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Abstract: The global adoption of smartphone technology affords many conveniences, and not
surprisingly, healthcare applications using wearable sensors like smartphones have received much
attention. Among the various potential applications and research related to healthcare, recent studies
have been conducted on recognizing human activities and characterizing human motions, often with
wearable sensors, and with sensor signals that generally operate in the form of time series. In most
studies, these sensor signals are used after pre-processing, e.g., by converting them into an image
format rather than directly using the sensor signals themselves. Several methods have been used for
converting time series data to image formats, such as spectrograms, raw plots, and recurrence plots.
In this paper, we deal with the health care task of predicting human motion signals obtained from
sensors attached to persons. We convert the motion signals into image formats with the recurrence
plot method, and use it as an input into a deep learning model. For predicting subsequent motion
signals, we utilize a recently introduced deep learning model combining neural networks and the
Fourier transform, the Fourier neural operator. The model can be viewed as a Fourier-transform-
based extension of a convolution neural network, and in these experiments, we compare the results
of the model to the convolution neural network (CNN) model. The results of the proposed method
in this paper show better performance than the results of the CNN model and, furthermore, we
confirm that it can be utilized for detecting potential accidental falls more quickly via predicted
motion signals.

Keywords: wearable sensors; human motion; prediction; recurrence plot; Fourier neural operator

1. Introduction

The world-wide use of smartphones offers not only the convenience of accessing and
searching information anywhere, but also various applications to enhance the quality of
life. As smartphones have developed, various sensors have been included in smartphones,
and a variety of accompanying applications have been introduced. Recently, in addition to
basic IMU sensors, various sensors such as photoresistors, fingerprint sensors, and GPS
have been added to smartphones, and the performance of the cameras has also improved,
so that various studies using these can be conducted. In this paper, we intend to deal
with healthcare-related problems utilizing these smartphone sensors. Various research
topics of interest in healthcare include analyzing human behavior, and recent studies have
been conducted on recognizing and characterizing human motion patterns [1–11]. Various
previous studies have examined the recognition or analysis of human motion, and a number
of studies have examined recognition of human activities via machine learning [5–9]. Of
particular interest is research on aspects of human gait, e.g., while walking and running [12].
Many studies have been conducted on motion analysis using classical to modern machine
learning methodologies, such as Gaussian processes [2,3], to the latest deep learning
techniques [4–7,9–11]. Wang, J. et al. [2] proposed Gaussian process dynamical models to
characterize human motion from captured motion data. Their model was constructed with
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latent space to represent the dynamics of motion and observation space, and the model
showed remarkable results in the latent space. Kim, T. et al. [3], and Kim, J. et al [4] used an
accelerometer and a gyro sensor to characterize human movement in latent space. In one
study [3] the proposed model could be seen as a combination of the variational autoencoder
and a Gaussian process, and the detection of risks such as falling was examined by using the
characterized latent space. One particular study [5] showed suitable performance in human
activity recognition tasks using magnetic induction and recurrent neural networks, and in
another study [7], human activity recognition was achieved by converting signals obtained
from triaxial accelerometers into images. These studies sometimes used camera sensors, or
sometimes wearable sensors to obtain health signals when attached directly to individuals
to analyze and predict movements. Typically, inertial measurement units (IMUs), such as
accelerometers and gyroscopes, have been widely used to measure health signals. These
sensor signals are generally in the form of time series, and many methods exist for dealing
with this data. A spectrogram, which is represented by combining properties of waveforms
and spectra, is a widely used method to convert time series data to an image type, as it
visualizes changes in amplitude with time and frequency. Numerous previous studies have
used spectrograms for recognizing human activities [13–16]. In addition to spectrograms,
many other techniques exist to render time-series data as image formats. The easiest
method to transform sequential data into image data is to image the signal itself, and
another technique is to render the three axes of signals obtained from sensors directly
into a corresponding RGB format [17]. Zheng, X. et al [17] compared the performance of
various signal processing methods such as raw plots and multichannels for human activity
recognition. A method of imaging real-valued signals from sensors by dividing them into
integers and decimal places has also been introduced [18]. A recurrence plot is another
popular method for processing time-series data as images, and some studies have been
conducted on recognizing human activities with such recurrence plots [19–22]. Specifically,
recurrence plots can show the global and local contextual features of time-series data,
and through these features, temporal information about the data can be captured.

Recently, notable results have been demonstrated in many fields using deep learning
methods. In the field of computer vision, deep learning models that perform better than
humans in simple classification problems have been researched. Such methods have also
demonstrated excellent performance in studies of topics such as object detection and seg-
mentation tasks, and in even in natural language processing, deep learning models have
been used to show results that are almost similar to or superior to human performance.
In such studies, the use of convolutional neural networks (CNNs) and fully connected
networks have generally shown solid performance in video and image fields, and recurrent
networks such as RNN, LSTM [23], and GRU [24] have shown notable results in speech
and natural language processing. For example, recent studies have reported suitable per-
formance in speech and natural language processing with CNN [25], and also noteworthy
outcomes in video and image fields with the transformer model, which is a similar series
of recurrent networks designed for 1D sequence data processing [26,27]. Hence, the use
of deep learning models has traversed the boundaries of domains like video and audio,
making for a wide range of applications beyond those of specific networks that have shown
excellent performance in specific fields. In addition to this expansion of applications of
deep learning models, other studies in a different vein have been undertaken. In addition to
major research fields using deep learning to determine decision boundaries or to estimate
functions through regression, deep learning has recently been used to solve differential
equations [28–31]. Euler’s methods for solving ordinary differential equations(ODEs) are
similar to those used by recurrent neural networks such as RNN, LSTM, and GRU [31].
For such reasons, as in [31], studies have been conducted on solving ordinary differential
equation with neural networks, and, in [28–30], neural networks were used to solve partial
differential equations (PDEs). Specifically, the study [30] proposed a method, Fourier neural
operator (FNO), to solve the PDE problem by combining neural network architecture and
the Fourier transform. The architecture introduced in the study [30] can be understood as a
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type of CNN, but this method also has the properties of mesh-independence, in contrast
to traditional, fundamental CNN. This feature means that when given an input of type
N × N rather than the size of the learned input, it works even if the size of the input is
an FNO model trained with M×M. Therefore, as long as the model is trained with one
resolution, inferences can be made even with other resolutions without retraining. Based
on these advantages and features, this method is utilized in this study to predict human
motion signals, and we show that this leads to performance superior to that of the CNN
architecture through our experimental results.

In this paper, research on human motion analysis was conducted, with the primary
objective of presenting a method for predicting human motion signals using modern deep
learning techniques and smartphone sensors. Our method relies on the FNO model for
its excellent representational capability in the frequency domain, and recurrence plots
for their efficiency in handling local and global features. Recurrence plots were origi-
nally proposed as a visualization tool for analyzing characteristics of dynamical systems.
Recently, many studies have applied these methods to the task of recognizing human
activities by making use of the characteristics of recurrence plots, as they are able to capture
temporal patterns over small scale and large scale patterns. However, through previous
studies [19,20,32,33], it was found that much information loss may occur due to the thresh-
old and step functions in the original recurrence plot formulation. To avoid this problem,
some studies used only the distance component to construct recurrence plots [20,32]. Re-
ferring to these previous studies, we also use the distance component of the original
recurrence plot to convert sensor data into 2D image data, and apply this to the modern
deep learning methodology, FNO, to predict a user’s future movements. For more details
of the recurrence plot, and how it is used in our experiments to handle sensor signals as a
visualization, one may refer to Section 2.1 below. In the recurrence plot, not only small scale
patterns but also large scale patterns are revealed, so in order to fully utilize the recurrence
plot, we consider use of the FNO model, which can capture the global context using the
Fourier space. The overview of our method for estimating sensor signals is sketched out
in Figure 1. Using the method presented in this paper, we also explored the possibility of
using it for risk detection, such as for falls.

Figure 1. Overview of our proposed method for predicting human motion using wearable sensors and the modern deep
learning model.

The paper is structured as follows: In Section 1, we briefly explain the rationale for
this research and the methods utilized, and introduce related works. In Section 2, as a
method for predicting wearable sensor signals, we will introduce the latest deep learning
model and the conversion of time series data into a form suitable for application to the
model. In the next portion, Section 3, we present the process for acquiring the data used
in the experiments, and show the results of the experiments with comparisons. The final
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Section 4 includes conclusions and discussion of applications for the methods presented in
this paper.

2. Methods

In this section, we introduce the methods used in this paper. As mentioned in the
previous section, we develop an estimation of a user’s activity signals by means of wearable
sensors that are built into the user’s smartphone. Among the many kinds of sensors in a
smartphone, we utilize the IMU sensor to forecast human motion signals. The acquired raw
sensor signals are time-series forms of data, then we transfer the signals to an image format.
After converting the data, we use the recently introduced deep neural network known as
a Fourier neural operator [30], hereafter referred to as the FNO model, to predict human
motion. We consider the recurrence plots [34], which is powerful for converting time-series
data to image data. Recurrence plots generally deal with all time steps at once, but we
split the time steps with a time window and then use this as the short-term recurrence plot.
Figure 2 shows the overall outline of our method used in this paper.

Figure 2. Pipeline schematic of our proposed method for predicting upcoming human motion signals. The linear transform
lifts the recurrence plot to a high-dimensional representation or performs a linear combination of the features. A Fourier
neural layer composed of a Fourier transform, F , and its inverse, F−1, crosses between the time domain and the frequency
domain, and it extracts features by removing unnecessary frequencies from the mode selection. Then the output of the
Fourier neural layer is given as vn+1 which is applied to the sigmoid function, σ.

2.1. Recurrence Plot

Various studies have recognized and attempted to predict human activities, using
not only raw sensor signals themselves via normalization, but also raw sensor signals
as transformed images, such as raw plots, multi-channels [17], spectrograms [13–16],
and recurrence plots [19–22,34]. The raw plots method transforms raw sensor signal
data directly to an image, i.e., plotted images along axes corresponding to the time and
amplitude of the sensor signals. Another transformation, the multichannel method, renders
the sensor signals with three axes, i.e., x-, y-, and z-axes, and translates them into to the three
color channel components (red, green, blue), in an RGB color format [17]. The spectrogram
representation is widely used for dealing with time-series data from speech waveforms
in acoustic modeling to IMU sensor data for human motion recognition. It provides a
representation of changes in the energy content of a signal as a function of frequency
and time [15] and thus shows advantages in classification accuracy and computational
complexity [14]. In addition, many other methods exist, but in this paper, the recurrence
plot is considered for preprocessing raw sensor signals.

Recurrence Plot The recurrence plot (RP) was originally a visualization tool to study
complex dynamic systems, which was first proposed in [34]. A recurrence plot expresses
information by using the difference between time i and time j in time series data. It can
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thus represent time correlation, and based on differences between values at each time step,
it is formed with small and large-scale patterns. The small and large patterns provided in
a recurrence plot are represented as texture and typology respectively [34]. These patterns
provide information about dynamical systems, and the information is displayed as diagonal
lines, dots, vertical lines, and such in the recurrence plots. The recurrence matrix for the
recurrence plot is computed as follows when time series data X = [x1, . . . , xT ] is given.

Recurrence(X) = Θ(ε− ||xi − xj||) where i, j = 1, . . . , T and xi ∈ RD (1)

Here, ε and Θ(·) are, respectively, a threshold value and the unit step function, which
yields 0 or 1, depending on the given value. The component || · || is a norm, and a proper
norm should be selected according to the task. The most commonly used norms are the L1
norm, L2 norm, and L∞ norm. The general recurrence matrix has a square matrix form, as
it represents only one dynamical system. Two typical variants of the recurrence plot can
express multivariates, the cross recurrence plot and the joint recurrence plot.

Cross Recurrence Plot The cross recurrence plot (CRP) is one representative variant of
the recurrence plot, and it is computed by comparing all states occurring in one dynamical
system with all states occurring in another dynamical system. In the CRP, the two systems
must have the same state dimension, but the length of time does not have to be the
same, resulting in a cross recurrence matrix that may not be square. When two systems,
X = [x1, . . . , xTx ] and Y = [y1, . . . , yTy ], are given and they are the same dimension, the
cross recurrence matrix can be computed as follows.

CrossRecurrence(X, Y) = Θ(ε− ‖xi − yj‖) where i = 1, . . . , Tx, j = 1, . . . , Ty and xi, yj ∈ RD (2)

In order to generate proper inputs for machine learning models, in this paper, we
follow the basic form of the recurrence plot, Equation (1), and use the L2 norm. However,
we did not use the threshold, ε, or the step function, Θ. In previous studies [19,20,32,33],
it has been reported that when using the recurrence plot as the input of the deep neural
network model, the thresholds and step functions can be sparse recurrence plots, resulting
in information loss. In order to avoid such problems, we follow the strategy [20,32] of
calculating recurrence plots without the step function and threshold. That is, we obtained
recurrence plots using only the distance component of the recurrence plot.

Recurrence(X) = ||xi − xj||2 where i, j = 1, . . . , Tw (3)

In the experiments, we use smartphone sensors which are composed of three axes,
and by using them, we conduct for predicting human motion signals. Our approach is
similar to CRP, which builds its recurrence plots using multiple systems.

2.2. Fourier Neural Operator

Fourier Transform The Fourier transform is commonly used in image processing to
decompose into components corresponding to sine and cosine. Filtering can be applied to
an image by using the Fourier transform. For example, when a low-pass filter is applied
to an image, the filtered image would appear blurred, with indistinct boundaries. On the
other hand, a high-pass filter produces a sharp image with only the edges remaining. The
low-frequency component is the portion of small differences in color between pixels, while
color differences figure significantly in the high-frequency component. Many studies using
Fourier transforms have been conducted on the universal approximation theorem [35],
modern deep learning architecture [36], and other problems. Through these previous
studies on applying Fourier transforms to neural networks, deep learning has been able to
see advances in performance. Among these studies, one recent study directly combined
a Fourier space with a neural operator architecture [30]. In this paper, we utilize this
architecture to predict human motion signals.

Fourier Neural Operator Within the research on deep neural networks, a new type
of neural architecture has been recently introduced, known as neural operators [28–30,37].
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The architecture proposed in [30] is shown in Figure 3. The Fourier module in this figure
performs convolution operations in the frequency domain through the Fourier transform,
and then the inverse Fourier transform is applied to revert it to the spatial domain. The
Fourier module in the Fourier layer are expressed as Equation (4).

Fn(x) = F−1(Rφn · (F (x))) where ∀x ∈ D (4)

Here, F and F−1 are the Fourier transform and its inverse transform, respectively. Rφ

is the parameter that functions like a kernel in convolution neural networks.

Figure 3. FNO architecture with N Fourier layers.

The Fourier module, Fn(x), receives the high dimensional representation of inputs
first and then receives the previous output of the Fourier layer for N-1 times. The Fourier
layer consists of the Fourier module and a linear transformation, which can be expressed
as Equation (5).

vn+1(x) := σ(Fn(vn(x)) + Wθn vn(x)), where ∀x ∈ D (5)

Here, σ is a non-linear activation function, and in our experiments we used the
sigmoid function. We use this Fourier neural operator as a substitute for convolution
neural networks. The entire process for training the Fourier neural operator using the
recurrence plot data described in Section 2.1 is shown in Procedure 1.



Sensors 2021, 21, 8270 7 of 27

Procedure 1 : Procedure for Performing Fourier Neural Operator

1: Initialize weights θ and φ.

2: Set parameters of prediction time step and the input time step, T̂ and T, respectively.

3: Get batch RP data for input, Y, and target, Ytarget, through Procedure 2.

4: while converge do

5: v0 = Linearθ(yt−T:t)

6: for n = 0, . . . , N-1 do . Fourier neural layers

7: fn = F (vn) . frequency domain

8: Select k frequency modes, f k
n

9: f k
n = Rφn · f k

n

10: vF
n = F−1( f k

n)

11: vS
n = Linearθn(vn) . spatial domain

12: vn+1 = σ(vF
n + vS

n)

13: end for

14: ŷt:t+T̂ = Linearθ(vN)

15: L = MSE(ytarget
t:t+T̂

, ŷt:t+T̂)

16: Update weights, [θk+1, φk+1]← [θk, φk]− αL

17: end while

2.3. Decoder

In this paper, we use a decoder model to reconstruct the sensor signal from the
recurrence plot data. Given the predicted outputs of the FNO model, the decoder model
converts the recurrence plot images to the raw sensor signal. The architecture of the decoder
used in the experiments is composed of two components, which are a long short-term
memory (LSTM) and two fully connected layers. To train the decoder model, both the
recurrence plot and raw sensor signals are used. Figure 4 shows the overall process of the
proposed method in this paper. For training the FNO model and decoder model, three
types of data need to be prepared: the input recurrence plot data as input to the FNO model,
Y, and the target recurrence plot data that are to be predicted from the FNO model, Ytarget.
Lastly, the target sensor signals, Xtarget, are to be matched with the outputs predicted from
the decoder model.

Figure 4. Block diagram for training the proposed model.
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3. Experiments
3.1. Data Collection

For the experiments, we use a single smartphone and attached it to the user’s right
thigh. We refer to some previous studies [38–41] and public datasets, such as MobiAct [42]
and UC-HAR [18], for the human activity recognition tasks. They used a smartphone and
placed it in the trousers pocket to collect built-in sensor signals in the smartphone. We also
considered placing the smartphone in the pocket based on the previous studies. When we
put it in the trousers pocket and acquired sensor data, we found not only signals from the
user’s movement but also noise caused by moving around in the pocket in addition to the
user’s movements. For this reason, we fixed the smartphone near the right trousers pocket
to obtain only the user’s movement signal without any noise. The location and manner of
fixation are shown in Figure 5.

Figure 5. Placement of the smartphone used for data collection.

The experiments were conducted at the Korea University R&D Center. To collect smart-
phone sensor signals, we used the Matlab application [43] and the iPhone XS model for
detailed smartphone specifications, referring to the manufacturer’s website [44]. A modern
smartphone contains many sensors such as an accelerometer, gyroscope, and magnetome-
ter. However, it has been known through previous studies that using the magnetometer
should be used with caution due to problems such as direction dependence [45,46] and
inefficiency in recognition performance [47,48]. Thus, in our experiments, we considered
the use of accelerometers and gyroscopes, and we experimentally confirmed that using
the gyroscope yields better performance than the accelerometer. Hence, we choose the
gyroscope for acquiring the angular velocity corresponding to the user’s motion. The
angular velocity signal was acquired at 30 Hz, which was also experimentally selected
between 10 Hz and 100 Hz. To obtain the gyro sensor signals at 30 Hz, we used the Matlab
application, which can access the built-in sensors in the smartphone. In our experiments,
Matlab was used only for data collection when the experiments were conducted. The data
collection procedure consisted of the following: executing the Matlab application on the
smartphone, entering the Sensors tab, and after setting the sensors to be used, pressing the
start button to acquire sensor signals such as those from accelerometers, magnetometers,
and gyroscopes, which are built into the smartphone. After pressing the start button on
the Matlab application, the participants repeatedly performed pre-defined motions (e.g.,
running, walking), and after the motions ended, the signal data was automatically up-
loaded to a cloud server. We then downloaded the signal data and followed our procedure
to predict the user’s motions. For discriminating the walking and running motions in
our experiments, we refer to the definitions [49] that one foot is always on the ground
while walking, while both feet might simultaneously should be off the ground during
running. The whole process of obtaining sensor signal data from the smartphone is shown
in Figure 6.
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Figure 6. Process for acquiring sensor signals.

Also, the detailed procedure for obtaining the data is as follows:

(a) Set the predetermined route for motions to be collected for the data (e.g., walk-
ing, running).

(b) Place the smartphone on the thigh and tied it up to prevent shaking.
(c) Execute the Matlab mobile application on the smartphone.
(d) Set the sampling rate at 30 Hz, and set it to upload its sensor log to cloud storage.
(e) Select the angular velocity sensor (among the acceleration, magnetic field, orientation,

angular velocity, position sensor).
(f) Press the start button to begin acquiring sensor data in the Matlab application.
(g) The participants perform the predefined motion 3 s after pressing the start button to

eliminate any effects that may have occurred before executing the action.
(h) The participants perform the motion for about 60 s, which could total 1800 samples.
(i) The participants ceases the motion and presses the stop button 3 s afterward, for the

same reason of preventing noise related problems.
(j) After identifying and naming the data set, the data are uploaded to the cloud server.
(k) Download the data acquired from the gyro sensor to a desktop computer.
(l) Repeat steps (d) to (k) for other motions.

The acquired signal consists of three axes of the gyro sensor, the x-, y-, and z-axes.
Various methods for treating the x, y, and z axes for sensor data in recurrence plots have
been introduced. In this paper, we utilized the strategy of concatenating the x, y, and z
axes by referring to [22], where in the process of creating recurrence plots for the x, y, and z
axes from a sensor, they first create recurrence plots for each axis and then concatenate
the generated recurrence plots side by side. Although the order is slightly different, our
approach follows essentially the same process in obtaining the recurrence plots. More
precisely, we first create the X vector by concatenating the x, y, and z axes from a sensor
and then create the recurrence plots for the X vector. We empirically found that the method
of aligning the x, y, and z to construct the X vector and thereby creating the recurrence plot
shows satisfactory performance. Let ωx, ωy, and ωz be the raw sensor signals associated
with each axis obtained from the smartphone sensor. We split the time sequence of each
axis by using a time window for size, Tw, and stride s, and then combine the split windows
on each axis as follows:

Xt = [ωx
t−5, ωx

t−4, . . . , ωx
t , ω

y
t−5, ω

y
t−4, . . . , ω

y
t , ωz

t−5, ωz
t−4, . . . , ωz

t ] (6)

We converted the raw sensor signal to a recurrence plot with Xt. In the experiments,
we set the window size and stride as 5 and 1, respectively. Thus, the sensor signals are



Sensors 2021, 21, 8270 10 of 27

arranged in a dimensionality of 15 (=3 axis × 5 time windows), and we additionally per-
formed linear interpolation on the Xt with the Scipy.interpolation [50]. Note that when the
frequencies of the input data are not similarly fixed, we need the capability of interpolation.
For interpolation, we inserted one additional sample between the original samples, which
are obtained from the sensor via linear interpolation until the last sample. After the
interpolation, we transformed Xt into recurrence plot data according to Equation (3).

Yt = Recurrence(Xt) where Xt ∈ R29 (7)

The final resolution of the recurrence plot data is then 29× 29. In our experiments,
we then attempted to predict the next few seconds from the FNO model by receiving
the recurrence plot data for the past few seconds. We set the input time step, T, and the
prediction time step, T̂, as 30 and 20, respectively. That is, when the recurrence plot
corresponding to 1 s is given as Yt−30:t, the FNO model predicts samples, Yt:t+20, associated
with about 0.6 s of the recurrence plot. In the training phase, the 30 recurrence plots
serve as an input to the FNO model, and the following 20 recurrence plots are targets that
the model should predict. The whole process for producing the recurrence plot used in
this paper is shown in Figure 7 and Procedure 2. Also, Figure 8 shows samples of the
recurrence plot created by following the process of Procedure 2 for the motions considered
in the experiment.

Procedure 2 : Procedure for Obtaining Recurrence Plot

1: Set parameters window size Tw.

2: Acquire raw sensor signals from a wearable device (e.g., gyroscope): ωx, ωy, ωz.

3: Set empty list to stack time window of each axis, Dx, Dy, Dz.

4: for t = Tw, . . . , LENGTH(ω) do . Stack the time windows of each axis

5: Dx ← Dx ∪ {[ωx
t−Tw

, ωx
t−(Tw−1), . . . , ωx

t ]}

6: Dy ← Dy ∪ {[ωy
t−Tw

, ω
y
t−(Tw−1), . . . , ω

y
t ]}

7: Dz ← Dz ∪ {[ωz
t−Tw

, ωz
t−(Tw−1), . . . , ωz

t ]}

8: end for

9: Join split time window of each axis.

10: for t = 0, . . . , LENGTH(D) do

11: X ← X ∪ {[Dx
t ; Dy

t ; Dz
t ]}

12: end for

13: Interpolate for each Xt.

14: Calculate recurrence plot with Xt interpolated through Equation (3).

15: for t = 0, . . . , LENGTH(X) do

16: Yt = Recurrence(Xt)

17: end for
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Figure 7. Procedure for converting raw sensor signals into a recurrence plot. Raw sensor signals are divided into time
windows of size Tw and then converted into a recurrence plot by combining time windows corresponding to each x-, y-,
and z-axis into one.

(a) Walking

(b) Running
Figure 8. Recurrence plot samples for each motion from the gyro sensor.

In this paper, we introduce a method for predicting human motion signals using
modern deep learning techniques and smartphone sensors. For this we deal with the two
types of input data, for the FNO model and for the decoder network. The FNO model is
trained with the recurrence plot data, which are converted from the raw sensor signals,
and the decoder model is trained with both the recurrence plot and raw sensor signals
to recover the raw sensor signals from the recurrence plot. Given Yt−30:t, the input data
consisting of the recurrence plot, the FNO model provides the predicted outputs, Yt:t+20,
which are also the recurrence plot type. We recover the recurrence plot data for the sensor
signal type by means of the decoder network. The output of the decoder model would be
then the signals, Xt:t+20, which follow the input signals corresponding to the input of the
FNO model.

3.2. Experimental Results

This section reports on the experimental results of the proposed method for predicting
human motion signals. After recurrence plot data are converted from the raw gyro sensor
signals via the process described in Section 3.1, we use the FNO model to predict the
upcoming motion signals. To verify the results of the FNO model from the recurrence plot
data, we collected motion data from six volunteers, and each volunteer performed the
experiment with walking and running motions. The sensor signals were collected for about
60 s at 30 Hz and converted into the recurrence plot data, and then the converted data are
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entered as input into the FNO model, as described in Section 2.2. Through this process,
we can obtain an estimated event sequence for a motion type based on the recurrence plot
and FNO model, and then the data are converted into sensor signal form by the decoder
model. In the training phase, we set the batch size and epoch at 32 and 200, respectively,
and the number of Fourier neural layers in the FNO model was set at 4. The FNO model
for recurrence plot prediction and the decoder for converting images into sensor signals
are trained separately by means of the Adam optimizer [51]. We also use a learning rate
schedule, such that the learning rate starts at 0.001 and decreases by half every 50 epochs.
The mean squared error (MSE) loss is used as the loss to training both models. For training
and analyzing the experimental results, we split the entire data set acquired from each
volunteer into training, validation, and test sets, with a ratio of 6:2:2, respectively. In
the data collection step, each motion was performed for about 1 min per subject, and the
samples acquired by the gyroscope at this time are 1800 (30 Hz× 60 s). In addition, the data
were collected twice for each motion per subject, and therefore, the total number of samples
acquired is about 3600 per subject. We split these data in a 6:2:2 ratio, and the number of
training, validation, and test recurrence plots then amount to about 2160, 720, and 720,
respectively, per subject. When training the model, only the training set was used, and the
validation set was used to check whether the model was overfitted. Figure 9 shows the
MSE values of the FNO model for the test dataset that was conducted with walking motion.
As noted above, we conducted the experiments with six subjects and trained the FNO
model for each subject, so six models were trained. As seen in Figure 9, we can confirm
that a personalized model was created for each subject. When tested with each individual
test set, which was not used in the training phase, the MSE value is small, but when tested
with other participants’ data, the error value is relatively high. Thus, it can be seen that
models trained on each individual subject can identify the subject. Also, Figure 10 shows
the MSE values for running motion. The results for running motion also show that the
models properly characterized each subject.

To compare the results of the FNO model, we trained another model, which is com-
posed of convolutional neural layers, referred to as the CNN model for convenience in
the rest of this paper. The CNN model consists of four convolutional neural layers and
three fully connected layers, constructed in a manner similar to the FNO model. The
kernel size and stride of each convolution layer in the CNN model are 5 and 1, respectively,
and zero padding was added so that the image size would not change while passing
through the convolutional neural layers. Each convolution layer was followed by a ReLU
activation function, except for the final layer. That is, according to the FNO structure, the
experiment was conducted by replacing the Fourier neural layer with the convolutional
neural layer, while all other layers were the same. With the same learning parameters,
optimizer, and learning rate scheduler as in the FNO model, the CNN model was trained.
The results of the CNN model in Figure 11 indicate that the CNN model had higher MSE
values than the FNO model for the same dataset. For example, the first diagonal entries
of Figures 9 and 11a show that the MSE values of the FNO model and CNN model for
subject #1 are 0.1577 and 0.2445, respectively. Furthermore, the first diagonal entries of
Figures 10 and 11b show that the MSE values of the FNO model and CNN model for sub-
ject #1 are 0.1421 and 0.3141, respectively. As shown in Figures 9–11, the MSE values of the
CNN model turn out to be higher than those of the FNO model throughout all subjects.
From these results, we can confirm that the FNO model can better represent human motions
expressed by converting sensor signals into an image format than a simple CNN model.
Figures 12a and 13a show some samples of the predicted results of the FNO model for
walking and running motions, respectively. These figures show that the predicted results
almost equal the target recurrence plot images, in Figures 12b and 13b . On the other hand,
in Figures 12c and 13c, in comparing the results with the FNO model, some of the CNN
model samples are also shown, and those CNN results shown lower predictive perfor-
mance. With these results, the validity of the method for predicting human motion using
the FNO model can be empirically confirmed. We additionally utilized the learning curves



Sensors 2021, 21, 8270 13 of 27

for the training and validation dataset during the training process to check whether the
model overfits. Figures 14 and 15 show some of the learning curves of the model trained
for each subject. One can see that if the loss value for the validation dataset stops improving
at some point and the loss value begin to increase, then it can be considered overfitting.
Our learning curves, Figures 14 and 15, show that when training the model, the results do
not suffer from overfitting. Furthermore, as mentioned in the previous Section 2.3, we also
use the decoder network to reconstruct from the recurrence plot images to the sensor signal.
After predicting the recurrence plot from the FNO model, we recover the sensor signal
corresponding to the predicted recurrence plot image by using the decoder. Figure 16
shows the reconstructed sensor signal utilizing the trained decoder model after obtaining
the predicted recurrence plot from the FNO model. We then plot some of the subjects’
results and all the prediction results, but only a portion of the input is displayed. Since the
prediction length of the FNO model is set to 20 time steps, the output of the decoder is also
20. However, for simplicity, we aggregate all prediction results except for duplicates and
plot them at once, while the input signal plots only portions of them. Figure 16a shows
the results for walking motion, indicating the x-, y-, and z-axis sequentially from the first
row. The results show that despite image data type of the recurrence plot, the conversion
results from the decoder work well. Similarly, the decoder’s output for running motion
in Figure 16b also shows that it has well recovered the sensor signal, and thanks to the
satisfactory prediction results of the FNO model, it does not differ much from the actual
target signals. Note that in this paper, the objective is constructing a personalized model
for each subject by means of the modern deep learning model, the Fourier neural operator,
and recurrence plots. The model presented in our experiments might be viewed as not
generalized. However, we did not aim to make a generalized model that could predict
the movement of various individuals with one model. A personalized model capable of
predicting the movement of a specific person was considered in this paper. It is expected
that this personalized model could be utilized not only to predict movements related to
daily activities, but also to provide customized support such as exercise programs and
physical therapy, which could lead to a wide range of health benefits.

Figure 9. Mean squared error values of the FNO model for each subject for walking motions.
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Figure 10. Mean squared error values of the FNO model for each subject for running motions.

(a) (b)
Figure 11. MSE values of the CNN model for (a) walking motions and (b) for running motions.

(a)

(b)

Figure 12. Cont.
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(c)
Figure 12. Some samples for walking motion: (a) predicted results of the FNO model, (b) target recurrence plot data,
and (c) predicted results of the CNN model.

(a)

(b)

(c)

Figure 13. Some samples for running motion: (a) predicted results of the FNO model, (b) the target recurrence plot data,
and (c) predicted results of the CNN model.

(a) One of the learning curves for walking. (b) One of the learning curves for running.

Figure 14. Some of the learning curves of the trained FNO model for (a) walking and (b) running.
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(a) One of the learning curves for walking. (b) One of the learning curves for running.

Figure 15. Some of the learning curves of the trained CNN model for (a) walking and (b) running.

(a) (b)

Figure 16. Recovery results for decoder network for (a) walking motion and (b) running motion. The top, middle,
and bottom rows represent the x-, y-, and z-axis, respectively. The blue and red lines indicate the predicted signal from the
FNO model and target signal, respectively, and the black line represents the signal corresponding to the input entered into
the FNO model.

4. Discussion and Conclusions
4.1. Discussion

In this paper, a study was conducted to predict sensor signals for human motions (e.g.,
walking and running) using gyro sensors, recurrence plots, and a recent deep learning
model, referred to as a Fourier neural operator (FNO). Our applications of FNO along
with recurrence plots should be timely and meaningful. Activities such as walking and
running are regular and somewhat periodic, but it is also true that they are indeed the most
important components in daily life activities. Since methods utilizing frequency domain
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information are generally efficient in dealing with periodic (or quasi-periodic) signals, we
believe that the use of a Fourier neural operator, a modern innovative frequency domain
approach, in characterizing daily activities merits investigation. Through the results of
this paper, we show that when 30 samples, which are equal to 1 s of signals, were entered
as input into the FNO model, prediction results were confirmed to be accurate for the
next 20 samples, or about 0.6 s. The sensor signal is obtained from the gyroscope which
is built in a smartphone, which is described in Section 3.1, and the data are converted
into the recurrence plot to input into the FNO model, as described in Section 2.1. In the
main experiment of this paper, we used only the gyroscope data. Smartphones contain
various sensors, such as accelerometers, magnetometers, and gyroscopes, and we also
consider using gyroscope and accelerometer data in this section. The procedure is the
same as in the previous main experiment, but we consider replacing a section of the
recurrence plot consisting of gyroscope data with data obtained from both the gyroscope
and accelerometer. Referring to a previous study on creating recurrence plots from two
sensors [52], the recurrence plot used in our main experiment is replaced by the cross
recurrence plot, or CRP, as described in Section 2.1. Figures 17 and 18 show the MSE
values for the test data for walking and running motions, respectively, when the FNO
model was trained with the CRP. As seen in the results, even when the gyroscope and
accelerometer data were used together, it was capable of creating personalized models for
each subject. After models for each subject are trained with their own data, they show low
MSE values when their own test data (i.e., data not used for training) are provided in the
model, but show high MSE values when the test data of another subject is entered. On the
other hand, the CNN model shows overall high MSE values (as seen in Figure 19), and it
can be seen that the predictive model construction has failed as well as the personalized
model. Not only the quantitative analysis of MSE values, but also the qualitative results
from the cross recurrence plots predicted from the FNO model can be confirmed, as seen
in Figures 20 and 21. Figure 20 is for walking motion, where the first row shows the
predictive results of the FNO model, the second row shows the target cross recurrence
plot that should be predicted from the FNO and CNN models, and the last row shows the
outcomes predicted by the CNN model. These results indicate that the predicted cross
recurrence plots by the FNO model are quite similar to the target, but those from the CNN
model show differ from the target. Similarly, Figure 21 shows the predictive results of the
FNO model for running motion, the target CRPs, and the predictive results of the CNN
model. Similar to the walking motion results, this shows that the FNO model predicted
the target well, but the CNN model did not. Figures 22 and 23 represent reconstructed
sensor signals using the predicted CRP from the FNO model for walking and running
motions, respectively. Since the gyroscope and the accelerometer are used in combination,
the recovered sensor signals from the CRP also have two signals related to each sensor. In
each figure, (a) represents the x, y, and z axes of the gyroscope in order from the top, and,
similarly, (b) represents the x, y, and z axes of the accelerometer. Although it could be a
rather difficult process to recover the signals from the CRP, in which information from the
two sensors is combined, it can be seen that the recovered sensor signals via the decoder
model are similar to the target signals.
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Figure 17. MSE values of the FNO model using CRP for each subject for walking motion.

Figure 18. MSE values of the FNO model using CRP for each subject for running motion.

(a) Walking motion (b) Running motion

Figure 19. MSE values of the CNN model using CRP for each motion.
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(a) Some samples predicted by the FNO model.

(b) The target cross recurrence plot to be predicted from the FNO model (a) and CNN model (c).

(c) Some samples predicted by the CNN model.

Figure 20. Some samples for walking motion: (a) predicted results of the FNO model, (b) target cross recurrence plot, and
(c) predicted results of the CNN model.

(a) Some samples predicted by the FNO model.

(b) The target cross recurrence plot to be predicted from the FNO model (a) and CNN model (c).

(c) Some samples predicted by the CNN model.

Figure 21. Some samples for running motion: (a) predicted results of the FNO model, (b) target cross recurrence plot, and
(c) predicted results of the CNN model.
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(a) gyroscope (b) accelerometer

Figure 22. Samples of recovery results from the decoder model for walking motion. The top, middle, and bottom rows
represent the x-, y-, and z-axis, respectively. The blue and red lines indicate the predicted signal from the FNO model and
target signal, respectively, and the black line represents the signal corresponding to the input entered into the FNO model.

(a) gyroscope (b) accelerometer

Figure 23. Samples of recovery results from the decoder model for running motion. The top, middle, and bottom rows
represent the x-, y-, and z-axis, respectively. The blue and red lines indicate the predicted signal from the FNO model and
target signal, respectively, and the black line represents the signal corresponding to the input entered into the FNO model.
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We also considered walking up and down stairs, and for this experiment, we utilized
a public dataset, MotionSense [41]. As mentioned in [41], the dataset was collected at
50 Hz, and an iPhone 6s was used as the smartphone device. The smartphone was located
in the front trousers pocket. We conducted numerical experiments for the MotionSense
dataset in a manner similar to our previous experiments. Figures 24 and 25 show the
results of the FNO model and the CNN model, respectively. As shown in the figures, the
MSE performance of the FNO model turns out to be better than for the CNN model, which
shows that models trained on each individual subject can identify the subject.

One may have concerns that the presented approach lacks completeness in its human
movement analysis. However, the main point of this paper is not to cover complete
human movements, but to present a methodology for personalized healthcare. In this
paper, we covered walking and running motions, which are the most common activities
people perform in their daily lives, and this can be expanded to a variety of motions
that comprise daily activities. Further study will be conducted, but we think that an
expansion in scope would not be unreasonable because the FNO model also worked well
for additional motions, such as walking up and down stairs. We expected that if further
research like this is conducted, possible future applications would include personalized
healthcare, such as assistance in physical exercise and rehabilitation therapy.

(a) (b)

Figure 24. MSE values of the FNO model for (a) walking down stairs and (b) for walking up stairs.

(a) (b)

Figure 25. MSE values of the CNN model for (a) walking down stairs and (b) for walking up stairs.
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Mesh Invariance. As discussed above and in previous research, FNO has the advan-
tage of being mesh-independent. In order to confirm this characteristic of FNO, we first
train the FNO model with the recurrence plot image, as introduced in Procedure 2, and the
time window was set at 5. After training the FNO model, the trained weights were fixed
and the time window corresponding to the image resolution was shortened. The results of
the predicted recurrence plot image from varying the resolution of the recurrence plot are
shown in Figure 26. As seen in the figure, the FNO model results are similar to the target
recurrence plot images, but the results of the CNN model appear to differ from the target.
From these results, we can experimentally check the mesh-free character of the Fourier
neural operator [30].

(a) Results of the FNO model.

(b) Real target images corresponding to (a).

(c) Results of the CNN model.

Figure 26. Some samples for running motion.

Fall Detection. According to the World Health Organization(WHO), falls are the
second leading cause of death in the world, and are particularly fatal to adults over the
age of 60 [53]. For these reasons, fall detection has become a major research field in the
health area and the topic of many studies [54–56]. The results of this study confirm that
human motion signals are well predicted using the FNO model and a gyro sensor. Accord-
ingly, we consider fall detection by means of the FNO model and modern energy-based
methods [57] for distinguishing abnormal movements corresponding to potential falls
from normal motion. The energy-based method is particularly attractive, in that it does
not require learning new parameters. Additionally, as introduced in one paper [57], the
energy calculated from logit values makes for a clearer distinction between distributions of
normal and abnormal movement than softmax, which is generally used for classification.
Thus, if a model is trained to classify motions (e.g., walking and running), we can utilize
it to detect falls without introducing or learning any new parameters. The problem of
classifying activities of daily living (ADL) has been widely studied, with suitable perfor-
mance demonstrated using deep learning methods [8,9]. One of the important capacities
related to fall detection is to quickly alert guardians or supervisors when a fall occurs
involving the elderly or infirm who are vulnerable to falls, and we consider the possible
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usefulness of the proposed method for this capacity. Following the strategy of the one-class
classification approach [58,59], we use the running and walking motion data as normal
samples, and treat the motion data in the course of falling as abnormal samples. The model
makes a decision about whether a given data sample is to be classified as normal, and
when an anomaly occurs, we can quickly inform users of a risk of falling. In this paper,
we constructed a simple deep neural network model composed of two fully connected
layers, and trained it to classify input data such as walking or running. After training the
classifying model, we use the energy computed from the logit values of the last layer and
the threshold computed in the training phase to distinguish whether a behavior is normal
(i.e., walking and running) or a likely fall. To utilize the successive prediction results of
the FNO model, we fed the predicted time step recurrence plots as input into the classifier
in the training and inference phase. It can thereby distinguish subsequent motion events
predicted by the FNO model as a fall or as normal motion.

Falling conditions can thus be predicted more quickly than fall detection methods
using current observational data. As shown in Figure 27, if a user is about to fall while
walking, the FNO model can alert users of a falling risk slightly faster. When the classifier
predicts the FNO model prediction results for the next time step as potential falling, it
can provide the user an alert that the user may fall, and when actual falling data comes
as an input after the falling risk signal, it can be classified and recorded as a fall. Through
the results of this experiment on fall detection, it is possible to predict and notify users
immediately before an actual fall occurs. Finally note that here, we only examined
the potential of the proposed fall detection method for future applications. Therefore, it
would be unsuitable for use in fall detection using the proposed method in its current
form. In future work, we expect that this could be made more feasible for fall detection
by acquiring data on various motions related to daily activities, which could expand the
distribution of normal data, after conducting additional research.

Figure 27. Results of fall detection experiments. The estimation point can be used as a point in time to transmit an indicator
that informs the user in advance that a fall may occur when the fall detector detects a potential fall, by means of the FNO
predictive results for the next time step data. After that, when actual fall data is entered, it can be viewed as a fall occurrence.

Gyroscope Drift. Since we use the gyroscope data in the experiments, there may
be concern about drift, which is often an obvious challenge in long-term movements. In
order to address this problem, an additional experiment was conducted on a subject. The
subject performed the same walking motion as in the previous experiment in Section 3, and
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performed it for 1 min after walking in place for 10 min at normal walking speed. Note
that except for this difference (whereby the walking motion was performed after walking
in place for 10 min), the experimental procedures and training conditions remain the same.
Section (a) and (c) of Figure 28 show the recurrence plot prediction results for the FNO
model and CNN model, respectively. As seen in these results, the FNO model turns out to
have better predictive performance than the CNN model. In addition, Table 1 shows that
the FNO model has lower MSE values compared to the CNN model. These observations
indicate that the use of gyroscope data after walking in place for 10 min does not alter
the results. Furthermore, we believe that the manner in which Equation (3) deals with
gyroscope data, with the norm of relative difference, has less effect on the drift problem.

(a) Results of the FNO model.

(b) Real target images corresponding to (a).

(c) Results of the CNN model.

Figure 28. Some samples for walking motion using accelerometer.

Table 1. MSE values of the FNO model and CNN model for long-term walking motion.

Models FNO CNN

MSE value 0.134 0.332

4.2. Conclusions

In this paper, human motion prediction was performed using a gyro sensor and
a modern deep learning method, the Fourier neural operator [30]. Predicting human
motion has been being widely studied in many fields, with various studies on predicting
human behavior in specific domains and environments, e.g., with surveillance cameras,
as well as behavior prediction without space restrictions with wearable sensors. In this
paper, a study is conducted to predict motion using a commonly used and popular device,
specifically, a method using a gyro sensor built into a smartphone. The advantage of using
wearable devices such as smartphones is that they can be used without spatial limitations
or additional costs. For these reasons, a built-in smartphone gyro sensor and a modern
deep learning method are used to analyze human motion signal input from the sensors to
predict subsequent signals. Deep learning methods have recently demonstrated suitable
performance, and among the various types of research being conducted, we utilize the
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Fourier neural operator [30] for predicting the next time step of human behavior. In the
results for the Fourier neural operator shown in Section 3.2, we checked the performance
for predictive ability of the Fourier neural operator. As soon as sensor signal samples
corresponding to 1 s are available, the next time step signal for the subsequent 0.6 s
is predicted well by the Fourier neural operator. Furthermore, when the widely used
convolutional neural network is used to construct and compare the same form for the FNO,
we confirmed that the predictive performance for the Fourier neural operator is better than
the predictive results from convolution networks. In Section 4.1, we also considered a
method for detecting risks such as falling via human motion signals based on the predictive
performance of the Fourier neural operator. Before the observed input signals arrive, the
subsequent signal was predicted based on the Fourier neural operator, so it would be
possible to warn users of potential danger slightly more quickly than when the observed
signal is entered into the fall detector. It was thus confirmed that the subsequent signal
can be predicted by means of pedestrian behavior signals obtained from a wearable sensor,
and by means of the Fourier neural operator model. Furthermore, it was confirmed that
when using the signal predicted by the Fourier neural operator, a warning of a fall risk can
be provided slightly more quickly than by using only the current motion signal. In light of
these findings, if wearable sensors and cloud servers can be used for this in the future, it
will be possible to use these as a service to warn people in advance who might be seriously
injured in a fall, such as the elderly.
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