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Atrial fibrillation (AF) is the most common sustained arrhythmia. It is associated with a
markedly increased risk of premature death due to embolic stroke and also complicates
co-existing cardiovascular diseases such as heart failure. The prevalence of AF increases
dramatically with age, and aging has been shown to be an independent risk of AF.
Due to an aging population in the world, a growing body of AF patients are suffering
a diminished quality of life and causing an associated economic burden. However,
effective pharmacologic treatments and prevention strategies are lacking due to a poor
understanding of the molecular and electrophysiologic mechanisms of AF in the failing
and/or aged heart. Recent studies suggest that altered atrial calcium handling contributes
to the onset and maintenance of AF. Here we review the role of stress-response kinases
and calcium handling dysfunction in AF genesis in the aged and failing heart.
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INTRODUCTION
Clinical studies have shown that atrial fibrillation (AF) is the most
common cardiac arrhythmia and has an associated high risk of
mortality and morbidity (such as stroke and heart failure) in the
aging population (Benjamin et al., 1994; Psaty et al., 1997; Podrid,
1999; Go et al., 2001; Miyasaka et al., 2006; Rich, 2009). Both
heart failure (HF) and aging have been shown to be indepen-
dent risk factors for AF (Benjamin et al., 1994; Kannel et al., 1998;
Ehrlich et al., 2002; Neuberger et al., 2007). HF affects nearly 15
million people worldwide (Cowie et al., 1997; Hershberger et al.,
2003). One third to one half of patients with HF develop AF
(Markides and Peters, 2002). New-onset AF among HF patients
has consistently been associated with a 2-fold increase in all-
cause mortality. Due to an aging population, the prevalence of
both AF and HF is predicted to more than double by 2050
(Linne et al., 2000; Di Lenarda et al., 2003). The high preva-
lence of these multiple co-morbidities (Wang et al., 2003) (e.g.,
very frequent co-existence of HF, AF, with aging) has tremendous
impact on the quality of life and daily functioning of elderly indi-
viduals, and is a significant financial burden worldwide (Linne
et al., 2000; Di Lenarda et al., 2003). However, pharmacologi-
cal treatment and prevention strategies remain ineffective due to
the incomplete understanding of the underlying molecular and
electrophysiologic mechanisms of AF genesis and development.

Accumulating evidence suggests that intrinsic stress (e.g.,
oxidative stress and chronic inflammatory stress) are markedly
enhanced in aging, HF, and AF, while the aged and pathologically
altered hearts have been shown to exhibit a higher susceptibil-
ity to extrinsic stress stimuli (Belmin et al., 1995; Beckman and
Ames, 1998; Juhaszova et al., 2005; Neuman et al., 2007; He et al.,
2011; Ismahil et al., 2014). The mitogen-activated protein kinase
(MAPK) cascade is composed of a family of signaling cascades,
which act as critical regulators of cell survival and growth in

response to both intrinsic and extrinsic stress challenges. The
three MAPK subfamilies c-Jun N-terminal kinase (JNK), extra-
cellular signal-regulated kinases (ERKs), and p38 MAPKs have
been the focus of extensive studies to uncover their roles in cardiac
disease development (Davis, 2000; Karin and Gallagher, 2005;
Ramos, 2008; Rose et al., 2010). The impacts of these stress-
response kinases on sarcoplasmic reticulum (SR) calcium (Ca)
handling proteins have begun to be revealed (Ho et al., 1998,
2001; Takahashi et al., 2004; Hagiwara et al., 2007; Scharf et al.,
2013; Huang et al., 2014). Extensive studies suggest that alter-
ations of Ca handling proteins including RyR2, phospholamban
[PLB, an inhibitory protein of SR Ca pump (SERCA2)], and L-
type Ca channels (Cav1.2) contribute to changed intracellular
Ca transients and diastolic SR Ca release that in turn lead to
Ca-triggered ventricular and atrial arrhythmogenesis (Schulman
et al., 1992; Wu et al., 1999; DeSantiago et al., 2002). Thus, this
review focuses on the recent progress in understanding the role of
stress-response kinases and calcium signaling dysfunction in AF
genesis in the aged and failing heart.

ELECTRICAL REMODELING PRECEDES AF ONSET AND
DEVELOPMENT
It is generally believed that abnormal triggers initiate AF, while an
arrhythmogenic substrate sustains it (Nattel et al., 2008). While
reentry circuits due to the formation of arrhythmogenic sub-
strate including molecular and structural remodeling have been
demonstrated to be important in AF development (Allessie et al.,
1976; Mandapati et al., 2000), the underlying mechanisms of AF
initiated by abnormal ectopic trigger activities remain unclear.
Extensive studies in ventricular myocytes have shown that ectopic
activities can occur by prolonged action potential duration (APD)
causing early afterdepolarizations (EADs) and by spontaneous
SR Ca releases leading to delayed afterdepolarizations (DADs)
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(Nattel et al., 2008). EADs normally occur with abnormal depo-
larization during phase 2 or phase 3 of the action potential
(AP). While ventricular myocytes can only develop phase 2 EADs,
atrial myocytes do not produce phase 2 EAD but may pro-
duce late phase 3 EADs with an abbreviation of the atrial APD
(Burashnikov and Antzelevitch, 2003; Patterson et al., 2005).
Studies suggest that electrical remodeling of atrial membrane ion
channels (e.g., Ca and potassium channels) leads to altered APD
and atrial effective refractory period (AERP); both have been
found to be associated with the development of AF (Marx et al.,
2000; Christ et al., 2004; Nattel et al., 2007). Before the onset of
AF, shorter AERPs were associated with a higher inducibility of
AF, while longer AERPs and slowing atrial conduction velocity,
which may cause a pro-arrhythmogeinc shortening of the con-
duction wavelength, Rensma et al. (1988) were found to be linked
to AF development in HF patients and animals (Huang et al.,
2003; Sanders et al., 2003). In aged rabbit left atrium, we found
that a slight reduction in AERP and unchanged action poten-
tial duration (APD30 and APD60; pacing cycle length = 200 ms)
were associated with slowed conduction velocity and a markedly
increased pacing induced AF compared to that of young controls
(Figure 1)(Yan et al., 2013). Although similar results of slightly
altered APD and AERP were also reported in aged canine and rat
atria, Anyukhovsky et al. (2005) and Huang et al. (2006) studies
from coronary artery bypass graft (CABG) surgery patients sug-
gest that AERP was positively correlated with age (Sakabe et al.,
2003). However, the molecular and electrophysiological proper-
ties of human hearts are known to be varied and complicated,
especially when co-existing pathological conditions (such as HF
or myocardial infarction) are present. While these results need to
be further confirmed in healthy aging human donor hearts and
further validated in other animal aging models, studies suggest
that atrial electrical remodeling was found to occur long before
the first occurrence of AF, and was not always correlated with the
occurrence of sustained AF in patients and animal models (van
der Velden et al., 2000; Kanagaratnam et al., 2008). In addition,
late-phase 3 EADs have only been shown to be responsible for
the immediate initiation of AF following termination of paroxys-
mal AF, but not in the case of newly onset AF or reoccurrence of
AF that has been terminated for a long time (Timmermans et al.,
1998; Oral et al., 2003). Thus, other features of the arrhythmo-
genic substrate such as SR Ca handling dysfunction, a generally
acknowledged arrhythmogenic factor of generating DADs, could
play an important role in failing or age-related enhancement of
atrial arrhythmogenicity.

ATRIAL SR Ca HANDLING IN AF GENESIS
Although Ca handling in atrial myocytes is similar to that of ven-
tricular myocytes, there are some important structural and cel-
lular signal differences between atrial and ventricular myocytes.
Atrial myocytes are thinner and longer, Walden et al. (2009)
which may lead to a longer delay between APs and Ca tran-
sients at the center of the cells. This property of the atrial cell
can increase the instability of Ca propagation, which is pro-
arrhythmogenic. In addition, atrial myocytes exhibit a different
Transverse tubules (T-tubules) structure compared to ventricu-
lar myocytes. T-tubules are an important sub-cellular network

FIGURE 1 | (A) Representative electrograms (EG) of burst pacing (for 30 s
at 6× diastolic threshold, CL = ±5 ms of atrial effective refractory period
(AERP) induced AF followed by self-reversion to sinus rhythm (SR) in
open-chest aged (top row) and anisomycin-challenged young rabbit LA
(middle row), and self-restored SR after burst pacing induced extra beats
(EB) in sham control young rabbit LA (bottom row). (B–C) Summarized data
of average duration of pacing-induced AT/AF as well as AERP in open-chest
aged rabbit LA and young rabbit LA with or without anisomycin treatment
(∗p < 0.05 and p = NS, respectively). (D) Representative isochronal maps
from young and aged rabbit hearts subjected to pacing at a CL of 200 ms (π
indicates the pacing sites). (E) Summarized optical mapping CV data show
that aged rabbits exhibited a CL-dependent, slower conduction but
unchanged AERP vs. young controls. This figure is modified from Yan et al.
(2013).

involved in SR Ca dynamics in ventricular myocytes (Wang et al.,
2001; Brette and Orchard, 2003; Franzini-Armstrong et al., 2005;
Ibrahim et al., 2010). T-tubules are located at the z-line of the
myocyte and provide close coupling of L-type Ca channels to
ryanodine receptors (RyRs) on the SR membrane. This structure
allows rapid intracellular Ca triggered SR Ca release in response to
electrical excitation (Franzini-Armstrong et al., 2005). Emerging
evidence suggests that an atrial T-tubule network is present in
large mammalian species including humans, sheep, dogs, cows,
and horses (Dibb et al., 2009; Lenaerts et al., 2009; Wakili et al.,
2010; Richards et al., 2011) although atrial T-tubular networks
are less abundant and less organized compared to that in the
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ventricles. While it was previously believed that atrial T-tubules
were virtually absent in the small rodents,(Forbes et al., 1990;
Berlin, 1995) a recent report by Frisk et al. (2014) showed sim-
ilar structural organization and density of the T-tubules in pig
and rat atria. A disorganized T-tubule network has been found
to contribute to SR Ca release dysfunction in failing ventricular
myocytes from both human and HF animal models (Balijepalli
et al., 2003; Louch et al., 2006; Heinzel et al., 2008; Lyon et al.,
2009). In rapid pacing-induced failing dog atria, reduced T-
tubular abundance was also found to be linked to altered subcellu-
lar Ca dynamics and AF development (Yeh et al., 2008; Dibb et al.,
2009; Lenaerts et al., 2009). While accumulating evidence sug-
gests that atrial T-tubular structure is present in most mammalian
species, further investigations are clearly needed to understand
whether there is remodeling in the failing and aged heart and its
functional role in atrial SR Ca handling and AF development.

It is known that the cardiac Ca current during the normal AP
contributes to the AP plateau and is involved in myocyte con-
traction. The voltage-gated L-type Ca channels (ICa) are activated
by membrane depolarization that leads to a small amount of
inward Ca flux (ICa) (Rougier et al., 1969). Ca entry via Ca current
(ICa) along with a much smaller amount of Ca influx via Na-Ca
exchange (NCX) activates large quantities of Ca release from SR
via ryanodine receptor channels (RyR; also called Ca triggered SR
Ca release channels). This Ca triggered SR Ca release involves a
transient increase in intracellular Ca [Ca]i that initiates myocyte
contraction as free Ca binds to the myofilaments (Bers, 2000).
During the relaxation phase of the cells, intracellular free Ca ions
will be removed from cytosol via: (1) pumping back to SR via a
Ca pump SERCA2 (SR Ca-ATPase); (2) expulsion from the cell
by NCXs; and (3) uptake by mitochondria via mitochondrial Ca
uniporters (Bers, 2000).

Compared to ventricular myocytes, atrial myocytes have
smaller Ca transient amplitude and a higher rate of intracellular
Ca decay. This is due to an increased SERCA uptake and enhanced
function of NCX to remove cytosolic Ca during the diastolic
phase (Walden et al., 2009). The increased SERCA-dependent
intracellular Ca removal is attributed to the greater amount of
SERCA2 and less expression of SERCA inhibitory protein phos-
pholamban (PLB) (Freestone et al., 2000; Walden et al., 2009).
Another important feature of atrial myocytes is that atrial SR Ca
content is greater than that of ventricular myocytes (Walden et al.,
2009). With the greater atrial SR Ca content, atrial myocytes are
prone to spontaneous diastolic SR Ca release when RyR chan-
nels are sensitized under pathological conditions (Venetucci et al.,
2008; Bers, 2014).

We and others have previously discovered that increased dias-
tolic SR Ca release causes abnormal ectopic activities, which lead
to ventricular arrhythmogenesis in the failing heart (Ai et al.,
2005; Yeh et al., 2008; Respress et al., 2012). During the dias-
tolic phase, SR Ca release normally shuts off almost completely
(∼99%). However, increased diastolic RyR Ca release could be
responsible for increased diastolic SR Ca leak and reduced sys-
tolic [Ca]FR for a given L-type voltage-gated Ca current (Ica) as
the release trigger (Bassani et al., 1995; Shannon et al., 2000;
Bers, 2014). The increased diastolic SR Ca leakage along with an
impaired function of Ca uptake due to altered SERCA2 elevates

the amount of [Ca]i and prolongs the [Ca]i decay phase in HF
(Bers, 2000, 2014). Then, increased Na influx via NCX for [Ca]i

removal can produce abnormal triggered activities (e.g., DADs)
and initiate atrial arrhythmias (Bers, 2000, 2014). Studies suggest
that alterations of Ca handling proteins including RyR2, PLB, and
Cav1.2 contribute to changed intracellular Ca transients and dias-
tolic SR Ca release (Schulman et al., 1992; DeSantiago et al., 2002;
Wu et al., 1999). Others and we have previously demonstrated
that activated CaMKII, a pro-arrhythmic signaling molecule, is
critically involved in phosphorylation of RyR2-2815 and PLB-
Thr17 (RyR2815-P, PLB17-P), which results in sensitized RyR
channels that in turn leads to triggered activities and arrhyth-
mia initiation due to diastolic SR Ca leak in pathologically altered
ventricles (Hoch et al., 1999; Maier et al., 2003; Zhang et al.,
2003; Ai et al., 2005; Yeh et al., 2008; Greiser et al., 2009; Sossalla
et al., 2010; Respress et al., 2012). Recent studies indicate that
alterations of CaMKII-dependent RyR phosphorylation are also
exhibited in the atrium of chronic AF patients (Chelu et al., 2009;
Neef et al., 2010). Results from several animal models have shown
that these altered SR Ca handling proteins contribute to enhanced
SR Ca leak and AF development (Chelu et al., 2009; Chiang
et al., 2014). Although alteration of ICa could also contribute to
abnormal SR Ca release, studies indicate that reduced ICa is a hall-
mark of AF induced electrical remodeling (Van Wagoner et al.,
1999; Christ et al., 2004). CaMKII inhibition has been shown to
improve the function of L-type Ca channel in mouse ventricular
myocytes and cultured HL-1 atrial myocytes, which could be due
to up-regulated expression of L-type Ca channel proteins (Zhang
et al., 2005; Ronkainen et al., 2011). These results indicate that
abnormal diastolic RyR Ca release could be the major cause of
abnormal Ca handling in HF and chronic AF (Ai et al., 2005; Yeh
et al., 2008 and Respress et al., 2012). However, other studies have
reported inconsistent results of increased, reduced, or unchanged
Ica preceding the onset of AF in postoperative patients compared
to that of patients at low risk for AF (Van Wagoner et al., 1999;
Christ et al., 2004; Dinanian et al., 2008; Workman et al., 2009).
Thus, the underlying mechanisms of abnormal Ca handling in AF
onset and maintenance in the pathologically altered heart require
further investigation.

In addition to altered phosphorylation of Ca handling proteins
regulated by kinases, some protein phosphatases (PP1, PP2A)
have also been found to play roles in regulating the phosphory-
lation state of channel proteins in failing ventricular myocytes (Ai
et al., 2005, 2011; Ai and Pogwizd, 2005). However, contradictory
results of the expression and activity of protein phosphatases have
been reported in humans and animal models with chronic AF or
paroxysmal AF (Christ et al., 2004; Chelu et al., 2009; Heijman
et al., 2013; Voigt et al., 2014). It is clear that the functional role of
protein phosphatases in atrial Ca handling and AF genesis need
to be further explored.

STRESS SIGNALING PATHWAYS IN ABNORMAL SR Ca
HANDLING AND AF DEVELOPMENT IN THE FAILING OR
AGED HEART
It has been shown that failing and aged hearts exhibit increased
intrinsic stress and higher susceptibility to extrinsic stress stimuli
(Belmin et al., 1995; Beckman and Ames, 1998; Juhaszova et al.,
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2005; Li et al., 2005a; Yang et al., 2005; Judge and Leeuwenburgh,
2007; Neuman et al., 2007; He et al., 2011; Ismahil et al., 2014).
JNK, a family member of the MAPKs, was discovered by Davis
in the early of 90s (Davis, 2000). And then JNK was found to
be activated in response to stress challenges to regulate cell pro-
liferation, differentiation, apoptosis, cell survival, cell mobility
and cytokine production (Davis, 2000; Bogoyevitch and Kobe,
2006; Raman et al., 2007). It is known that the JNK signal-
ing pathway is critical in the development of cancer, diabetes,
and cardiovascular diseases (CVD; e.g., HF, myocardial infarc-
tion, atherosclerosis) (Davis, 2000; Karin and Gallagher, 2005;
Rose et al., 2010). Emerging evidence suggests that enhanced JNK
activation is also linked to significantly elevated intrinsic stress
(e.g., oxidative stress or inflammatory stress) (Liu et al., 2014;
Sun et al., 2014). Studies have shown that rapid transient JNK
activation appears in cultured myocytes and animals that are
subjected to exercise or severe pressure overload, Boluyt et al.
(2003), Nadruz et al. (2004, 2005) and Pan et al. (2005) while
24 h mechanically stretched myocytes or exercise trained ani-
mals showed reduced or unchanged JNK activity (Boluyt et al.,
2003; Miyamoto et al., 2004; Roussel et al., 2008). These results

indicate that JNK activation could be a dynamic response to the
stress stimuli. Our laboratory recently discovered and reported
for the first time (Yan et al., 2013) that activated JNK plays an
important role in reduced gap junction channels and slowed con-
duction (Figure 2) that is associated with markedly increased
pacing-induced AF in vivo in aged rabbits. Young rabbits sub-
jected to a JNK activator (anisomycin) (Hazzalin et al., 1998;
Petrich et al., 2004) challenge in vivo also exhibited dramati-
cally increased incidence and duration of pacing-induced AT/AF,
which is comparable to that found in aged hearts (Figure 1).
While a significantly increased propensity for AF in aged humans
has been well-recorganized, Benjamin et al. (1994), Go et al.
(2001) and Rich (2009) our recent observations (Wu et al., 2014)
suggest an increase in activated JNK in aging human atrium from
healthy donor hearts (which were rejected for heart transplant
due to technical reasons). Moreover, we demonstrated that JNK-
induced gap junction remodeling impairs atrial conduction and
causes formation of reentrant circuits in cultured atrial myocytes
(Figures 2C,D) (Yan et al., 2013). However, previous studies sug-
gest that gap junction remodeling is most likely to contribute to
stabilization and maintenance of AF (Elvan et al., 1997; van der

FIGURE 2 | (A,B) Immunoblotting images and summarized data of
phosphorylated JNK (JNK-P), JNK1, JNK2, and phosphorylated MKK7 and
MKK4 (MKK7-P, MKK4-P) in young and aged rabbit LA. (C) Representative
sequential images of uniformly propagated action potentials (CL = 200 ms) in

sham-control HL-1 monolayers and broken and reentrant AP wave in an
anisomycin-treated (24 h) monolayer. (D) Summarized data of conduction
velocity between the three groups (∗∗p < 0.01 vs. sham-control). This figure
is modified from Yan et al. (2013).

Frontiers in Physiology | Cardiac Electrophysiology February 2015 | Volume 6 | Article 46 | 4

http://www.frontiersin.org/Cardiac_Electrophysiology
http://www.frontiersin.org/Cardiac_Electrophysiology
http://www.frontiersin.org/Cardiac_Electrophysiology/archive


Ai Calcium, stress signaling, and AF

Velden et al., 1998, 2000; Dupont et al., 2001; Polontchouk et al.,
2001; Kostin et al., 2002; Nao et al., 2003; Kanagaratnam et al.,
2004; Sakabe et al., 2004; Wetzel et al., 2005; Nattel et al., 2008).
Therefore, other mechanisms such as SR Ca handling dysfunc-
tion could be responsible for the initiation of atrial arrhythmias
in aged hearts. To date, the role of JNK in SR Ca handling and
AF development in the failing and aged heart remains unknown.
Our recent results suggest that activated JNK plays an impor-
tant role in SR Ca leak and AF development in aged animals as
well as young animals with manipulated JNK activity. A com-
puter simulation study (Xie et al., 2010) suggested that generating
an ectopic beat in heart tissue with poorly coupled neighbor-
ing myocytes (slowed AP conduction) requires much fewer EAD
or DAD-producing myocytes than in normal tissue composed
of well-coupled cells. In another words, impaired intercellular
coupling could make cardiac tissue more vulnerable for gener-
ating ectopic triggers that may initiate arrhythmias. Therefore,
JNK-induced slowed conduction in the aged atria may create a
favorable environment for JNK-induced abnormal Ca activities
to form ectopic beats and even to initiate AF. Many questions
regarding the underlying mechanisms of JNK-induced AF gen-
esis remain unanswered. Further investigations are clearly needed
in this important research area.

ERKs and p38 MAPKs are the other two important stress-
response signaling pathways in cellular biology (Ramos, 2008;
Rose et al., 2010). At the cellular level, the two stress signaling
pathways modulate cell proliferation and differentiation, cytoki-
nesis, transcription, cell death, and cell adhesion. Like JNK, both
ERK and p38 are involved in various pathologies such as car-
diovascular diseases, diabetes, and cancers (Davis, 2000; Kyriakis
and Avruch, 2001; Karin and Gallagher, 2005; Kyoi et al., 2006;
Yoon and Seger, 2006; Rose et al., 2010). While enhanced activity
of ERK or p38 alone may or may not be required or suffi-
cient for facilitating cardiac hypertrophy, both ERK and p38 were
found to be activated in HF and these activated stress kinases
are involved in pathological remodeling and AF development
in the failing heart (Zechner et al., 1997; Wang et al., 1998; Li
et al., 2001, 2005b; Cardin et al., 2003; Nishida et al., 2004;
Purcell et al., 2007). Studies suggest that hypertrophic stimuli
lead to an increase in L-type Ca transients and down-regulation
of SERCA2 expression via activated ERK (Takahashi et al., 2004;
Hagiwara et al., 2007; Huang et al., 2014). Ras, a GTPase, is
able to activate ERK through a Ras-Raf-MEK cascade (Avruch
et al., 2001). Ras signaling activated ERK was found to contribute
to down-regulation of L-type Ca channels and reduced channel
activity along with reduced SERCA2 protein expression in cul-
tured myocytes (Ho et al., 1998, 2001; Huang et al., 2014). It
was also found that Ras-ERK-modulated molecular remodeling
led to decreased intracellular Ca transients and impaired SR Ca
uptake, which could lead to enhanced arrhythmogenicity (Zheng
et al., 2004). Moreover, recent work reported by Scharf et al.
(2013) suggests that p38 directly regulates SERCA2 mRNA and
protein expression via transcription factors Egr-1 and SP1. Taken
together, emerging evidence indicates that the stress-response
MAP kinases signaling cascades could be involved in cardiac Ca
handling and AF development (Figure 3). However, more work
needs to be done to further understand the underlying molecular

FIGURE 3 | Schematic outline of the potential impact of

stress-response MAP kinases on sarcolemma reticulum (SR) Ca

handling that may increase AF propensity in failing and/or aged atria.

and electrophysiological mechanisms of altered stress signaling
cascades and their crosstalking in AF development in the failing
and aged heart.

CONCLUSION
Accumulating evidence suggests that abnormal SR Ca handling is
associated with the initiation and development of AF. However,
much work still needs to be done to further uncover the under-
lying molecular and electrophysiological mechanisms of AF ini-
tiation and maintenance in diseased and aged hearts. To date,
most of the mechanistic studies of SR Ca dynamics have been
performed in isolated myocytes. However, isolated myocytes pro-
vide limited information regarding the spatial complexity of SR
Ca kinetics in the 3-dimensional myocardial structure, which is
completely disrupted by the enzymatic dissociation procedure of
cell isolation. Thus, measuring Ca dynamics in intact atria using
high-resolution Ca imaging should be considered in future stud-
ies to obtain important information about the relationship of SR
Ca handling and APs, as well as their role in arrhythmogenesis. At
present, emerging evidence indicates a link between altered stress
signaling cascades and abnormal Ca handling in pathologically
altered atrium. Further understanding of the underlying mech-
anisms of stress-induced AF development in the failing and/or
aged heart could reveal potential effective therapeutic strategies
for AF prevention and treatment.
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