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Originally described to be involved in feeding regulation, orexins/hypocretins are now

also considered as major regulatory actors of numerous biological processes, such as

pain, sleep, cardiovascular function, neuroendocrine regulation, and energy expenditure.

Therefore, they constitute one of the most pleiotropic families of hypothalamic

neuropeptides. Although their orexigenic effect is well documented, orexins/hypocretins

also exert central effects on energy expenditure, notably on the brown adipose tissue

(BAT) thermogenesis. A better comprehension of the underlying mechanisms and

potential interactions with other hypothalamic molecular pathways involved in the

modulation of food intake and thermogenesis, such as AMP-activated protein kinase

(AMPK) and endoplasmic reticulum (ER) stress, is essential to determine the exact

implication and pathophysiological relevance of orexins/hypocretins on the control of

energy balance. Here, we will review the actions of orexins on energy balance, with

special focus on feeding and brown fat function.
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INTRODUCTION

Localized below the thalamus on the ventral face of the diencephalon, the hypothalamus is
a master center for the integration of multiple signals and participates in the regulation of
numerous homeostatic functions; the regulation of energy balance and endocrine axes being
the most important ones (1–5). The hypothalamus is composed of anatomically distinct nuclei
emitting numerous axonal projections interconnecting one region to another developing a
complex neuronal circuit. One of the most important hypothalamic nuclei involved in the
feeding regulation is the arcuate nucleus (ARC), which is composed by two main neuronal
populations: (i) orexigenic (feeding-promoting) neurons co-expressing neuropeptide Y (NPY)
and agouti-related protein (AgRP) and (ii) anorexigenic (feeding-inhibiting) ones co-expressing
cocaine- and amphetamine- related transcript (CART) and pro-opiomelanocortin (POMC; the
precursor of the alpha-melanocyte stimulating hormone, α-MSH). Following their integration by
the ARC, the peripheral signals are transmitted by neuronal projections to other hypothalamic
areas such as the dorsomedial nucleus (DMH), the paraventricular nucleus (PVH) and the lateral
hypothalamic area (LHA). The ventromedial nucleus of the hypothalamus (VMH; localized above
and laterally from the ARC on both sides of the third ventricle) is also receiving secondary
neuronal information originating from the ARC. VMH neurons subsequently communicate,
through neuronal projections, with other hypothalamic areas, such as DMH, LHA and ARC, as
well as other cerebral regions, such as the dorsal motor nucleus of the vagus (DMV), the nucleus
tractus solitarius (NTS), the raphe pallidus (RPa) and the inferior olive (IO) (1–5).
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The importance of the hypothalamus in the modulation
of autonomic and endocrine functions was described for the
first time more than 70 years ago (1, 5–11). A precise fine
tuning of these functions is crucial for numerous physiological
processes, such as drinking and feeding, thermoregulation,
neuroendocrine control, reproduction/lactation, sleep-wake
cycle, and cardiovascular function. Even if the role of LHA in the
above described functions has been fully identified (1, 5–11), the
underlying molecular mechanisms remained poorly studied until
the latter part of the twentieth century, when the physiological
role of some LHA-expressed neuropeptides was discovered,
among then orexins/hypocretins.

THE DISCOVERY OF
OREXINS/HYPOCRETINS

Melanin-concentrating hormone (MCH) was the first discovered
orexigenic peptide located specifically in the LHA (12–14).
Other feeding related neuropeptides, such as galanin (GAL)
(15), dynorphin (DYN) (16), and cocaine- and amphetamine-
regulated transcript peptides (CARTps) (17) have later also
been described to be expressed in the LHA. Nevertheless, the
most relevant finding has been the discovery in 1998 of a
new family of neuropeptides: the orexins/hypocretins. Sutcliffe
and colleagues, using the directional tag polymerase chain
reaction subtraction, were able to identify a novel mRNA, which
expression was limited to the LHA. This mRNA was described
to encode a 130-amino acid secretory protein composed of a
proteolytic site engendering two C-terminally amidated peptides.
Interestingly, significant homologies were observed between one
of these generated peptides and the gut secretin peptide family.
Therefore, due to their hypothalamic origins, they were named
hypocretins (Hcrt1 and Hcrt2) (18). In parallel, Yanagisawa and
colleagues identified two peptides using intracellular calcium
influx in high orphan G-protein-coupled receptor expressing
cells. They were able to determine that the two neuropeptides
were originating from a common proteolytic processed LHA
precursor, and, considering its hypothalamic location, they have
suggested its potential role in feeding behavior. In line with
this assessment, intracerebroventricular (ICV) administrations
of these peptides in non-fasted rats stimulated food intake in
a dose- and time-dependent fashion. Therefore, considering
their orexigenic activities, these neuropeptides were named
orexins (OX-A and OX-B) (19). Nowadays, orexins are known
to participate widely in the regulation of numerous biological
processes, such as sleep, energy expenditure, pain, cardiovascular
function, and neuroendocrine regulation, making them one of
the most pleiotropic families of hypothalamic neuropeptides
(9, 20–26). In this regard, it is important to take into account
that although most of the first studies on orexins were based on
their administration through different routes and doses that were
likely outside of a physiological range (see below), further studies
using genetic modified animals (see below) have strengthen the
pleiotropic role of this neuropeptide system.

Two orexin/hypocretin receptors were identified: the
orexin/hypocretin 1 receptor (OX1R/Hcrtr1), having a highest

affinity for OX-A, and the orexin/hypocretin 2 receptor
(OX2R/Hcrtr2), having similar elevated affinity for both OX-A
and OX-B (19). High levels of OXRs mRNA and proteins
are encountered in the central nervous system. Molecular
and immunohistochemistry studies have shown that OX1R
neurons were highly expressed in rat hypothalamus, with a main
distribution in the periventricular (PeN), PVH (magno- and
parvocellular divisions), supraoptic (SON), ARC, VMH, DMH,
and tuberomammillary (TMN) nuclei, as well as in the LHA (27–
30). Interestingly, OX1R and neuropeptides participating in the
endocrine regulation are sharing the same central distribution.
As an example, in the SON and in magnocellular neurons of the
PVH, OX1R is expressed in arginine vasopressin (ADH) and
oxytocin (OT) neurons. Similar observations were performed in
the suprachiasmatic nucleus (SCN) with an expression of OX1R
(i) in ADH and vasoactive intestinal polypeptide (VIP) neurons,
(ii) in the PeN with OX1R-somatostatin (SST) co-expressing
neurons, and (iii) and in the parvocellular part of PVH with
OX1R colocalized in corticotropin-releasing hormone (CRH)
neurons (30). Moreover, OX1R is also expressed in the main
neuronal populations constituting the ARC: POMC neurons
of the ventrolateral part and NPY neurons of the ventromedial
part (30). Moreover, OX1R expression was also detected in
other brain regions of the rat such as in the septal preoptic
area (SPOA), in the medial preoptic area MPOA (27, 29, 31)
and in gonadotropin-releasing hormone (GnRH) neurons (32).
As OX1R, OX2R mRNAs is widely encountered within the
brain with high levels in the ARC and LHA, in the medial
parvocellular part of the PVH, in the premammillary nucleus
(PMN) and TMN.Within the VMH, DMH, PeN, in the posterior
hypothalamus and the preoptic area (POA), the detected levels
of OX2R mRNAs were lower, reaching really weak levels in the
SPOA and in the dorsal and lateral parts of the PVH. Notably,
OX2R mRNAs were not detected in the magnocellular neurons
of the PVH (27–29, 33). OXRs wide distribution all around the
central nervous system confirm their pleiotropic role. In terms
of signal transduction, the binding of orexins to OX1R or OX2R
stimulates Gq or Gi subtypes, which subsequently induce the
activation of phospholipase C (PLC), phospholipase A (PLA),
phospholipase D (PLD) or adenylyl cyclase (AC), ultimately
resulting in an increase in cytosolic Ca2+ and a downstream
cascade response. In addition, OX-A binds OX1R and stimulates
Ca2+ release by activating non-selective cation channels
(NSCCs) (34). Finally, OX1R receptor activation also promotes
the enhancement of the synthesis of the endocannabinoid
2-arachidonoylglycerol (2-AG) which is a master interplayer
with OX-A in the regulation of energy homeostasis both at
central and peripheral level (35, 36).

OREXIN/HYPOCRETINS AND FOOD
INTAKE

The first physiological function attributed to the orexin system
was the modulation of the feeding behavior. This was suggested
following two major studies: (i) the hypothalamic expression of
orexin precursor was increased during fasting (19, 37) and (ii) the
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pharmacological central administration of orexin in rats induced
food intake (food consumption being dependent of the orexin
injected dose) (19, 38–40). This feeding-promoting effect is not as
robust as the one induced by NPY and AgRP, but it is considered
as similar as the one initiated by MCH and GAL (38, 40–45).
Although the precise effect of OX-B on feeding remains unclear,
its orexigenic potential was described to be less potent than OX-
A (38, 41–46), which could be explained by differences in their
secondary structures: OX-A being maintained by two disulphide
bonds conferring resistance to peptidase actions (20).

Interestingly, in rat models, both central OX-A and OX-
B administrations induced orexigenic effects. Conversely, when
injected peripherally (acute or chronic), none of the orexins
induced feeding variations (41), except one study in pigs showing
that the subcutaneous injection of OX-B stimulated food intake
(47). Moreover, orexin actions have been described to follow
circadian patterns, with a maximal effect at the beginning of
the light phase and at the middle of the dark one (observed
when animals are satiated) (40, 41). These differences could
be explained by the circadian variations of the endogenous
levels of OX-A, described to be maximal at the beginning of
the dark phase and minimal at the beginning of the light one
(48, 49). Interestingly, orexigenic effects of orexins were also
observed in non-mammalian species, such as in the goldfish
(Carassius auratus) (administrated centrally with human OX-A)
(50), suggesting a possible evolutionary conservation. However,
another study led on neonatal chicks did not reveal any feeding
variations following a central administration of orexins (51).

Although most of these evidences have been obtained
following administrations of orexins at doses that are likely
higher than the physiological range, some studies have also
revealed an implication of the orexin system in the physiological
control of feeding. As an example, the central administration of
anti-OX-A antibodies in rats under fasting conditions inhibited
feeding in a dose-dependent manner (52). In the same line
of findings, OX1R antagonist (SB-334867-A) administrated
intraperitoneally decreased food intake in both fed and fasting
conditions (39). Interestingly, the administration of OX-A at
small doses in hypothalamic nuclei such as PVH and LHA of
rodent models stimulates food intake (43, 53), while the selective
OX antagonist SB-334867 suppresses it (39, 54). Due to the OX-
A higher orexigenic potential compared to OX-B, these data
implicate OX1R rather than OX2R in the modulation of feeding
behavior (39, 55). These findings were confirmed using genetic
modified mouse models, such as orexin knockout mice (ox−/−)
(20) and orexin/ataxin-3 transgenic mice (in which orexin-
containing neurons were abalated) (56), models that displayed
hypophagic behaviors. Therefore, despite the unequivocal role of
orexins in the modulation of other phycological processes, such
as sleep (57–59), their physiological role in food intake control
seems also clear.

In agreement with a physiological role of orexin system
in feeding control, the orexigenic effects of orexins are
mainly mediated by the NPY system located in the ARC
(Figure 1). Interestingly, immunohistochemical studies have
demonstrated that orexin axons possessed synaptic interactions
with NPY/AgRP neurons in the ARC and with NPY axons in

the PVH (60). In harmony with this, OX-A within the PVH
modulates spontaneous firing of glucose-sensitive neurons and
promotes food intake via the NPY pathway (61). Furthermore,
selective antagonists of NPY Y1 and NPY Y5 receptors
centrally administrated partially reverse orexin-induced feeding
stimulation (45, 62–64). Lastly, the central administration of OX-
A stimulates NPY expression in the ARC, without affecting it in
the DMH (40). Interestingly, AgRP, which is co-expressed with
NPY in the ARC, was not modified upon OX-A treatment (40).
Even if it may be argued that those central injections are given in a
supra-physiological range, the involvement of alternative central
mechanisms (i.e., NPY neurons) and the results obtained from
ox null mice studies rule out the possibility of unspecific actions
in terms of feeding control. In this sense, comparable results
regarding feeding and alterations of NPY mRNA expression
were observed in goldfish (65), suggesting a possible interaction
between orexin and NPY systems to stimulate food intake (40,
65), which notably is evolutionary preserved, at least until the
fish lineage. OX-A feeding effects have also been associated
to other central mechanisms modulating food intake, such as
endocannabinoids (66) CRH (45), urocortin, and melanocortins
(67). In this regard, LHA orexin expression has been described
to be higher in Pomc null mice, with a reversion following a
central administration of α-MSH (68). As the orexin expression
remained elevated in pomc null mice pair-fed (taking α-MSH-
treated animals as a reference), this effect was independent
of the primary actions of α-MSH on food intake. These data
indicate that the elevation in orexin levels may be related to
the hyperphagia observed in melanocortin deficient mice. To
further support this evidence, that ob/obmice show higher levels
of OX-A in the ARC in concomitance with a reduction on
pomc expression (35). Moreover, the OX-A-induced reduction of
pomc mRNA expression and α-MSH production is reversed by
administration of SB-334867 in obese mice (35).

Aside from their major role in the stimulation of food intake,
orexins were also described to be involved in the sleep/wake
cycling and pathology of narcolepsy (57–59). Numerous
evidences—such as the loss of orexin containing neurons,
mutations occurring in prepro-OX and OXRs, or reductions in
cerebrospinal fluid (CSF) OX-A levels -, have linked orexins and
narcolepsy in different species such as dogs, mice, rats or humans
(20, 56–59, 69, 70). Apart from their implication in sleep/wake
modulation, orexins are also involved in arousal regulation.
Numerous anatomical evidences—orexin neuronal projections
into PVH, locus coeruleus (LC) and dorsal raphe (71, 72) (main
sites of productions of CRH, norepinephrine and serotonin)
-, have confirmed this orexin/arousal regulation connection.
Indeed, the central injections of orexins in rats induced
different physiological behaviors, such as grooming [indicating
a circadian dependence (73)], face washing, burrowing and
searching (74–77). Altogether, these evidences have suggested
that orexin feeding stimulation could rather be due to an
increase of activity during the awake state (73) and to
their stimulatory effect on arousal and vigilance, two features
essential for normal feeding (74). Nevertheless, OX-A actions
on feeding were described to be independent of arousal
stimulation (20, 78).
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NUTRIENT SENSING BY
OREXINS/HYPOCRETINS

The orexin system is able to detect any changes in energy
balance, such as fasting that leads to an increase of orexin
mRNA and protein levels in rat hypothalamus (19, 37, 79, 80).
In line with these findings, orexin neurons localized in the
LHA can sense leptin and glucose levels. Actually, in orexin
neurons, in an insulin-induced hypoglycaemia state, c-FOS (81)
and hypothalamic prepro-OX mRNA (82, 83) expression are
increased. Thus, a drastic decrease of glycaemia, detected by
glucose-sensitive neurons (GSNs), could promote food intake.
Interestingly, orexin axons have synaptic contacts with GSNs,
and spontaneous GSNs firing rate is increased following OX-A
release (61, 84–86). Accordingly, elevated blood glucose levels
decrease orexin neurons firing rates, implying that orexins
could be implicated in a negative feedback loop in order to
counter any energetic variations (87). Moreover, it has also been
described that orexin at a central level could bidirectionally
modulate hepatic gluconeogenesis, engendering daily blood
glucose oscillation (88–90). It was also described that aging
could alter this regulation, being implicated in the circadian
modulation of hepatic insulin. Indeed, the absence of orexin
increases hepatic endoplasmic reticulum (ER) stress leading to
decreased hepatic insulin sensitivity and altered gluconeogenic
activity (90).

It was also proposed that leptin, a hormone released by the
adipose tissue, could exert its appetite suppressant effect through
the inhibition of orexin neurons activity (91). In this sense,
it has been recently reported that OX neurons of ob/ob mice
are innervated by less efficient and fewer excitatory synapses
than wildtype mice. Moreover, in ob/ob mice, chronic absence
of leptin induces a 2-AG mediated functional disinhibition of
OX neurons, which would lead to increased OX production and
therefore hyperphagia (92). Those things said, the interaction
between leptin and orexins is complex. Indeed, controversial
results are presented in the literature concerning the presence of
leptin receptors on orexin neurons: while some are describing a
colocalization (60, 93, 94), others were unable to do so (95, 96).
Interestingly, the high levels of prepro-OX and OX1R mRNA
encountered in rat hypothalamus under fasting conditions
were decreased following an administration of leptin (19, 37).
Furthermore, LHA orexin-A expression is reduced following
leptin administration (97). In the same line of findings, it was
demonstrated that in human plasma, the levels of OX-A were
negatively correlated with the ones of leptin (35, 98). Despite
these observations, low prepro-OX mRNA and high OXRs
mRNA levels have been observed in the brains of obese Zucker
rats (99, 100). Similar unexpected results were observed in ob/ob
and db/db mice, in which low levels of prepro-OX mRNA in the
LHA were detected, likely due to hyperglycemia (101). Recently,
it has been proposed that leptin and orexin could act in a synergic
manner in order to regulate energy sensing, particularly in the
long term (102). In summary, regarding the close and complex
interaction between orexin neurons and leptin signaling, further
investigation would be needed to obtain an improved overview
of all these mechanisms.

Ghrelin, an orexigenic hormone released by the gut, stimulates
orexin neurons (103, 104). It was demonstrated that ghrelin
could increase the rewarding value of palatable food through
the stimulation of dopaminergic neurons located in the ventral
tegmental area (VTA); this effect being inhibited using orexin
antagonists (96, 105, 106). Despite these findings, it was
demonstrated that the levels of prepro-OX mRNA were not
modified after a treatment with ghrelin (107). Eventually, it
has been suggested that feeding-related signals originating from
the gut could modulate orexin signaling, via the vagus nerve
and the NTS. Consequently, different stimuli, such as gastric
expansion or glucose variations could act as feeding suppressing
signals, having an important role in the regulation of orexin
signaling (85, 108).

Recently, our group has demonstrated an interaction between
the hypothalamic-pituitary axes and the central orexigenic action
of OX-A. Hypophysectomized (HPX), adrenalectomized (ADX),
gonadectomized (GNX; females and males), hypothyroid and
GH-deficient dwarf rats were centrally injected with OX-A.
Interestingly, we were able to show that the orexigenic effect
of OX-A was completely maintained in ADX and GNX rats,
slightly decreased in hypothyroid rats and entirely inhibited
in hypophysectomized and dwarf rats (109). Remarkably, the
loss of the OX-A effect on feeding was coupled with a blunted
OX-A-induced increase of NPY or of its putative regulator, the
transcription factor cAMP response-element binding protein
(CREB), as well as its phosphorylated form pCREB, in the ARC
of HPX and dwarf rats (109). All these results highlight the fact
that the orexigenic effect induced by OX-A is dependent of the
integrity of the GH axis (109). Moreover, our group has also
demonstrated that OX-A inhibited GH secretion in vivo (110).
Thus, this neuroendocrine feedback regulation could help to
obtain a better understanding of orexin role in energy balance
modulation and GH deficiency.

Recently, some growing evidences have linked orexin
signaling to the amino acid (AA) sensing (111). Indeed, Karnani
and colleagues have shown that nutritionally relevant mixtures of
amino acids could stimulate orexin neurons both in vitro and
in vivo (following peripheral and central administration). They
have also proposed that this effect could be mediated by a dual
mechanism involving the inhibition of K(ATP) channels and the
activation of system-A amino acid transporters. Interestingly,
they were also able to show that physiological concentrations of
AAs inhibited the glucose responses of orexin neurons (111).

OREXIN/HYPOCRETINS AND
THERMOGENESIS

The energetic metabolism relies on an accurate balance between
energy intake and energy expenditure. Energy intake is mainly
defined by the sum of caloric content of the ingested food and
beverage. On the other side, energy expenditure is the sum of
the thermic effect of food, locomotor activity and thermogenesis
(112–114). Interestingly, the obligatory thermogenesis—defined
as the heat produced by themetabolic rate—is enough to preserve
the body temperature at adequate levels without involving
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any other thermoregulatory mechanisms. The temperature
range in which the organism does not need to regulate
its body temperature is called thermoneutrality (112–114).
Temperatures below the thermoneutrality point lead to an
immediate and quick response through the activation of heat
saving mechanisms such as vasoconstriction or piloerection.
However, this primary response only provides limited effects
on maintaining body temperature. Thus, additional thermogenic
mechanisms—referred to facultative or adaptive thermogenesis—
are quickly initiated (112–114). These mechanisms are separated
between shivering and non-shivering facultative thermogenesis.
Shivering is an elementary response producing small amount
of heat in cold-exposed organism (112–114). The evolutionary
process allowed homoeothermic species to improve those
mechanisms using metabolic machinery to generate heat in
a more efficient way, named as non-shivering facultative
thermogenesis. In mammals, including humans, the majority of
non-shivering facultative thermogenesis is occurring in the brown
adipose tissue (BAT) (112–114). BAT thermogenic capacities are
mainly mediated by uncoupling protein 1 (UCP1), localized
in the inner mitochondrial membrane. UCP1 dissociates the
electron transport chain from ATP production by allowing
the free movement of protons back across the mitochondrial
membrane, increasing the energy dissipation as heat (112–114).

Since a long time, it is well known that the stimulation
of LHA activates BAT (1, 6, 7, 26, 115, 116). In the same
line of findings, numerous studies, including pharmacological
experiments and genetic modified mouse models, highlighted
the fact that orexins promoted energy expenditure. Indeed, OX-
A centrally administrated in mice under fasting increased the
metabolic rate (117, 118) and induces a hyperthermic response
(119). Ox null mice developed a hypometabolic phenotype (57)
and more sensitivity to cold exposure (120). Conversely, OX-
A centrally administrated has also been described to induce
hypothermic effects, through a NPY-dependent mechanism (121,
122). Intriguingly, another study has reported that OX-B could
induce hyperthermic effects (122). Interestingly, these effects can
be reproduced by an OX-B administration into the diagonal band
of Broca (123). The exact significance of the orexin induced
thermogenic effect is still questionable, but it has been proposed
that it could be an adaptive response to stress (124) or to cold
exposure (120).

Molecular studies have revealed that orexins could modulate
both locomotor activity and BAT thermogenesis to induce their
effects on energy expenditure (125–130). Recently, it has been
reported that orexins were essential for BAT development,
differentiation, and function (125). As observed in ox null
mice, the lack of orexin deregulates energy balance (120,
125). This evidence is also supported by in vitro studies that
have revealed a direct implication of orexin on new brown
adipocytes differentiation (125, 129). Morphological analysis
has also shown that orexin neurons were implicated in the
modulation of BAT thermogenesis through the SNS (Figure 1).
Accordingly, (i) the central administration of OX-A or OX-B,
(ii) the stimulation of orexin neurons in the LHA or (iii) the
injection of OX-A specifically into the VMH or in the RPa
promoted BAT thermogenesis (116, 126, 128, 131–133) while

(iv) rats with ataxin-3 mediated ablation of orexin neurons
showed reduced BAT thermogenesis (134, 135). Even if the
mechanisms underlying these effects remain unclear, it was
recently reported that AMP-activated protein kinase (AMPK), a
cellular energy sensor (5, 136, 137), and endoplasmic reticulum
stress (ER stress), a cellular process that is triggered by a variety
of conditions that disturb folding of proteins in the ER (138–
140), were the main modulators of BAT thermogenesis in the
VMH (Figure 1) (5, 120, 141–155). Thus, it seems essential
to pursue the investigation to understand how orexins, AMPK
and ER stress could interact to modulate BAT thermogenesis
in the hypothalamus. In this sense, recent data from our
group have demonstrated that the thermogenic effect of the
bone morphogenetic protein 8B (BMP8B, a thermogenic factor
initially involved in bone morphogenesis) (120, 143) on BAT (as
well as the browning of white fat) is mediated by the inhibition
of AMPK in the VMH and by the subsequent increase in OX
signaling via the OX1R. Accordingly, the thermogenic effect of
BMP8B is totally absent in ox null mice implicating glutamatergic
signaling, indicating a physiological role of orexins in this regard
(120). To understand whether these effects could also involve
hypothalamic ER stress would require further investigations,
however considering that the link AMPK-ceramide-induced-
ER stress has already been demonstrated for thyroid hormones
(153), it is tempting to speculate a possible role on orexin
actions. Additional investigations would be needed to further
understand the role of orexins on BAT function and whether
this action could have evolutionary implications related to
adaptations to environmental temperature. Therefore, it will
be demanding to investigate the effect of orexins and its
postulated downstream and upstream regulators (for example
AMPK) at different temperatures, such as cold exposure and
thermoneutral conditions.

Recently, it has also been reported that orexin could have
a protective role in aging-associated impaired thermogenesis
(130). It is well known that aging induces an increase in fat
mass, however the underlying mechanisms are still unknown.
Numerous evidences have shown that aging was associated with
impaired differentiation of BAT, morphologic malformations
and thermogenic dysfunctions in rodents (130). This loss of
function can be explained by the fact that in aged mice,
the interscapular brown fat region is invaded by white-like
adipocytes (130). Additionally, old mice are unable to mobilize
brown adipocyte intracellular energetic reserves leading to an
impaired regulation of basal thermogenesis. Interestingly, OX-A
administration reverses these effects; while they were described
to be potentialized in mouse with ablated OX neurons (130).
Further investigations are needed to evaluate whether the orexin
system could be a potential target to reverse the fat mass
increase associated with aging. In this regard, considering the
involvement of orexin in pathophysiology in humans (i.e.,
narcolepsy), and the presence of brown/browned fat in humans
(149, 156–159), another important question to answer is whether
orexins may play a role in the modulation of BAT in humans.
Current evidence has demonstrated that contrary to rodents,
OX-A treatment alone or in combination with an adrenergic
stimulus did neither enhance thermogenesis nor its related
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FIGURE 1 | Central actions of orexins/hypocretins on food intake and BAT thermogenesis. Orexin/hypocretin neurons sense peripheral levels of metabolites, such as

glucose and amino acids, and hormones, such as leptin and ghrelin, to control energy homeostasis. Therefore, orexin/hypocretin neurons in the lateral hypothalamic

area (LHA) modulate food intake acting on neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus (ARC). On the other hand, AMP-activated

protein kinase (AMPK) in the ventromedial nucleus of the hypothalamus (VMH) impacts orexin neurons in the LHA to modulate brown adipose tissue (BAT)

thermogenesis through the sympathetic nervous system (SNS, indicated by yellow lines). Whether OX may impact other central mechanism modulating

thermogenesis, such as endoplasmic reticulum stress (ER stress) within the VMH will require further investigation.

transcriptional program in a human in vitro model of brown
adipocytes or adipose tissue explants (160). These results are
in keeping with data demonstrating that although narcolepsy
patients show abnormal fat distribution (161), they do not
display differences in the amount of supraclavicular BAT (161).
Moreover, it has been shown that BAT is perfectly functional
after cold exposure in patients with narcolepsy (162). Overall,
this evidence indicates that the role of orexins on BAT activity
in human is at least controversial. Further work will be required
for a deeper investigation that will allow to address whether
the effects of orexins on BAT are a specific phenomenon for
rodents or, alternatively, a pathway that might be susceptible of
therapeutic intervention in humans.

One interesting point is that orexins are primarily stimulated
by fasting and starvation, a situation in which animals

display hypothermia, reduced oxygen consumption and blunted
thermogenic responses. Overall, these responses could seem
contradictory with the physiological role of orexins as stimulators
of BAT activity. However, the role of orexins in each scenario is
totally dependent of other factors such as (i) the hormonal milieu
(for example, ghrelin, leptin and thyroid hormone levels), (ii)
the upstream and downstream hypothalamicmolecular pathways
and (iii) the hypothalamic nucleus specificity. In a fasting
scenario, considering the role of orexin neurons as sensors of
the outer and inner environment to reach a state of vigilance
and wakefulness for seeking food, an increase of the orexigenic
tone could be expected (22, 25). The mechanisms leading to
this increase of orexin levels are numerous, including ghrelin
and leptin which are essential as they play opposite role on
orexin neurons (an increase in ghrelin levels and a decrease
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in leptin ones is observed during fasting) (37, 87). Ghrelin
activates isolated orexin neurons inducing their depolarization
and an increase in firing frequency (87). In contrast, leptin, a
strong anorectic factor, robustly inhibits orexin neurons, causing
hyperpolarization and decreasing the firing rate (87). This is
the reason why in mice lacking orexin neurons, the fasting-
induced arousal is impaired (87). On the other hand, conclusive
evidence exists demonstrating that under normal feeding status,
orexin neurons activate BAT through a mechanism involving
elevated AMPK activity and expression in the VMH (5, 120).
This blunted response in starvation is not so surprising as it
reminds similar phenomena observed with thyroid hormones,
in which, their effects on thermogenesis are also blunted. Under
these circumstances, there is a change in the set point governing
the entire hypothalamic-pituitary-thyroid axis to save as much
energy as possible to ensure survival (114). In other words, under
starvation conditions, the orexin system is activated allowing
food-seeking, while the signaling mechanisms implicated in
increasing thermogenesis are blunted to preserve energy. The
exact mechanisms governing this later phenomenon remain
unknown but it clearly merits to be pursued. However, some
hypotheses can be speculated. During fasting, increased orexin
levels were shown to induce feeding by stimulating NPY neurons
in the ARC (40), which are also stimulated by the fasting-induced
increase in ghrelin and the fasting-induced decrease in leptin
(107). NPY neurons are known to inhibit thyrotropin-releasing
hormone (TRH) neurons in the PVH, leading to decreased
thyroid-stimulating hormone (TSH) release from the pituitary
and subsequently reduced circulating thyroid hormones and
reduced thermogenesis (114, 141, 153, 163, 164). Notably, as
a result of the decreased thyroid hormone tone, most of that
effect could be mediated by increased AMPK in the VMH
(acting upstream of orexin) (114, 120, 141, 153, 163, 164).
Therefore, the interplay between hormonal factors (ghrelin,
leptin, thyroid hormones), neuropeptides (NPY and orexin) and
energy sensors (AMPK) could be implicated into this complex
regulation. Another possible scenario might be an adaptation to
cold temperatures, a situation in which both thyroid hormones
and orexins are known to be elevated (114, 134, 135), which
would lead to (i) increased BAT thermogenesis (induced by both
thyroid hormones and orexins) and (ii) increased feeding (again,

induced by both thyroid hormones and orexins) to cope the
higher metabolic demands of thermogenesis. Similar thoughts
are described for BMP8B, which induces thermogenesis, acting
on orexin neurons in the LHA and AMPK in the VMH
(120). Therefore, the pleiotropic role of orexins, as well as the
redundancy of the hypothalamic networks modulating whole
body energy homeostasis, are determining the response in each
physiological condition.

CONCLUDING REMARKS

All throughout this review was described the implication of
the orexin and hypocretin systems in the control of energy
balance (Figure 1). Even if their roles in the regulation of the
two components of the energy balance, namely feeding and
energy expenditure, are well characterized, their involvement in
the development in obese disorders remain unclear and debated.
Indeed, orexin, centrally administrated, did not induced any
body weight modifications (42) as well as prepro-OX mRNA
levels remained unchanged in diet-induced and genetic models
of obesity (165, 166). However, as mentioned above, the major
role of orexins in the regulation of energy balance is undeniable.
However, due to their pleiotropic characteristics, considering
them as potential therapeutic targets in an obesity driven context
appears as limited (167). To overcome these actual limits, a better
understanding of orexin interaction with other known, or even
unknown, systems involved in energy balance control would
be necessary.
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