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Introduction
The mammary gland consists of secretory alveoli
connected by a system of branching ducts embedded in
connective tissue. The epithelial cells that compose the
gland are arranged in two layers, the luminal epithelial
layer and the basal myoepithelial layer. The whole struc-
ture is surrounded by a basement membrane.

The myoepithelial layer is organised differently in the ducts
and in the lobules. In the ducts, elongated myoepithelial
cells form a more or less continuous layer and are in direct
contact with the basement membrane, and hence with the
stroma. The interaction between ductal luminal cells and
the extracellular matrix (ECM) is largely mediated by the
myoepithelium, although some of the luminal cells in the
mammary ducts may reach the basement membrane.
Alveolar myoepithelial cells are of stellate shape and form
a basket-like structure around the acini, resulting in the
exposure of most of the basal surface of the luminal cell to
the basement membrane.

Differentiated myoepithelial cells are highly contractile and
their ultrastructure is reminiscent of that of smooth muscle
cells. Myoepithelial cells contain large amounts of micro-
filaments, dense plaques (cell–matrix adherens junctions
characteristic of smooth muscle cells) and smooth
muscle-specific cytoskeletal and contractile proteins. They
are true epithelial cells, however, because the major com-
ponents of their intermediate filament system are the
cytokeratins 5 and 14 (K5 and K14), because they form
desmosomes, hemidesmosomes and cadherin-mediated
cell–cell junctions, and because they are permanently
separated from the connective tissue by the underlying
basement membrane.

The contractile properties and the central role in milk ejec-
tion during lactation are the most studied aspects of
mammary myoepithelial cell function. In addition, the
tumour suppressor potential of mammary myoepithelial
cells has recently received considerable attention.
However, the role played by the myoepithelial cells in
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mammary development remains poorly investigated. The
vast majority of studies devoted to various aspects of
mammary gland development to date have focused on the
mechanisms controlling luminal cell differentiation and
growth, whereas basal myoepithelial cells have been
largely neglected.

In the present review, we refer to the studies carried out in
the mouse, the rat and the human. Although mammary
gland development, function and pathology are obviously
not identical in different mammalian species, the data
obtained in rodent models, when considered at the cellu-
lar and molecular levels, provide essential information rele-
vant to human breast disease.

Differentiation of the mammary myoepithelial
cell
In the rat, for most of the embryonic period of develop-
ment, the basally located cells of the mammary buds origi-
nating from the epidermis do not express smooth muscle
markers, and the future myoepithelial cells gradually
acquire features characteristic of smooth muscle differen-
tiation during the postnatal mammary gland development
[1]. Acquisition of the differentiated phenotype is accom-
panied by changes in adhesion systems (i.e. upregulation
of specific integrin and laminin variant expression) [1].

In the human foetal breast, the first smooth muscle marker
(α-actin) was found in basally located cells after 23 weeks
of gestation [2]. In the adult mammary gland, the smooth
muscle marker expression of myoepithelial cells appears
to be heterogeneous. In the quiescent human breast,
heavy caldesmon (an important regulator of the contractile
function) is present in the myoepithelial cells of large ducts
and galactophorous sinuses, but is not found in intra-
lobular small ducts and acini [3]. Similarly, in the lactating
rat mammary gland, ductal and alveolar myoepithelial cells
display different patterns of expression of contractile,
cytoskeletal and ECM smooth muscle markers [1]. This
heterogeneity may reflect differences in functional proper-
ties and the diverse origins of the myoepithelial cells resid-
ing in the various parts of the mammary tree.

Previous observations resulting from studies performed
with the mouse mammary gland have provided convincing
evidence that the cap cells of the terminal end buds (TEB)
can give rise to ductal myoepithelial cells [4]. The TEB are
bulbous structures found in pubertal animals. They are
located at the endings of mammary ducts advancing into
the fat pad, and the cap cells form a basally located mono-
layer at their tip. Cap cells themselves do not express
smooth muscle markers but, as the duct grows into the
stroma, they move to the more proximal part of the duct
and differentiate into myoepithelial cells. Although the TEB
are present only in rapidly growing pubertal mammary
glands, cell populations similar to cap cells may exist at

the extremities of all growing buds at various developmen-
tal stages. Cap cells are unlikely to be the only source of
myoepithelial progenitors, however, as experiments involv-
ing the serial transplantation of mammary tissue fragments
have shown that precursor cells are distributed throughout
the mammary tree rather than concentrated at any particu-
lar site [5] (reviewed in [6]).

Several data suggest the existence of bipotent mammary
cell precursors that can give rise to both luminal and myo-
epithelial cells. Stingl et al. attempted to characterise the
epithelial progenitor populations present in normal adult
human mammary tissue by a combination of flow cytometry
and in vivo colony formation assays [7]. The markers used
to identify cells belonging to the two major mammary cell
lineages (luminal and basal) included cytokeratins 8/18 and
19, EpCAM and MUC1 for luminal cells, and K14, high
levels of  α6-integrin and low levels of MUC1 for myoepithe-
lial cells. This study by Stingl et al. suggested the presence
of fate-restricted myoepithelial and luminal precursors, as
well as bipotent progenitors. However, the authors did not
analyse the expression of myoepithelium-specific contractile
and cytoskeletal proteins, such as smooth muscle α-actin.
Furthermore, Lakhani et al.’s demonstration of identical
genetic changes (loss of heterozygosity) in luminal and
myoepithelial cells [8] provides convincing evidence in
favour of the existence of a common precursor.

The precise location and molecular characteristics of
myoepithelial precursor cells, with the exception of cap
cells, are unknown. The results of experiments performed
with cultured cells from human and mouse mammary
glands suggest that myoepithelial cells may be derived
from precursors within the luminal epithelial layer [9–13].
On the contrary, a recent study by Böcker et al. performed
with human breast specimens describes a K5-positive cell
population that might be a precursor of both luminal cells
(‘glandular epithelial’) and myoepithelial cells [14]. Further-
more, Gudjonsson et al. isolated a mammary cell popula-
tion with suprabasal characteristics (i.e. possessing
luminal properties but negative for sialomucin, an apical
marker of luminal cells) from human breast tissue [15].
These cells were used to establish a cell line displaying
progenitor properties: the cells were able, in two-dimen-
sional culture, to form branching structures resembling the
terminal duct lobular units of the breast and containing
basal and luminal cells. The authors suggested that in
vivo, consistent with the characteristics exhibited in
culture, these bipotent progenitor cells were located
suprabasally and resided on myoepithelial cells.

Overall, the location and molecular markers of mammary
progenitor cells, as well as the mechanisms controlling the
maintenance of stem cells as such and their commitment
to one of the two major mammary epithelial lineages,
remain to be elucidated.
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The myoepithelial cell layer harbours
important regulatory molecules
Numerous molecules implicated in important regulatory
processes in other tissues are expressed differently in the
two epithelial layers of the mammary gland. Several
members of the epidermal growth factor family have been
shown to play an important regulatory role in mammary
gland development and in the differentiation of mammary
epithelium (reviewed in [16]). In the mammary epithelium,
the epidermal growth factor receptor expression level
found in the cap cells and myoepithelial cells is signifi-
cantly greater than that in the luminal cells [17,18]. This
distribution, together with the results of studies carried out
in culture with a mammary epithelial cell line displaying
basal characteristics [19], suggests a specific role of epi-
dermal growth factor receptor signalling in the control of
the basal myoepithelial cell phenotype.

Gomm et al. have analysed the expression of basic fibro-
blast growth factor (FGF2) and fibroblast growth factor
receptor 1 in luminal and myoepithelial cells isolated from
the normal human breast [20]. The mRNA for FGF2 was
found only in myoepithelial cells, whereas fibroblast
growth factor receptor 1, as estimated by immunola-
belling, was present in luminal cells and, to a lesser extent,
in myoepithelial cells. These results suggest that myoep-
ithelial cell-derived FGF2 may be an important paracrine
factor controlling luminal epithelial cell growth.

The Tcf transcription factors are central components of
the Wnt/β-catenin signalling pathway, which has been
implicated in many aspects of development and tumouri-
genesis (reviewed in [21]). The members of the Tcf family
exhibit differential tissue expression patterns. Tcf4 and
Tcf1 have been shown to be present in the mammary
epithelium, with nuclear Tcf1 detected specifically in the
basal mammary epithelial cells. The most abundant form of
Tcf1 lacks the β-catenin binding domain and is therefore
likely to act as a negative regulator of Wnt signalling. Con-
sistent with this notion, mice lacking Tcf1 develop
mammary adenomas [22]. These findings suggest a
potential role for the Wnt signalling pathway in the control
of basal mammary cell growth. Different members of the
Wnt family have been found in the various mammary gland
compartments. In particular, Wnt2 is apparently expressed
by myoepithelial cells rather than luminal cells [23].

Activins belong to the transforming growth factor beta
superfamily, many members of which are important regula-
tors of differentiation and development, particularly for
various smooth muscle and epithelial cell types. Human
mammary myoepithelial cells in primary culture have been
found to express both activin βA and activin type II recep-
tor, whereas other breast cell types do not [24]. The tar-
geted expression of transforming growth factor beta in
luminal cells results in the inhibition of mammary develop-

ment [25]. To our knowledge, however, the involvement of
the transforming growth factor beta signalling pathway in
the differentiation of mammary myoepithelial cells has not
yet been studied.

The most recently discovered members of the p53 family
are p63 and p73. These transcription factors play a
central role in the control of cell growth and survival, and
they act as tumour suppressors. Immunohistochemical
studies have shown that, in the mammary epithelium, both
p63 and p73 are restricted to the myoepithelial cell layer
[26–29]. A recently described human mammary epithelial
cell line with basal properties has been shown to express
a p63 variant, ∆N-p63-α [27]. The specific location of p63
in a subset of basal mammary cells [27] is particularly
intriguing because, in the epidermis, this p53 homologue
identifies keratinocyte stem cells [30]. Moreover, p63
expression is critical for the maintenance of the progenitor
cell population necessary for development and morpho-
genesis. All squamous epithelia and their derivatives,
including the mammary gland, have been shown to be
absent in p63-deficient mice [31,32]. Additional studies
are required to elucidate the role of p63 in mammary
development.

Perturbation of the myoepithelial cell-specific
protein expression pattern
There is a growing body of evidence to suggest that inter-
ference with the normal pattern of expression of genes
encoding molecules specific to the myoepithelium, by
ablation or overexpression, perturbs the growth and differ-
entiation of the entire mammary epithelium. Several exam-
ples are now described.

P-cadherin is restricted to the basal layer of stratified and
pseudostratified epithelia, and it is present only in the
myoepithelial cells in the mammary gland. P-cadherin-defi-
cient virgin mice display precocious mammary gland
development [33]. They contain alveolus-like buds similar
morphologically to those observed in early pregnant
animals, with luminal cells producing milk proteins
(caseins). This suggests that perturbation of the pattern of
gene expression in myoepithelial cells may affect the
growth and differentiation of luminal cells.

Parathyroid hormone-related protein (PTHrP) is implicated
in a wide variety of biological processes during embryonic
development and in adults. In the mammary gland, it is
produced by both luminal and myoepithelial cells.
However, only myoepithelial cells are responsive to
PTHrP. The targeted overexpression of PTHrP in myo-
epithelial cells under the control of the K14 gene promoter
results in mammary hypoplasia characterised by deficient
ductal branching in virgin mice, due to the high rates of
apoptosis and the low rates of proliferation observed in
TEB [34,35]. These findings provide further evidence that
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myoepithelial cells can participate in the control of growth,
differentiation and morphogenetic events involving luminal
cells, thereby demonstrating the contribution of these cells
to normal mammary gland development.

Epithelial basal cell-specific promoters, such as those of
the K5 and K14 genes, are often used to create trans-
genic mice for studies of developmental processes in the
epidermis and hair follicles. Unfortunately, with few excep-
tions, the mammary phenotypes of mice bearing trans-
genes under the control of K5 or K14 promoters have not
been analysed. In addition to the results obtained with the
K14-PTHrP transgenic mouse line described earlier, a
recently published study illustrates that basal keratin pro-
moters can be used to address important questions con-
cerning the mammary gland. Jonkers et al. showed that
mice carrying conditional Brca2 and Trp53 alleles and a
cre transgene under the control of the K14 gene promoter
developed mammary tumours with luminal and myoepithe-
lial characteristics [36]. It is currently unknown whether
these tumours develop due to inactivation of the Brca2 and
Trp53 genes in differentiated myoepithelial cells, or
whether they result from the ablation of these genes in
some K14-expressing early mammary precursor cells, as
the K14 promoter is active early in embryonic development.

Several members of the family of ephrin receptor tyrosine
kinases and their ligands have been implicated in the regu-
lation of pattern formation during embryogenesis. In the
normal mouse mammary gland, the ephrin receptor EphB4
is found predominantly in myoepithelial cells, whereas
expression of its ligand (ephrin-B2) is restricted to luminal
cells [37]. In the rapidly growing tumours found in Wap-ras
transgenic mice, the receptor ceased to be expressed on
myoepithelial cells and was instead detected in the tumour
cells [38]. The targeted overexpression of EphB4 in luminal
mammary cells under the control of the mouse mammary
tumour virus promoter affected the mammary gland devel-
opment. The transgenic glands exhibited, on the one hand,
high rates of apoptosis in pregnancy and, on the other,
abnormal proliferation during the early stages of involution.
Double-transgenic animals expressing the EphB4 and
neuT genes developed mammary tumours earlier than did
those expressing neuT only. Moreover, lung metastases
were observed exclusively in the double-transgenic mice.

These data are an example of how the introduction of a
myoepithelial cell-specific molecule into luminal cells
results in the perturbation of the mammary epithelial cell
response to physiological signals that normally induce pro-
liferation, apoptosis or survival.

Myoepithelial cells play a key role in the
establishment of the mammary bilayer
The integrity of the mammary epithelium is maintained by
several distinct adhesion systems. The adhesive struc-

tures involved in cell–cell contacts at the lateral surfaces
of the luminal cells and between the luminal and the basal
myoepithelial cells include desmosomes and cadherin-
mediated junctions. In contrast, hemidesmosomes and
dense plaques specific to myoepithelial cells are localised
to the sites of cell–ECM interactions. Within the cell,
desmosomes and hemidesmosomes are associated with
the intermediate filaments, whereas integrin-containing
and cadherin-containing junctions are connected to the
actin cytoskeleton, and are often referred to as adherens
junctions. In accordance with the specific functions of
basal myoepithelial cells in adhesion of the mammary
epithelial bilayer to the basement membrane, integrins and
cytoplasmic components of the cell–ECM adherens junc-
tions (such as vinculin, α-actinin, focal adhesion kinase
and talin) are much more abundant in myoepithelial cells
than in luminal epithelial cells [39].

Mammary myoepithelial cells may be expected to partici-
pate in ECM turnover, either permanently or during partic-
ular stages of mammary development, such as intensive
growth in puberty or gland remodelling during involution.
Thus, although most of the ECM-degrading enzymes
found in the mammary gland are considered of stromal
origin, myoepithelial cells produce several specific or
ubiquitous matrix-degrading enzymes, in addition to
numerous protease inhibitors (reviewed in [40]). A
recently described angiogenesis-related matrix metallo-
proteinase, MMP19, was expressed by normal breast
myoepithelial cells [41].

Gudjonsson et al. suggested that myoepithelial cells might
play an essential role in the control of polarity in the bilay-
ered mammary epithelium [42]. Indeed, luminal epithelial
cells cultured in collagen-I gel formed acinus-like struc-
tures with reversed polarity, with apical markers expressed
on their external surface and with basal markers expressed
on the luminal side. The addition of myoepithelial cells led
to the formation of acinus-like aggregates with the correct
polarity. The mammary basement membrane component
laminin 1 may replace myoepithelial cells in their instruc-
tive function, as in the reconstituted basement membrane
material (Matrigel), even in the absence of myoepithelial
cells, the polarity of the aggregates formed by luminal cells
was correct. Myoepithelial cells isolated from breast
tumours were not able to produce laminin 1 and, consis-
tently, could not correct the polarity of the aggregates
formed by luminal cells in collagen gel. These findings
stress the importance of cell–ECM interactions in the estab-
lishment of basoapical polarity in the mammary epithelium,
and illustrate the critical involvement of the myoepithelial cell
as a source of the basement membrane material.

Desmosomes and cadherin-mediated adherens junctions
are involved in the adhesion of the two mammary epithe-
lium layers. The luminal cells express larger amounts of
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E-cadherin than do the myoepithelial cells, whereas
P-cadherin is expressed exclusively by the myoepithelial
cells. This differential cadherin distribution may contribute
to the segregation of the two major mammary cell types.

In addition, a recent elegant study revealed the important
role played by desmosome components in the positioning
of the luminal and myoepithelial cells in the mammary
bilayer [43]. In this work, Runswick et al. investigated the
role of desmosomes in the mammary epithelium organisa-
tion, using blocking peptides corresponding to the cell
adhesion recognition sites of desmosomal cadherins.
Incubation of mammary epithelial cells with a mixture of
cell adhesion recognition peptides inhibiting the cadherins
in the mammary epithelium prevented alveolar morphogen-
esis and demonstrated that desmosomes are absolutely
required for the formation of multicellular branching struc-
tures. The desmosomal cadherins, desmocolin and
desmoglein, are differentially expressed in the two
mammary epithelial cell layers: Dsc2 and Dsg2 are
present in both cell types, whereas Dsc3 and Dsg3 are
restricted to the myoepithelium. In rotary culture, human
breast epithelial cells can associate to form clusters
resembling mammary alveoli, with centrally located luminal
cells surrounded by an external ring of myoepithelial cells.
The addition of cell adhesion recognition peptides corre-
sponding to the myoepithelial cell-specific desmosomal
cadherins, desmocolin Dsc3 and desmoglein Dsg3, inter-
fered with this cell type-specific positioning. These results
led Runswick et al. to conclude that the cell–cell adhesion
might have a more dominant effect than cell–matrix inter-
actions in cell positioning in the mammary bilayer [43].

Mammary tumours with basal cell
characteristics
Most breast carcinomas express phenotypic markers
suggestive of a luminal origin. In contrast, breast myo-
epitheliomas are rather rare. The basal keratins K14 and
K17 have, however, been reported to be present in an
important subset (20–33%) of invasion breast carcinomas
(reviewed recently in [44]). Moreover, analysis of the
pattern of gene expression using complementary DNA
microarrays has revealed a distinct tumour subclass
accounting for 15% of all analysed tumours. In this sub-
class, expression levels were high for basal keratin genes
and for other genes characteristic of basal mammary cells,
such as those encoding the α3 and γ2 laminin chains and
the β4 integrin subunit [45].

Further analysis of this basal cell-like tumour subclass has
shown that TP53 was mutated in 82% of the samples
analysed, whereas only 13% of the tumours in the luminal
subclass contained mutated TP53 [46]. Previous studies
have indicated that mutations in TP53 are associated with
a poor prognosis and a poor response to systemic therapy
(see [46] for references). Basal cell-like tumours were

consistently found to be associated with short survival
time. Expression of the entire set of basal cell markers by
this subclass of breast tumours indicates a possible origin
from a mammary cell progenitor with molecular character-
istics of basal cells.

Tumour suppressor potential of myoepithelial
cells
Many lines of evidence suggest that differentiated myoepi-
thelial cells are ‘natural tumour suppressors’ [47] (for
reviews, see [48,49]) because they inhibit proliferation in
breast carcinoma cells by inducing growth arrest and
apoptosis, because they interfere with the invasive behav-
iour of tumour cells and because they inhibit angiogenesis.
Indeed, mammary myoepithelial cells and cell lines
obtained from benign myoepithelial tumours produce
relatively high levels of protease inhibitors and active anti-
angiogenic factors, such as protease nexin II, α1-anti-
trypsin, a 31 kDa serine protease inhibitor, tissue inhibitor
of metalloproteinase 1, thrombospondin-1 and the soluble
basic fibroblast growth factor receptor [47,50–52].

Maspin, a member of the serpin family of serine proteases,
was identified by subtractive hybridisation of cDNAs from
normal versus tumourigenic human mammary epithelial
cells [53]. This serpin, produced by myoepithelial cells,
functions as a tumour suppressor and can inhibit meta-
stasis in vivo (reviewed in [54]). A new myoepithelium-
specific serine proteinase inhibitor was recently identified
and described by Xiao et al. [55]. This molecule, when
expressed in human breast cancer cells, abolished their
growth, decreased their invasive potential and prevented
tumour dissemination in vivo. In addition to producing
these anti-invasive and anti-angiogenic molecules, myo-
epithelial cells have also been shown to possess CD44
shedding activity and to produce soluble CD44, which
blocks the adhesion and migration of human carcinoma
cells on hyaluronic acid-coated surfaces [56,57].

Finally, the analysis of myoepithelial marker expression
remains a commonly used approach to distinguish
between benign and malignant tumours, or to detect
stromal invasion (reviewed recently in [58]).

Conclusions
The mammary myoepithelial cells, due to their specific dif-
ferentiation programme, are able to integrate multiple
signals from the neighbouring cells, from the underlying
basement membrane and from the connective tissue. In
turn, these cells have a major impact on luminal cell
growth and differentiation, and they play a key role in the
establishment and the maintenance of the mammary
epithelium architecture. However, we currently know very
little about the cellular and molecular characteristics of
myoepithelial cell precursors, as well as the unique mech-
anisms that control the myoepithelial cell phenotype and

Breast Cancer Research    Vol 4 No 6 Deugnier et al.
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allow the expression of its double (smooth muscle and
epithelial) identity. Moreover, the nature of the signals
involved in communication between luminal and basal
myoepithelial cells is largely unknown. These unresolved
questions provide a vast area for future investigation.
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