expression of Piezo1 and nutrient absorption-related
proteins in human and mouse duodenal biopsies

The human duodenal biopsies from normal-weight and obese
individuals were collected to determine the duodenal sugar and lipid
metabolism. Impaired metabolic parameters, including plasma
glucose and lipid, were observed in obese patients (Fig. 1AeD).
Greater villi length and severe lipid deposition were detected in the
duodenum of the obese individuals (Fig. 1E and F). Meanwhile,
immunofluorescent staining confirmed that PIEZO1 was highly
expressed in the intestinal epithelium of normal-weight participants
while it was decreased in the intestinal epithelium of obese subjects
(Fig. 1G). In contrast to PIEZO1,DGAT2was highly expressed in the
duodenum of obese individuals but not in lean controls (Fig. 1H).
mRNA and protein levels of Piezo1 were significantly lower in
duodenum of obese participants than that in controls, while the
expression levels of CD36, DGAT2 and SGLT1were increased in the
duodenum of obese individuals (Fig. 1IeK). Piezo1 is considered as
a calcium channel24. Calmodulin serves as an intracellular Ca2þ-
receptor and mediates the regulation of downstream processes and
pathways by Ca2þ. Calcium/calmodulin-dependent protein kinase 2
(CaMKK2) is a serine/threonine-protein kinase that belongs to the
Ca2þ/calmodulin-dependent protein kinase subfamily37. CaMKK2 is
the main calcium/calmodulin dependent protein kinase involved in
the regulation of metabolic homeostasis38. Previous studies have
illustrated that CaMKK2 regulates glucose and lipid metabolism via
AMPK38. In current study, decreased duodenal CaMKK2eAMPKa
signaling pathwaywas observed in obese individuals when compared
with lean controls (Fig. 1J and K).

Similarly, the expression of Piezo1 in the duodenum of NCD
and HFD mice was detected using RT-PCR and Western blot. Both
mRNA and protein levels of Piezo1 were found to be decreased in
HFD mice compared to NCD mice (Fig. 1LeN). Moreover,
refeeding after fasting significantly stimulated the expression of
Piezo1 in the duodenum of male C57/BL6 mice. (Supporting
Information Fig. S1).

3.2. Deficiency of intestinal Piezo1 promotes obesity upon high-
fat-diet feeding

In order to observe the role of Piezo1 in enterocytes, Villin-Cremice
were crossed to Piezo1fl/fl to generate mice with enterocytes (ECs)-
specific deletion of Piezo1(Piezo1iKO) (Fig. 2A). Piezo1iKO mice
were identified by PCR genotyping of genomic DNA from tail
biopsies (Fig. 2B). No statistical difference was observed in body
weight, liver weight, epididymal fat weight and glucose metabolism
between Piezo1iKO and Piezo1fl/fl mice under normal chow diet
(NCD) (Fig. 2CeG). Conversely, the Piezo1iKO mice exhibited sig-
nificant increases in body weight, liver weight, and epididymal fat
weight when they were exposed to high-fat diet (HFD) (Fig. 2CeE).
Additionally, the Piezo1iKO mice exhibited glucose intolerance and
insulin resistance under the HFD (Fig. 2H and I). No differences in
food intake (both NCD and HFD) and water intake were observed
between Piezo1iKO and Piezo1fl/fl mice (Fig. 2JeM).

Under a normal chow diet condition, the size of adipocytes was
increased in Piezo1iKO mice, while the liver HE staining showed



Figure 1 Expression of Piezo1 and nutrient absorption-related proteins in human duodenums. (AeC) Body mass index (BMI), fasting blood

glucose, plasma triacylglycerol of normal weight subjects and obese participants. (D) Biochemical indicator levels related to lipid metabolism

were summarized. (E, F) Representative HE staining of duodenum and oil red O staining of duodenum in normal weight subjects (Control) and

obese participants (Obese). (G, H) The immunofluorescent staining of PIEZO1 and DGAT2 (red immunofluorescence) in the duodenum of

normal-weight individuals and obese participants. (I) The mRNA levels of PIEZO1, DGAT2 and SGLT1. (J, K) Representative Western blots are

shown for PIEZO1, CaMKK2, p-AMPKa, AMPKa, CD36, DGAT2, APOB-48 and SGLT1 in the duodenum of normal weight individuals and

obese subjects and the quantification of protein levels. (L) The mRNA levels of Piezo1 in the duodenum of NCD and HFD mouse. (M, N)

Representative Western blots and quantified results are shown for PIEZO1. Results are expressed as mean � SEM, nZ 5; *P < 0.05, **P < 0.01,

***P < 0.001.

3580 Tian Tao et al.
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no appreciable change. Increased hepatic lipid accumulation was
found in Piezo1iKO mice under NCD according to the Oil-red O
(ORO) staining. However, HFD-fed Piezo1iKO mice demonstrated
enlarged adipocytes in white adipose tissue (WAT) and severe
lipid deposit in the liver (Fig. 2NeP).

3.3. Intestinal sugar and lipid absorption was increased in
Piezo1iKO mice upon high-fat-diet feeding

To further investigate the effect of intestinal epithelial cell-specific
Piezo1 deletion on nutrient metabolism, we assayed the levels of
blood, hepatic, and duodenal lipids. No significant differences
were observed in circulating levels of TAG and the excretion of
TAG. However, hepatic and duodenal lipid levels were increased
in Piezo1iKO mice under NCD (Fig. 3AeE). Additionally, levels of
TAG in blood, liver, and duodenum were significantly elevated in
Piezo1iKO mice, while fecal lipid contents were reduced in
Piezo1iKO mice under high-fat diet conditions (Fig. 3AeE).
According to D-xylose and olive oil gavage assays, increased
absorption of sugar and lipid was observed in the Piezo1iKO mice
in both NCD- and HFD-feeding conditions (Fig. 3FeH). The HE
staining results of duodenum indicated that, compared to the
control mice, the villi of the Piezo1iKO mice showed a more
slender and elongated morphology, accompanied by a decrease in
crypt depth (Fig. 3I). Furthermore, Oil-red O staining of the
duodenum showed enhanced lipid accumulation in Piezo1iKO mice
in both NCD and HFD conditions (Fig. 3J).

3.4. Intestinal ablation of Piezo1 up-regulates expression of
DGAT2 and SGLT1 in the duodenum

The major genes and proteins responsible for sugar and lipid
absorption processes were measured using RT-PCR and Western
blot. The results indicated a reduction in the expression of Piezo1
in the duodenum of Piezo1iKO mice (Fig. 4A and B). As expected,
up-regulation of SGLT1 and DGAT2 in the duodenum of
Piezo1iKO mice was observed under both low- and high-fat diet
conditions, which was associated with decreased duodenal
CaMKK2eAMPKa (Fig. 4A and B).

However, the mRNA levels of fatty acid oxidation-related
genes such as Pgc1a, Ppara, and Acadl were increased in Pie-
zo1iKO mice under NCD, while they were decreased under HFD
(Fig. 4A). Furthermore, Western blot analysis revealed an
up-regulation of PGC1a, and ACADL in the proximal intestine of
Piezo1iKO mice under NCD (Fig. 4B), while PGC1a and ACADL
were decreased under HFD (Fig. 4B). Additionally, the staining
results also revealed a notable increase in DGAT2 and SGLT1
levels in Piezo1iKO mice when compared to controls under HFD
(Fig. 4C and D).

3.5. Yoda1 inhibits lipid absorption in high-fat diet-induced
obese mice

Yoda1, a specific agonist of Piezo1, was administered to further
investigate the impact of Piezo1 on intestinal glucose and lipid
metabolism in a high-fat diet-induced obese C57/BL6 mice.
Treatment with Yoda1 resulted in a reduction in body weight gain
(Fig. 5A). Yoda1-treated mice exhibited decreased levels of TAG
and FFA in the proximal small intestine, along with increased
fecal TAG and FFA levels. Treatment of Yoda1 also resulted in a
decrease in plasma TAG levels (Fig. 5BeD). Oil-red O staining
demonstrated that Yoda1 reduced the lipid accumulation in the
duodenum (Fig. 5E). Furthermore, Yoda1 activated the
CaMKK2eAMPKa signaling pathway and inhibited the expres-
sion levels of CD36, DGAT2, APOB, and SGLT1. It also
increased the expression levels of PGC1a and ACADL.
(Fig. 5FeH).

3.6. Pharmacological, mechanical and genetic activation of
Piezo1 inhibits lipid accumulation in Caco-2 cells

To further validate the role of Piezo1 in lipid metabolism in vitro,
we examined the effect of manipulating Piezo1 in lipid meta-
bolism on Caco-2 cells. Pharmacological activation of Piezo1 by
Yoda1 triggered an inward current in Caco-2 cell recorded by
whole cell patch-clamp, which could be inhibited by pre-
incubation of GsMTx4 (Fig. 6A). The results of calcium imag-
ing demonstrated Yoda1 also triggered an increase in intracellular
Ca2þ level in Caco-2 cells. Pre-incubation of cells with GsMTx4
(0.1 mmol/L) for 30 min inhibited [Ca2þ]i increase (Fig. 6B).
Yoda1 at the dose of 5 mmol/L activated CaMKK2eAMPKa
signaling pathway and inhibited the expression levels of DGAT2
and SGLT1, consequently improving lipid accumulation within
the Caco-2 cells in both presence and absence of oleic acid
(Fig. 6CeF). Furthermore, as shown in Supporting Information
Fig. S2, the effects of Yoda1 on CaMKK2eAMPKa signaling
pathway and expression of DGAT2/SGLT1 were disappeared in
Piezo1 knockdown Caco-2 cells.

To mimic the activation of Piezo1 by mechanical stretching,
Caco-2 cells were grown on an elastic modulus were subjected
to mechanical stretch, the results revealed that mechanical
stretch inhibited DGAT2 and SGLT1 and activated
CaMKK2eAMPKa signaling pathway in Caco-2 cells
(Fig. 6GeI).

Furthermore, over-expression of Piezo1 alleviated lipid depo-
sition within the Caco-2 cells, which was associated with the
inhibition of CD36, DGAT2 and SGLT1 (Fig. 6JeM). A luciferase
reporter assay indicated that Piezo1 could inhibit the promoter
activity of DGAT2 (Fig. 6N).

3.7. Effects of inhibiting Piezo1 or CaMKK2 on the sugar and
lipid metabolism in Caco-2 cells

To further investigate the role of Piezo1 in sugar and lipid meta-
bolism in vitro, a stable knockdown of Piezo1 in Caco-2 cell line
was constructed. Knockdown of Piezo1 up-regulated the protein
levels of CD36, DGAT2, and SGLT1 in Caco-2 cells (Fig. 7A and
B). Oil-red O staining demonstrated lipid accumulation was
increased in Caco-2 cells with stable knockdown of Piezo1,
especially in these cells treated with oleic acid (Fig. 7C).
CaMKK2eAMPKa signaling pathway was inhibited in Piezo1-
knockdown Caco-2 cells, Moreover, both mRNA and protein
levels of DGAT2 and SGLT1 were found to be elevated, while the
protein level of CD36 was also increased (Fig. 7DeF).

We conducted a glucose uptake experiment on Caco-2 cells
using 2-NBDG, the results showed that knocking down of Piezo1
significantly increased the uptake of glucose analogs in Caco-2
cells. Treatment of Yoda1 reduced glucose uptake in Caco-2 cells,
but this effect was disappeared when the Piezo1 was knockdown
in Caco-2 cells (Fig. 7G).

Furthermore, STO-609, a specific inhibitor of CaMKK2,
inhibited AMPKa phosphorylation while increased the expression
levels of DGAT2 and SGLT1 in Caco-2 cells. STO-609 also
stimulated the promoter activity of DGAT2 (Fig. 7HeK).



Figure 2 Deficiency of intestinal Piezo1 promotes obesity upon high-fat-diet feeding. (A) Strategy of the generation of enterocytes (ECs)-

specific knockout mouse. (B) Genotyping PCR results. (C) Body weight, (D) liver weight and (E) fat weight of control and Piezo1iKO mice fed

with normal chow diet and high fat diet (n Z 5e9/group). (F) IPGTT and the area under the curve (n Z 5e7/group), (G) ITT and the area under

the curve (n Z 5e9/group) of mice fed with NCD. (H) IPGTT and the area under the curve (n Z 7/group), (I) ITT and the area under the curve

(n Z 6 or 7/group) of mice fed with HFD. (J, K) Food intake and water intake of control and Piezo1iKO mice under NCD (n Z 4 or 5/group).

(L, M) High-fat diet intake and water intake of control and Piezo1iKO mice under HFD (n Z 5/group). (N) Representative HE-stained images of

white adipose tissue (WAT) (nZ 5/group). (O, P) Representative HE staining images and Oil-Red O staining images of livers (nZ 4 or 5/group).

Results are expressed as mean � SEM; *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 3 Intestinal sugar and lipid absorption were increased in Piezo1iKO mice upon high-fat-diet feeding. (A) Plasma TAG levels in Piezo1fl/fl

and Piezo1iKO mice fed with NCD and HFD (n Z 5 or 6). (B) Hepatic TAG levels (n Z 5 or 6). (C) Duodenal TAG levels (n Z 5 or 6). (D)

Duodenal FFA levels in control and Piezo1iKO mice (n Z 5 or 6). (E) Fecal TAG and FFA levels (n Z 4e6). (F) Plasma xylose levels in control

and Piezo1iKO mice after oral gavage of xylose (n Z 5 or 6). (G) Plasma TAG and (H) FFA levels in control and Piezo1iKO mice after oral gavage

of olive oil (10 mL/g) (n Z 5). (I) Representative HE staining of duodenum and quantification of villi length and crypt depth (n Z 5). (J) Red O

staining photos of duodenum and quantitation (n Z 5). Results are expressed as mean � SEM; *P < 0.05, **P < 0.01, ***P < 0.001.
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4. Discussion

Dietary sugars and fats are major sources of energy for the body.
Defects in the process of nutrient absorption can lead to malnu-
trition, while excessive nutrient intake and absorption contribute
to obesity and metabolic disorders39. Gastric emptying rate40,
pH41, gut microbiota42, secretion of digestive juices43, nutrient
transporters44, hormonal45 and neural signals46 are master regu-
lators of nutrient absorption. Most carbohydrates in the chyme are
digested by salivary and pancreatic amylases, which further
broken down into monosaccharides. Monosaccharides are absor-
bed by carrier-mediated transport such as SGLT1 and GLUT2
across intestinal epithelial cells5. In morbid obesity, proximal
intestine glucose absorption is accelerated and is associated with



Figure 4 Expression of absorption-related proteins in Piezo1iKO mice. (A) RT-PCR analysis of the major genes responsible for nutrient

absorption and lipid metabolism in duodenum of the control and Piezo1iKO mice fed with NCD and HFD (n Z 5/group). (B) Representative

Western blots for duodenal PIEZO1, CaMKK2, p-AMPKa, AMPKa, DGAT2, APOB-48, SGLT1, PGC1a, ACADL and b-actin (n Z 5/group)

and quantitative Western blot analysis (n Z 5/group). (C, D) Representative duodenal images of immunofluorescence staining of DGAT2 and

SGLT1 in HFD-fed mice. Results are expressed as mean � SEM; *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 5 Yoda1 inhibits lipid absorption in high-fat diet-induced obese mice. (A) Body weight change of DIO mice infusion of vehicle or

Yoda1 for 7 days (n Z 5/group). (B) Plasma TAG levels (n Z 5/group). (C) Duodenal TAG and FFA levels (n Z 5/group). (D) Fecal TAG and

FFA levels (n Z 5/group). (E) Representative Red O staining images of duodenum. (F) Cd36, Dgat1, Dgat2, Sglt1, Pgc1a, Acadl mRNA levels

(n Z 5/group). (G) Representative Western blots for duodenal CaMKK2, p-AMPKa, AMPKa, CD36, DGAT2, APOB-48, SGLT1, PGC1a,

ACADL and b-actin. (n Z 4/group). (H) Quantitative Western blot analysis. Results are expressed as mean � SEM; *P < 0.05, **P < 0.01,

***P < 0.001.
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the amount of SGLT147. In the current study, obese patients
exhibited greater duodenal villus and elevated levels of blood
glucose, which was accompanied by a similar change in levels of
SGLT1. To further investigate the role of Piezo1 in enterocytes,
we developed an intestinal epithelial cell-specific Piezo1 knockout
mouse model utilizing Cre-loxP recombination system. The Pie-
zo1iKO mice under high-fat diet showed hyperglycemia and
accelerated absorption of D-xylose, which were also associated
with up-regulation of duodenal SGLT1. Over-expression of Piezo1
and stretch inhibited SGLT1 while knockdown of Piezo1 exerted
the opposite effects in Caco-2 cells. Pharmacological activation of
Piezo1 inhibited glucose uptake in Caco-2. These results suggest
that Piezo1eSGLT1 is vital to the sugar absorption in the
intestine.

Unlike sugar, the absorption of lipids is more complicated
including fatty acid uptake, TAG resynthesis, chylomicron
assembly, trafficking, and secretion processes in enterocytes48.
Wisen et al.3 reported that massively obese patients absorbed a fat-
rich meal more rapidly and effectively in the proximal intestine
during a similar or shorter exposure time. In our study, lipid
accumulation was observed in the duodenum of obese individuals,
which was accompanied by the increased expression levels of
nutrient absorption-related proteins such as CD36 and DGAT2. In
recent years, pharmacological inhibitors of lipid absorption have



Figure 6 Effects of activating Piezo1 on the lipid metabolism in Caco-2 cells. (A) Whole-cell currents induced by Yoda1 were recorded from

Caco-2 cells or pretreated with GsMTx4. (B) The fluorescent intensity (DF/F0) change of intracellular calcium imaging in Caco-2 cells. (CeF)

Caco-2 cells treated with Yoda1 and/or OA. (C) The mRNA levels of DGAT2 and SGLT1 in Caco-2 cells after treated with Yoda1 and OA. (D) Oil

red O staining. (E) Western blot analysis of CaMKK2, p-AMPKa, AMPKa, DGAT2, SGLT1 and b-actin. (F) Quantitative Western blot analysis.

(GeI) Caco-2 cells were subjected to mechanical stretch. (G) The mRNA levels of DGAT2 and SGLT1 in Caco-2 cells. (H) Representative

Western blots for CaMKK2, p-AMPKa, AMPKa, DGAT2, SGLT1 and b-actin. (I) Quantitative Western blot analysis. (JeN) Caco-2 cells were

transfected with Piezo1 plasmid. (J) Oil red O staining. (K) The mRNA levels of PIEZO1, DGAT2 and SGLT1 in Caco-2 cells. (L) Representative

Western blots for PIEZO1, CaMKK2, p-AMPKa, AMPKa, CD36, DGAT2, SGLT1 and b-actin. (M) Quantitative Western blot analysis. (N)

Overexpression of Piezo1 inhibited Dgat2 promoter activity. Results are presented as the mean � SEM obtained from three independent

experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 7 Effects of inhibiting Piezo1 or CaMKK2 on the sugar and lipid metabolism in Caco-2 cells. (A) Stable knockdown of Piezo1 in Caco-

2 cells. Representative Western blots for PIEZO1, CD36, DGAT2, SGLT1 and b-actin. (B) Quantitative Western blot analysis. (C) Oil-red O

staining of lipid droplets in Caco-2 cells or Piezo1-knockdown Caco-2 cells treated with or without oleic acid (125 mmol/L). (D) The mRNA

levels of PIEZO1, DGAT2 and SGLT1. (E) Western blot analysis of PIEZO1, CaMKK2, p-AMPKa, AMPKa, CD36, DGAT2, and SGLT1 in

Caco-2 cells or Piezo1-knockdown Caco-2 cells treated with or without oleic acid. (F) Quantitative Western blot analysis. (G) Fluorescence

imaging of 2-NBDG uptake on Caco-2 cells and Piezo1-knockdown Caco-2 cells. (HeK) Caco-2 cells were treated with STO-609. (H) The

mRNA levels of DGAT2 and SGLT1 in Caco-2 cells. (I) Representative western blots for CaMKK2, p-AMPKa, AMPKa, DGAT2, SGLT1 and

b-actin. (J) Quantitative Western blot analysis. (K) STO-609 stimualted DGAT2 promoter activity. Results are presented as the mean � SEM

obtained from three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
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been approved for obesity treatment in humans22,49-52. Therefore,
targeted regulation of nutrient absorption can be an effective
intervention in obesity.

After eating, the increase in pressure and motility in the
intestines promotes the flow of lymph, leading to a surge in
nutrient absorption53. It remains unclear whether intestinal
epithelial cells sense intestinal distention thus regulate the
nutrient absorption. Piezo1 is a mechanosensitive ion channel,
which is widely expressed in various tissues including digestive
tract and is involved in regulating gut barrier functions and
intestinal motility32,33,54. In current study, lipid accumulation
was observed in the duodenum of obese patients, which was
accompanied by down-regulation of Piezo1. We thus hypothe-
size that Piezo1 may function as a negative regulator for
intestinal lipid and glucose absorption. Intestine-specific
absence of Piezo1 has limited influence on body weight and
glucose metabolism under normal dietary conditions, which
consistent to previous reports33. However, increased duodenal
and hepatic lipid accumulation were exhibited in Piezo1iKO

mice. Interestingly, Piezo1iKO showed no changes in food and
water intake, while their duodenal villi became significantly
longer than controls. It is reported that enterocytes have two
different dynamic storage pools for lipids. Fatty acids absorbed
from the intestinal lumen are mainly used for synthesizing TAG,
which are then secreted into the lymphatic system in the form of
chylomicrons14. On the other hand, fatty acids from the circu-
latory system, specifically from the basolateral side, are pri-
marily utilized for synthesizing phospholipids and undergoing
fatty acid oxidation55. In our study, absorption-related proteins
such as DGAT2, APOB-48 and the transcriptional activators and
enzymes involved in fatty acid oxidation including PGC1a,
PPARa and ACADL were increased in Piezo1iKO mice under
NCD. Ramachandran et al.56 reported that enhanced enterocyte
fatty acid oxidation could protect mice from DIO and impaired
glycemic control. We speculate that the deletion of Piezo1 in the
intestinal tract of mice enhances fatty acid synthesis and
chylomicron assembly. However, the increased b-oxidation may
effectively manage excessive lipid accumulation, leading to less
pronounced lipid accumulation in the blood, intestine, and liver
under a normal chow diet (NCD).

When exposed to a high nutrient-rich condition, the Piezo1iKO

mice exhibited multiple organ lipid deposits, insulin resistance
and glucose intolerance. D-Xylose and olive oil gavage assay
verified intestinal sugar and lipid absorption were increased in
Piezo1iKO mice. Key factors related to sugar and lipid metabolism
such as SGLT1 and DGAT2 were increased, while transcription
factors and enzymes that control fatty acid b-oxidation including
PPARa, PGC1a, and ACADL were decreased in Piezo1iKO mice
under HFD. Excessive lipid accumulation in duodenum and liver
may attributed to reduced b-oxidation and stimulated TAG
re-synthesis in intestinal epithelial cells. These observations
emphasize the vital role of Piezo1 in regulating lipid metabolism
and preventing excessive fat absorption. Additionally, obese
individuals exhibited a reduction in Piezo1 expression in the
duodenum, indicating that the dysfunction of Piezo1-mediated
mechanical sensing in intestinal epithelial cells is a crucial
mechanism in the development of obesity. The deficiency of
Piezo1 may further contribute to increased fat absorption, thus
perpetuating multiple organ lipid deposition in obese patients.
Yoda1, a Piezo1 agonist, could effectively inhibit SGLT1 and
DGAT2 as well as alleviate intestinal absorption of lipids in DIO
mice. In Caco-2 cells, knockdown of Piezo1 significantly
up-regulated the expression of proteins associated with lipid
absorption, resulting in a marked increase in lipid accumulation.
Conversely, pharmacological, mechanical and genetic activation
of Piezo1 led a notable decrease in the expression of these proteins
involved in sugar and lipid absorption. These findings provide new
insights into the mechanisms underlying lipid absorption and
emphasize the potential therapeutic value of targeting Piezo1 for
the treatment of metabolic disorders, particularly obesity.

Piezo1 is a non-selective cationic channel that allows passage of
Ca2þ. Ca2þ binds to its primary intracellular receptor, Calmodulin
(CaM), to initiate a diverse array of downstream processes and
pathways. Calcium/calmodulin-dependent protein kinase 2
(CaMKK2) is a serine/threonine-protein kinase that belongs to the
Ca2þ/calmodulin-dependent protein kinase subfamily, which plays
critical role in the regulation of metabolic homeostasis37.
CaMKK2-dependent activation of AMP-activated protein kinase
(AMPK) leads to regulation of energy balance, particularly in the
brain, liver and adipose57-59. Studies have demonstrated that AMPK
can regulate the body’s glucose and lipid metabolism through
proteins such as SGLT1 and DGAT260-62. In current investigation,
Piezo1 modulates the expression of DGAT2 and SGLT1 via the
CaMKK2/AMPKa pathway in the gut.

5. Conclusions

Piezo1 is primarily found in non-excitable cell types and is
essential for transducing mechanical forces exerted on the plasma
membrane, both externally and internally. Its expression in the
intestine has been linked to the regulation of various critical
functions, including barrier integrity, mucus secretion, and sero-
tonin synthesis31,32. Our study verified the role of Piezo1 in
enterocytes inhibits intestinal sugar and lipid absorption, and
revealed a previously unexplored mechano-regulation of nutrient
absorption in intestinal epithelial cells, which may shed new light
on the therapy of obesity and diabetes.
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